
Evaluating the Efficiency of Frontier-based Exploration Strategies
Dirk Holz1, Nicola Basilico2, Francesco Amigoni2 and Sven Behnke1
1 University of Bonn, Department of Computer Science VI, Bonn, Germany
2 Politecnico di Milano, Dipartimento di Elettronica e Informazione, Milano, Italy

Abstract

Exploration and mapping are fundamental prerequisites forautonomous robots operating in initially unknown environ-
ments. In this paper, we evaluate simple yet efficient frontier-based exploration strategies. Furthermore, we discuss
improvements to the classic frontier-based exploration strategy by Yamauchiet al. that further shorten the resulting ex-
ploration paths and present results from a comparative evaluation with a reference exploration strategy taken from the
literature.

1 Introduction and Related Work

Exploring and mapping environments are fundamental pre-
requisites for autonomous mobile robots operating in ini-
tially unknown or dynamic environments. Exploration is
related to well-known problems from the field of com-
putational geometry, namely art gallery, illumination and
shortest watchmen route problems. Since the original art
gallery problem is NP-complete [1] and requires com-
plete knowledge about the environment, exploring an un-
known environment is usually performed in a reactive or
greedy fashion. Instead of planning in advance all loca-
tions where the robot needs to acquire sensory informa-
tion (or where guards need to be placed), a greedy explo-
ration strategy solely plans one step ahead by determining
a next best view that provides new information about the
environment while minimizing some objective function.
Over the last decades different exploration strategies have
been proposed [2, 3, 4, 5]. However, there are only a few
comparative evaluations of different strategies such as [6]
and [7]. This paper focuses on the efficiency of frontier-
based exploration strategies [8], presents a strategy incor-
porating a map segmentation algorithm for exploring the
environment room-wise, and compares the resulting strate-
gies with a state-of-the-art decision-theoretic exploration
strategy from [9].
Frontier-based exploration strategies usually operate on
grid maps [10]. In contrast to continuous geometric feature
maps such as point or line maps, these maps distinguish be-
tween free and previously unexplored regions (white and
gray pixels inFigure 1). The idea of frontier-based ex-
ploration strategies is to guide the robot to the frontiers or
boundaries between cells known to be free (i.e., not oc-
cupied by obstacles) and cells for which no information is
available (i.e., for which the robot has not yet acquired sen-
sory information). Here, the problem of determining the
next best view reduces to determining the frontier being
closest (w.r.t. path length) to the robot. This is equivalent

to say that the amount of information that is expected to be
acquired is assumed to be the same for all frontiers.

Figure 1: From left to right and top to bottom: frontier
cells in the progress of exploration and incremental map
construction (free space: white, unknown regions: gray,
frontiers: red/dark gray).

That the trajectories of a mobile robot exploring closest
frontiers are kept reasonably short and that there are up-
per and lower bounds on the trajectory length have been
shown by Koeniget al. [11]. In contrast, the number of
poses that need to be reached in a closest-frontier explo-
ration is usually larger compared to other strategies [5].
However, this is only problematic when not continuously
acquiring information and updating the map. Here, we
assume a continuous perception of the environment, us-
ing 2D laser range scans, and continuously updating the
robot’s environment model with an efficient on-line SLAM
algorithm [12]. Still there are two drawbacks of closest-
frontier exploration compared to other strategies:

(1) due to the continuous map updates, the currently ap-
proached unknown region might get fully explored
during navigation before reaching the destination fron-
tier, in which case the robot could start to explore the
next unknown region, and

(2) the closest frontier can lie outside of the room that is

ISR / ROBOTIK 2010

36

behnke
Schreibmaschine
In Proceedings of Joint 41th International Symposium on Robotics and 6th German Conference on Robotics, Munich, June 2010.

currently explored. This situation may cause the robot
to explore the same room two times with unnecessary
long trajectories (seeFigure 2).

