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Abstract
While today’s industrial robots achieve high performance in a wide range of tasks, the programming and adaptation of
such robots to new tasks is still time-consuming and far from convenient. This shortcoming is a major obstacle for the
deployment of robots in small to medium-size companies and also for service applications. Robot learning by imitation
has been identified as an important paradigm to tackle this practicability issue. However, such approaches are only
applicable in controlled static scenarios. To perform less constrained tasks, the robot needs the ability to generalize its
skills and to adapt to changing conditions. It is thus a natural idea to formulate the problem as learning from experience
and to incorporate demonstrations by an expert in the learning process. We present a new framework for learning of
motion skills that seamlessly integrates demonstration learning from an expert teacher and further optimization of the
demonstrated skill by own experience. Our method employs Gaussian Process regression to generalize a measure of
performance to new skills that are close to already learned skills in the state-action space. We evaluate our approach for
the task of grasping an object.

1 Introduction

Today’s industrial mass production would not be possible
without the invention of robots that efficiently carry out
repetitive manufacturing tasks. These robots usually work
in an isolated, static environment and are programmed to
fulfil a single, specific task. In the future, robots may be
employed to relieve humans of even more tasks which are
cumbersome, monotone or even dangerous for humans in
industrial, as well as service applications. These robots
will have to be flexible enough to easily adapt to new tasks
and unexpected changes in the environment.
As it is not feasible to preprogram the robot for every sit-
uation it may ever encounter, the development of intuitive
ways to teach a robot is of central importance in this area
of research. For personal robots, this also requires intuitive
interfaces that are accessible to inexperienced users and al-
low owners of robots to adapt them to their personal needs.
In order to achieve this, we combine imitation and rein-
forcement learning in a single coherent framework. Both
ways of learning are well known from human teaching psy-
chology. Applying them to robot learning allows a teacher
to intuitively train a robot.
In our approach, the actions generated by either learning
module are executed by the robot and their performance is
measured as a scalar reward. We assume that the reward is
continuous over the combined space of states and actions
and apply Gaussian Process regression to approximate its
value over the entire space. This allows to generalize expe-
riences from known situations. Furthermore, it provides a
measure of uncertainty regarding the achievable reward in

any situation. In each situation, we decide for imitation or
reinforcement learning based on a measure that trades off
large reward and predictability of actions.
For imitation learning, we extract the parameters of a con-
troller from the demonstrated trajectory. This controller is
able to generate anthropomorphic arm movements from a
small set of parameters. For reinforcement learning, we
determine new actions that promise high reward but also
offer a predictable outcome.
The advantages of our approach are manifold: The way in
which we integrate both learning paradigms allows each of
them to mitigate the other’s shortcomings and improves the
overall learning quality. The imitaition learning method
narrows the search space of reinforcement learning which
greatly improves learning speed. Furthermore, it allows to
acquire anthropomorphic movements from human demon-
strations. This offers a huge advantange over manual pro-
gramming as this kind of movements is usually complex
and it is very hard to describe what makes a movement
human-like. Using reinforcement learning helps to reduce
the number of demonstrations that are required to success-
fully learn a task. Furthermore, it is used to improve the re-
sults of imitation learning and to compensate for the kine-
matic differences between the human and the robot. In
effect, our proposed learning method makes robot training
accessible to non-experts in robotics or programming.

2 Related Work
Imitation learning methods comprise a set of supervised
learning algorithms in which the teacher does not give the
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Figure 1: The teacher demonstrates a grasping movement (top). From the recorded trajectory, our approach extracts a
parameterized motion primitive. The robot imitates the grasp by executing the extracted motion (bottom).

final solution to a problem but rather demonstrates the nec-
essary steps to achieve that solution. Although imitation
learning has been studied for decades, its mechanisms are
not yet fully understood and there are many open questions
that have been grouped into the broad categories relating to
the questions of whom to imitate, what to imitate, how to
imitate and when to imitate [1].

Consequently, there are many approaches to apply imita-
tion learning to robots [1]. In early approaches to program-
ming by demonstration [2], motion is recorded by teach-in
through guiding or teleoperation by a human expert. The
demonstrated trajectories are played back to generate the
desired motion. Recently, Calinon proposed a probabilistic
framework to teach robots simple manipulation tasks [3].
Demonstrations were given by teleoperating a robot. Its
motions in relation to the objects in the world were subse-
quently encoded in a Gaussian Mixture Model after reduc-
ing their dimensionality. By applying Gaussian Mixture
Regression and optimization, the robot was able to repro-
duce the demonstrated movements in perturbed situations.
In order to facilitate this generalization, several demonstra-
tions of a movement need to be given. From these demon-
strations the robot captures the essence of the task in terms
of correlations between objects.