The remainder of this paper is organized as follows: Sec-
tion 2 presents the principle of frontier-based exploration
and the proposed extensions to address problems (1) and
(2). Results from a comparative evaluation are summa-
rized in Section 3. They show that the achievable results
of frontier-based exploration do not rank behind those of
more sophisticated strategies and that both extensions fur-
ther shorten the overall length of the path taken by the
robot.

−30 m

−20 m

−10 m

0 m

10 m

20 m

30 m

−10 m 0 m 10 m 20 m

(a) Trajectory

−10 m

10 m

(b) Detail view

Figure 2: Unnecessary long trajectories in unsegmented
maps. Shown are the path of the robot taken for exploring
an environment with multiple rooms (a) and a room that
needs to be entered twice in order to explore remaining
frontiers (b).

2 Strategy

The idea of frontier-based exploration strategies is to de-
tect borders between already modeled regions of the en-
vironment and those regions where the robot has not yet
acquired information about environmental structures. Be-
ing more precise, the robot searches for regions that are
traversablein the so-far built map and adjacent to unmod-
eled regions and holes in the map. Closest frontier strate-
gies, in particular, evaluate the length of the paths from
the robot’s current location to all determined frontiers and
guide the robot to the one being closest.
The strategy of exploring closest frontiers, as introduced
by Yamauchiet al. in [8], can be briefly summarized as
shown inFigure 3.

2.1 SLAM and Map Representation

For actually building a map, we use a SLAM (Simultane-
ous Localization And Mapping) approach that is based on
incrementally registering raw 2D laser range scans [12].
The map is represented as an unordered point cloud. Du-
plicate storage of measurements is avoided by adding to
the map only points that provide new information, i.e.,

that have some minimum distance to points already being
stored in the map. In addition, we maintain a probabilistic
reflection grid map that counts, for each cell, the number
#hits of range beams being reflected by an object in the
corresponding region and the number#misses of range
beams passing through the cell without getting reflected.
The reflection probability is then

p(c[xy]) =
#hits

#hits + #misses
.

p(c[xy]) = 0.5 is the prior probability that represents that
the cellc[xy] is unknown.

1. Determine the setT of traversable cells, i.e., com-
pute a traversability map.

2. Determine the setR of reachable cells, i.e., com-
pute a reachability map by conducting a path search
without goal specification.

3. Determine the candidate setC of cells that are
reachable and traversable, i.e.,

C = {c[xy] | c[xy] ∈ T ∩ R}. (1)

4. Determine the set of frontier cellsF by checking for
every cell in the candidate setC if it is adjacent to a
cell with unknown reflection probability:

F = {c[xy] | c[xy] ∈ C,

∃c[(x+m)(y+n)] : p(c[(x+m)(y+n)]) = 0.5,

m ∈ [−1, 1], n ∈ [−1, 1]} (2)

5. Determine the next best viewn = (nx ny)
T as be-

ing the frontier cell lying closest to the robot’s cur-
rent positionr = (rx ry)

T :

n = arg min
c[xy]∈F

L
(

(x y)
T

, r
)

, (3)

whereL(p, r) is the length of the shortest path from
p to r.

Figure 3: Strategy of exploring closest frontiers.

2.2 Determining and Evaluating Frontiers

For determining the set of candidate posesC and the fron-
tier cell lying closest to the robot’s current position we
examine all cells in the probabilistic reflection map that
are both traversable and reachable. In order to guarantee
safe navigation and that the robot can approach the se-
lected next best view position, we define traversable cells
in a way that the robot should not traverse regions that
are occupied or cells where no information is available.
That is, candidate cellsc[xy] have a probability of be-
ing reflective ofp(c[xy]) ≤ pfree (in our implementation

37

(a) Reflection map (b) Traversability map (c) Reachability map (d) Frontier cells

Figure 4: Determining frontiers in a probabilistic reflection map. Shown is a partial reflection map (a) together with the
computed traversability and reachability maps (b+c) used for determining frontier cells (d). Frontier cells are marked red.
The color coding in the reachability map corresponds to the length of the shortest path to that cell.

pfree = 0.25). Furthermore, we want the robot to keep a
minimum distance to surrounding objects. We, therefore,
neglect candidates whose distance to the closest obstacle
region falls below some thresholddmax (in our implemen-
tation,dmax = 30 cm).
We determine the set of actually reachable cells and evalu-
ate the cost involved in traveling there by performing a path
search from the robot’s current location without specifying
a goal pose. By this means, the internally usedA⋆ path
planner turns into Dijkstra’s algorithm. Without the goal
specification, it fully explores the reachable workspace and
constructs a completereachability map(seeFigure 4).
This map stores for every cell both the cost involved when
traveling to it (i.e., the length of the shortest path) as well
as the preceding cell along the shortest path. That is, once
the setF of frontier cells has been determined, we can
simply lookup the distances fromr (the robot’s current po-
sition) to all candidatesc[xy] ∈ F and select the one being
closest. The shortest obstacle-free path for navigating to
the selected candidate can be recursively looked up in the
reachability map.
As can be seen inFigure 1, always selecting the closest
frontier as the next best view (NBV) already yields a rea-
sonable exploration behavior. However, the following two
extensions can further shorten the paths traveled by the
robot.

2.3 Repetitive Re-Checking

During navigation to a target pose (i.e., the selected NBV),
we continuously apply our SLAM approach from [12] in
order to localize the robot and integrate newly acquired in-
formation into the so far built model. As a result, the robot
might have fully explored an unknown region before actu-
ally reaching the corresponding frontier. Hence, continu-
ing to travel to the selected NBV does not yield any new

information.

We address this problem by repetitively re-checking
whether or not the currently approached frontier cell is still
adjacent to a cell with unknown reflectivity. As soon as the
currently approached cell is no longer a valid frontier, the
next closest frontier is selected using the exploration strat-
egy. Since this check is a constant time lookup, i.e., in
O(1), it can be integrated into the original strategy without
increasing the computational complexity.

Figure 5 shows a typical example of a trajectory obtained
when using repetitive re-checking. It can be seen that
the robot’s trajectory is considerably shortened especially
when approaching frontiers in the vicinity of corners.

0 m

5 m

10 m

15 m

0 m 5 m 10 m 15 m

Without re−checking (73m)
With re−checking (70m)

Figure 5: Achievable results of repetitive re-checking.
With repetitive re-checking the length of the robot’s tra-
jectory is reduced from (approx.)73 m to 70 m.

38

−30

−20

−10

 0

 10

 20

 30

−10 0 10 20

Voronoi vertices
Critical points

(a) Critical points (b) Segmentation (c) Refined segmentation

Figure 6: Segmenting a map modeling the5-th floor of the AVZ building at the University of Osnabrück. The constructed
Voronoi diagram and the critical points are shown in (a). Theresulting segmentation of free space into differently colored
segments is shown in (b), its refinement in (c).

2.4 Map Segmentation

Another problem with the classical strategy is that a single
room might get visited multiple times if successively se-
lected NBVs lie in different rooms. In this case, the robot
stops exploring a room although it is not yet fully modeled
and enters the next room.
To reduce the number of multiple visits, we segment the
partial map built so far into individual rooms and prefer
frontier cells lying in the same segment as the robot’s cur-
rent location. For segmenting the grid map we use an ap-
proach based on the work by Thrun [13] that splits map
regions at local minima (critical points) in the Voronoi di-
agram of the map’s free space. Thrun used this segmen-
tation algorithm for extracting the topology of an environ-
ment from grid maps. This algorithm, however, can pro-
duce a vast amount of segments, especially in longer cor-
ridors.
To address this issue, the algorithm was improved by
Wurm et al. in [14] who used the segmentation to coor-
dinate a team of multiple exploring autonomous robots.
They restricted critical points to be of degree 2 and adja-
cent to a junction node in the Voronoi diagram. This mod-
ification considerably decreases the number of segments.
However, real-world experiments conducted in the context
of this paper have revealed that this is too restrictive. Es-
pecially at doorways the above constraint is often not met,
in which case rooms are not well segmented. That is, two
rooms form a single segment if the local minima in be-
tween is not directly adjacent to a junction node.