Reinforcement learning offers a way to reduce the num-
ber of required training examples. However, it is known to
be prone to the curse of dimensionality. Early approaches
were thus limited to low-dimensional and discrete state and
action spaces [4]. More recently, strategies have been pro-
posed that allow for continuous representations. For in-
stance, so called policy gradient methods have been devel-
oped and successfully applied to optimize the gait of Sony
AIBO robots [5]. These methods, however, discard most of
the information contained in the training examples. To im-
prove data-efficiency, Lizotte et al. [6] proposed to select
actions probabilistically, based on Gaussian Process Re-
gression and the most probable improvement criterion. We
propose an improved search strategy that not only makes

efficient use of available data, but also balances the proba-
bilities for improvement and degradation.
To overcome the limitations of the approaches above,
Schaal [7] was among the first who proposed to combine
reinforcement learning and imitation learning. In his work,
a robot was able to learn the classical task of pole balanc-
ing from a 30s demonstration in a single trial. In more
recent work, Billard and Guenter [8] extended their imita-
tion learning framework by a reinforcement learning mod-
ule, in order to be able to handle unexpected changes in
the environment. However, both approaches merely used
the human demonstrations to initialize the reinforcement
learning, thus reducing the size of the search space. In
our approach, further demonstrations can be incorporated
at any point in time.

3 Expected Deviation in Gaussian
Processes

Central to our approach is the idea that the performance of
movements can be measured as scalar reward and that this
measure can be generalized across situations and actions.
Thus, we form a combined state-action space and define a
scalar continuous value function Q on it.

3.1 Gaussian Process Regression

We apply Gaussian Process Regression (GPR, [9]) to gen-
eralize value across the state-action space and to cope with
the uncertainty involved in measuring reward and execut-
ing actions. The basic assumption underlying Gaussian
Processes (GPs) is that for any finite set of points X =
{xi}Ni=1 the function values f(X) are jointly normal dis-
tributed. In GPR, observations yi at points xi are drawn
from the noisy process

yi = f(xi) + ε, ε ∼ N (0, σ2
0).
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GPR allows to predict Gaussian estimates for any points x∗
based on training examplesD := {(xi, yi)}Ni=1. We model
similarity in a local context of the state-action space by
means of the Radial Basis kernel function. In regions that
are far away from training examples, large predicted vari-
ance indicates high uncertainty in the estimate.

3.2 Expected Deviation
In our approach, we make extensive use of predicted un-
certainty: From mean and variance for a state-action pair
we determine a measure of expected deviation from a given
value level. This deviation can be defined as either the ex-
pected improvement or the expected degradation [10]. We
use this measure to decide when an action is unsafe, or to
find promising actions during optimization.

4 Motion Primitives
Humans intuitively recognize motions as looking human-
like or being artificial. Yet it turns out to be surprisingly
hard to describe exactly which characteristics are respon-
sible for this judgement and to apply these insights to robot
motions. Simple mathematical models usually are not suf-
ficient and motions of contemporary robots often are de-
scribed as being clumsy or jerky.
On the other hand, it is generally accepted that human mo-
tions are smooth. In particular, analyses of human reaching
movements show that these usually do not follow a straight
line but rather proceed along a curve at varying speed.
In order to evaluate our learning framework on human
grasping movements, we developed a controller that is

Figure 2: Generation of intermediate points along the de-
sired trajectory. Dashed lines indicate the tangent lines at
the initial and final points PA and PE . The distances sa
and sE of the current location P towards PA and PE are
scaled to obtain the auxiliary pointsHA, HE . The final ap-
proach direction d is a linear combination of the directions
from P to the auxiliary points.

able to generate a wide range of anthropomorphic move-
ments, which are determined by 31 parameters (see Ta-
ble 1). This allows for a compact, low-dimensional repre-
sentation of movements compared to the original trajecto-
ries. The controller generates a trajectory which contains
poses of the end-effector at regular intervals, as well as the
degree to which the hand is opened. Our controller is thus
not limited to a particular robot arm or design.

4.1 Trajectory Generation
The first step in generating a movement is to determine a
via point on the trajectory, in addition to the initial and fi-
nal points. The trajectory is then split at this point to obtain
two segments. For our purpose, the generation of grasping
movements, the highest point of the trajectory has proven
to be a suitable choice for the via point.
The movement generation process consecutively processes
the trajectory’s segments, each in the same fashion. Every
segment is defined by its initial point PA and its final point
PE . Starting from the initial point, our controller gener-
ates poses along the trajectory by successively moving to-
wards a series of intermediate goal points. The generation
of these intermediate points is illustrated in Figure 2.
First, the direction towards the next intermediate point is
determined by considering the tangent lines on the trajec-
tory, passing through the segment’s initial and final points.
These specify the desired direction of movement at these
points and are the same for all intermediate points of a seg-
ment. To generate a smooth shift between these directions,
an auxiliary point is chosen on each tangent line. Its posi-
tion is determined by scaling the distance between the cur-
rent position and each tangent’s boundary point according
to eq. (1):