We define critical points to be local minima with respect
to the distances to the closest Voronoi site [13, 14], nodes
of degree 2, and to be itself adjacent to a junction node
or adjacent to another node that is adjacent to a junction
node. The latter modification relaxes the aforementioned
constraint of [14] and better partitions the free space at
doorways into separate segments.

The actual segmentation is conducted as follows. Using
the critical points we split previously unassigned map re-
gions into two parts. Instead of using the direct connection
between the closest occupied cells at the critical points as
in [13, 14], we assign cells to segments with respect to
their distances to critical points. That is, we form clusters
of cells being closest to a common split point. This can be
achieved efficiently by computing an Euclidean distance
transform (EDT) for the critical points [15]. For the actual
assignment we compute and store both the distance to the
closest critical point (as for the EDT) and the closest crit-
ical point itself; thus computing a nearest neighbor trans-
form. A typical result of this initial assignment on maps of
office-like environments is shown inFigure 6(b).

As it can be seen, this initial assignment causes a vast
amount of small segments, two for each split point. In or-
der to obtain a clean segmentation, we construct a graph
of splits from the initial assignments. In an iterative re-
finement step we then merge segments that are adjacent to
each other but not split by the same critical point. A typ-
ical result of applying the overall segmentation algorithm
is shown inFigure 6(c). Except for a small number of

39

rooms, the shown map modeling the 5th floor of the AVZ
building at the University of Osnabrück is well segmented.
The overall segmentation algorithm is summarized inFig-
ure 7.
In the exploration strategy it is then checked for every fron-
tier cell if it belongs to the same segment as the one cur-
rently being explored by the robot. If no such cell exists,
the robot selects the closest frontierc[xy] from the setF
of all frontier cells. If, however, the setFr ⊆ F of fron-
tier cells in the robot’s segment is not empty, the robot se-
lects the closest frontier cell fromFr. As shown in the
following section, this straightforward extension can con-
siderably decrease the length of the path traveled by the
robot.

1. Construct the Voronoi diagramG, e.g., by means of
Fortune’s Sweep Line Algorithm [16] on extracted
occupied cells or by means of the distance transform
and skeletonization [14]:

G = (V,E).

2. Extract the set of critical points in the Voronoi dia-
gram

Cc = {vc | vc ∈ V },

wherevc is a local minimum, has degree2 and is
adjacent to a junction node of degree3 or a node of
another degree that is adjacent to a junction node.

3. Create for the two neighboring nodesvn1
andvn2

to segmentss1 ands2 and add them to the list of
segmentsS.

4. Determine for all free cellsc in the map the closest
segments ∈ S. Assigns to c.

5. Determine all transitions(s1, s2) in the segmented
map and add them the adjacency listA.

6. Merge two segmentss1 ands2 with (s1, s2) ∈ A if
s1 ands2 do not originate from the same split point
or terminate if no such(s1, s2) exists.
Repeat step 6.

Figure 7: Map segmentation algorithm.

3 Results

This section will present our experimental setup as well as
the results obtained from a comparative evaluation of dif-
ferent exploration strategies.

3.1 Experimental Setup and Robot Platform

In order to evaluate the efficiency of closest frontier ex-
ploration as well as of the proposed extensions, we have

integrated different exploration strategies into our robot
control architecture [12, 17] that can be simulated using
both Player/Stage and Microsoft Robotics Developer Stu-
dio. The system consists of a differential-drive robot plat-
form and a SICK LMS 200 laser range scanner. The scan-
ner has a field of view of180◦ and an angular resolution
of 1◦. For following planned paths to target locations we
use the non-linear motion controllers from [17]. Localiza-
tion of the robot during navigation and map updates are
conducted using the SLAM approach presented in [12].

In a comparative evaluation, we have applied the differ-
ent exploration strategies in three different environments,
a larger open-space and two office-like environments con-
sisting of multiple rooms and corridors. The only criterion
considered in the evaluation is the overall distance traveled
by the robot in order to reach a full coverage of the environ-
ment. Regardless of the actually used exploration strategy,
frontier cells are always determined. The non-existence
of frontier-cells, i.e., there is not any single reachable cell
being adjacent to an unknown cell, is used as a common
termination criterion. Since we update the map continu-
ously during navigation to a target pose, the total number
of sensing locations is not considered in the evaluation.

3.2 Reference Strategy

As a reference strategy, we selected the decision-theoretic
strategy of González-Baños and Latombe [9]. It draws
sample posesp from the free space in the so far built map
and evaluates their utilityu(p) in the context of explo-
ration.

Two criteria are considered in the evaluation – the travel-
ing costL(p) for reachingp and the expected information
gainI(p) when performing a sensing action atp:

u(p) = I(p)e−λL(p).

As suggested in [9], we useλ = 0.2 to balance informa-
tion gain and traveling cost. Whereas the traveling cost
is estimated in the same way as for the frontier cells, the
information gain is approximated as the expected relative
change in map entropy. That is, we simulate range scans
and corresponding map updates at all candidate posesp.
The information gainI(p) is approximated as the differ-
ence between the map’s entropy before (Hp(x)) and after

(Ĥp(x)) the simulated update:

I(p) = Ĥp(x) − Hp(x).

Since the used probabilistic reflection maps, in princi-
ple, represent two probabilities (being occupiedandbeing

40

free), we estimate the map entropy by means of

H = −
∑

c[xy]




p(c[xy]) log p(c[xy])

︸ ︷︷ ︸

b=Hp(occupied)

+ (1 − p(c[xy])) log(1 − p(c[xy]))
︸ ︷︷ ︸

b=Hp(free)




 .

The samples itself are generated to lie in the vicinity of
frontiers as in [9]. As a baseline for comparison, we re-
port also results obtained with a Random Frontier (RF)
selection strategy, that chooses the next observation loca-
tion according to a uniform probability distribution over
the current set of frontier cells.

3.3 Exploring Open Spaces

Figure 8(a) shows the results of simulating an exploring
robot in a larger open space. This Player/Stage example
environment consists of a single polygon with holes and
spans a region of approximately256 m2. Plotted are both
the mean length and standard variation of the path traveled
by the robot and measured over10 runs (see alsoTable 1).
Although the samples for the reference strategy [9] are
sampled only in the vicinity of frontiers, increasing the
numbern of samples decreases the overall path length. In
all three environments,n > 500 samples did not show
considerable improvements.
It can also be seen that the traveled paths when exploring
closest frontiers are considerably shorter than those result-
ing from applying the reference strategy. Repetitive re-
checking further improves the result of closest frontier ex-
ploration as it effectively hinders the robot from traveling
into already explored map regions. However, segmenting
the so far built map and preferring frontiers in the currently
explored segment does not further improve the achievable
results in this scenario. This is mainly caused by the fact
that the environment does not contain any room causing the
segmentation to be rather random than reasonable. A con-
siderable improvement can only be achieved in office-like
or domestic environments that are composed of multiple
rooms.

Strategy Path length (m)

Random Frontier 102.84 ± 34.50
Closest Frontier 73.71 ± 1.00
Closest Frontier + RR 70.45 ± 0.97
Closest Frontier + RR + Seg. 72.89 ± 5.77
Decision Theoretic (n=100) 100.01 ± 17.64
Decision Theoretic (n=500) 98.27 ± 11.76

Table 1: Measured path lengths for exploring the large
open space. SeeFigure 8(a).

3.4 Exploring Office-Like and Domestic
Environments

Figure 8(b) andFigure 8(c)show the results of simulating
an exploring robot in larger office-like environments. Both
environments can be segmented into individual rooms.
Typical segmentations are shown to the right of the mea-
sured path lengths. In these scenarios, segmenting the map
and preferring frontier cells in the currently explored seg-
ment considerably decreases the lengths of the paths trav-
eled by the robot.
Table 2 summarizes the measured path lengths for explor-
ing the 5th floor of the AVZ building at the University of
Osnabrück. Here, map segmentation only provides a mi-
nor improvement, which is primarily caused by the fact
that, even without map segmentation, the robot only rarely
visits the same room twice.

Strategy Path length (m)

Random Frontier 601.51 ± 141.93
Closest Frontier 382.07 ± 3.99
Closest Frontier + RR 361.88 ± 3.01
Closest Frontier + RR + Seg. 359.77 ± 12.91
Decision Theoretic (n=500) 447.68 ± 32.78

Table 2: Measured path lengths for exploring the AVZ
building. SeeFigure 8(b).

Table 3 summarizes the results for the “Hospital” envi-
ronment that contains considerably more individual rooms.
Here, map segmentation considerably shortens the path
travelled by the robot.

Strategy Path length (m)

Random Frontier 669.17 ± 186.41
Closest Frontier 281.07 ± 3.82
Closest Frontier + RR 253.09 ± 3.12
Closest Frontier + RR + Seg. 221.37 ± 19.97
Decision Theoretic (n=500) 312.68 ± 38.11

Table 3: Measured path lengths for exploring the
Player/Stage environment “Hospital”. SeeFigure 8(c).

4 Conclusions and Future Work

Although exploring closest frontiers is a rather simple and
naïve strategy, the resulting paths are reasonably short and
do not rank behind those acquired using more sophisti-
cated strategies. Repetitive re-checking is an obvious and
intuitive improvement to plain frontier-based exploration
strategies. It considerably decreases the length of the trav-
eled trajectories in all experiments conducted in the context
of this paper. As it is computationally very efficient, it can
easily be integrated into existing frontier-based strategies.
It is, however, a matter of future work to adapt this concept
to decision-theoretic strategies, e.g., by re-evaluatingthe
utility of the currently approached candidate and, where

41

 0

 20

 40

 60

 80

 100

 120

 140

Random
 Frontier

Closest
 Frontier

Closest
 Frontier

 + RR

Closest
 Frontier

 + RR
 + Seg.

Decision
 Theoretic
 (n=100)

Decision
 Theoretic
 (n=500)

D
is

ta
nc

e
[m

]

Mean trajectory length
Standard deviation

(a) Player/Stage “Cave” environment (provided by R. Vaughan)

 0

 100

 200

 300

 400

 500

 600

 700

Random
 Frontier

Closest
 Frontier

Closest
 Frontier

 + RR

Closest
 Frontier

 + RR
 + Seg.

Decision
 Theoretic
 (n=500)

D
is

ta
nc

e
[m

]

Mean trajectory length
Standard deviation

(b) AVZ building at University of Osnabrück (provided by K. Lingemann, A. Nüchter and J. Hertzberg)

 0

 100

 200

 300

 400

 500

 600

 700

Random
 Frontier

Closest
 Frontier

Closest
 Frontier

 + RR

Closest
 Frontier

 + RR
 + Seg.

Decision
 Theoretic
 (n=500)

D
is

ta
nc

e
[m

]

Mean trajectory length
Standard deviation

(c) Player/Stage “Hospital” environment (provided by R. Vaughan)

Figure 8: Evaluation results in simulated environments. Shown are measured mean values and standard deviations for
the paths travelled by the robot in three different environments (used abbreviations: RR = repetitive re-checking, Seg. =
map segmentation).

42

applicable, interrupt the travel.
In office-like and domestic environments, i.e., environ-
ments that are composed of several rooms, map segmenta-
tion and preferring frontier cells in the currently explored
segment force a room-wise exploration. This further im-
proves the achievable results. However, in wide open
spaces, i.e., environments that cannot be reasonably seg-
mented, map segmentation can even slightly increase the
trajectory length. It is a matter of future work to decide, on
the fly and depending on the currently explored environ-
ment, whether or not to use this extension.
Furthermore, we plan to make available a framework for
benchmarking exploration strategies and to continue our
efforts towards good experimental methodologies for com-
paring exploration strategies.

References

[1] A. Aggarwal, “The art gallery theorem: its variations,
applications and algorithmic aspects,” Ph. D. Thesis,
John Hopkins University, 1984.

[2] F. Amigoni and A. Gallo, “A Multi-Objective Explo-
ration Strategy for Mobile Robots,” inProceedings of
the IEEE International Conference on Robotics and
Automation (ICRA), 2005, pp. 3861–3866.

[3] W. Burgard, M. Moors, C. Stachniss, and F. Schnei-
der, “Coordinated Multi-Robot Exploration,”IEEE
Transactions on Robotics, vol. 21, no. 3, pp. 376–
386, 2005.

[4] R. Sim and N. Roy, “Global A-Optimal Robot Ex-
ploration in SLAM,” in Proceedings of the IEEE In-
ternational Conference on Robotics and Automation
(ICRA), April 2005, pp. 661–666.

[5] C. Stachniss and W. Burgard, “Exploring unknown
environments with mobile robots using coverage
maps,” inProceedings of the International Confer-
ence on Artificial Intelligence (IJCAI), 2003, pp.
1127–1134.

[6] D. Lee and M. Recce, “Quantitative evaluation of
the exploration strategies of a mobile robot,”Inter-
national Journal of Robotics Research, vol. 16, no. 4,
pp. 413–447, 1997.

[7] F. Amigoni, “Experimental Evaluation of Some Ex-
ploration Strategies for Mobile Robots,” inPro-
ceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2008, pp. 2818–
2823.

[8] B. Yamauchi, “A Frontier Based Approach for Au-
tonomous Exploration,” inProceedings of the IEEE
International Symposium on Computational Intelli-
gence in Robotics and Automation (CIRA), 1997, pp.
146–151.

[9] H. H. González-Baños and J. Latombe, “Navigation
Strategies for Exploring Indoor Environments,”In-
ternational Journal of Robotics Research, vol. 21, pp.
829–848, 2002.

[10] H. Moravec and A. E. Elfes, “High Resolution Maps
from Wide Angle Sonar,” inProceedings of the IEEE
International Conference on Robotics and Automa-
tion (ICRA), 1985, pp. 116–121.

[11] S. Koenig, C. Tovey, and W. Halliburton, “Greedy
Mapping of Terrain,” inProceedings of the IEEE In-
ternational Conference on Robotics and Automation
(ICRA), 2001, pp. 3594–3599.

[12] D. Holz and S. Behnke, “Sancta simplicitas – on
the efficiency and achievable results of SLAM using
ICP-Based Incremental Registration,” inProceedings
of the IEEE International Conference on Robotics
and Automation (ICRA), 2010.

[13] S. Thrun, “Learning Metric-Topological Maps for
Indoor Mobile Robot Navigation,”Artificial Intelli-
gence, vol. 99, no. 1, pp. 21–71, 1998.

[14] K. M. Wurm, C. Stachniss, and W. Burgard, “Coordi-
nated Multi-Robot Exploration using a Segmentation
of the Environment,” inProceedings of the IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), 2008, pp. 1160–1165.

[15] R. Fabbri, L. da F. Costa, J. C. Torelli, and O. M.
Bruno, “2d euclidean distance transform algorithms:
A comparative survey,”ACM Computing Surveys,
vol. 40, no. 1, pp. 2:1–2:44, 2008.

[16] S. J. Fortune, “Voronoi Diagrams and Delaunay Tri-
angulations,” E. Goodman and J. O’Rourke, Eds.
CRC Press, New York, 1998, pp. 377–388.

[17] D. Holz, G. K. Kraetzschmar, and E. Rome, “Ro-
bust and Computationally Efficient Navigation in Do-
mestic Environments,” inRoboCup 2009: Robot Soc-
cer World Cup XIII, ser. Lecture Notes in Computer
Science, J. Baltes, M. Lagoudakis, T. Naruse, and
S. Shiry, Eds. Germany: Springer, 2009, vol.
5949/2010, pp. 104–115.

43