HA = PA + αA · ‖PA − P‖ · dA
HE = PE − αE · ‖PE − P‖ · dE ,

(1)

where dA and dE represent the directions of the tangent
lines and αA and αE are scaling factors. They are inde-
pendent for every segment. The choice of the scaling fac-
tors determines how much the generated trajectory is bent.
That way, our controller allows for movements reaching
far back as well as for direct movements. The direction
d towards the next intermediate point is formed by aver-
aging the directions to the auxiliary points according to a
weighting factor f :

d = f · HA − P
‖HA − P‖

+ (1− f) · HE − P
‖HE − P‖

. (2)

The value of f starts near 1 and gradually shifts towards
0 as the movement generation progresses towards the final
point of the segment. At a certain distance, which can be
determined by another input parameter θ, the influence of
the initial direction vanishes completely and the direction
to the next intermediate point is only determined by the
auxiliary point on the final tangent. The weighting factor
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f is determined by

f = 1− ‖PE − P‖
θ · ‖PE − PA‖

; 0 ≤ f ≤ 1. (3)

The next pose P∗ is generated by moving along the deter-
mined direction according to the current velocity v:

P∗ = P + v ·∆t · d. (4)

This value initially is zero and increases towards the via
point where it reaches its maximum value vmax, which
also is an input parameter to our controller. From the via
point, the velocity decreases towards the final point. The
velocity, however, is not a direct product of our controller.
It only becomes apparent implicitly through the distance of
the generated poses.
To guarantee a smooth transition between the first and sec-
ond segment of a movement, the final point and tangent of
the first segment correspond to the first point and tangent
of the second segment. By adding further via points and
segments, arbitrary trajectories can be generated.

Parameter Dimensionality

Initial point of the movement 3
Via point 3
Final point of the movement 3
Direction at the initial point 3
Direction at the via point 3
Direction at the final point 3
Opening degree of the hand 3
Accelerations 2
Limitation of the influence of the initial directions 2
Scaling factors on tangents 4
Offsets 2

Table 1: Parameters of our controller

4.2 Orientation and Opening of the Hand
Just like the position of the hand during a movement, its
orientation is a characteristic feature of anthropomorphic
movements. Our controller thus generates grasping trajec-
tories that increasingly turn the hand towards the object to
be grasped as the hand approaches the object. In the course
of the first segment of a movement, the hand maintains a
convenient pose, independent of the object to be grasped.
Once the via point has been crossed, the hand is gradually
turned towards the object to be grasped, by linearly inter-
polating its orientation.
Our controller also controls the degree to which the hand is
opened according to three dedicated input parameters. At
the beginning of the movement, the hand is closed. While
it is moved to the via point, the hand is opened up to a de-
gree that is determined by one of the three parameters. The
two remaining parameters determine the maximum degree
to which the hand will be opened and the distance to the
target position, at which it should be attained. From this
point on, the hand is closed until it grasps the object at the
target position. This behaviour reflects the behaviour of

humans when grasping objects. Humans start to close the
hand before actually reaching the desired object.

5 Interactive Learning
In our learning framework, we implement imitation and
reinforcement learning as two alternative control flows.
When the robot encounters a new situation, GPR provides
Gaussian estimates on the value of actions. Based on
this knowledge, our algorithm selects the adequate form
of learning: In the case of insufficient knowledge about
promising actions, the robot acquires additional knowledge
from human demonstration. Otherwise, it uses reinforce-
ment learning to improve its actions.

5.1 Decision for Imitation or Reinforcement
Learning

To make the decision for imitation or reinforcement learn-
ing, we have to determine the best known action in the
current state scurr. In a first step, we search for a training
example x̂ = (ŝ, â) that has high value and that is close to
the current situation scurr by minimizing

x̂ = argmin
(s,a)∈X

(1− µ(s, a)) + ‖scurr − s‖2 . (5)

Next, we use the action â from this training example x̂ to
initialize the search for the best known action abest in the
current state scurr. For this purpose, we maximize

abest = argmax
a

µ(scurr, a)− σ(scurr, a) (6)

through Rprop [11] gradient descent, which is faster than
standard gradient descent and is less susceptible to end in
local maxima. This optimization finds an action with large
expected value but small uncertainty.
Finally, we decide for a learning method according to
the expected degraded value [12] at the solution xbest :=
(scurr, abest) towards Qbest := µ(xbest). If this indicator is
below some threshold δ, there is no training example that
is sufficiently similar to the current situation and our al-
gorithm asks for a human demonstration. Otherwise, the
training examples contain enough information to predict
the outcome of actions and to safely use reinforcement
learning, without risking damage to the robot by execut-
ing arbitrary movements.

5.2 Imitation Learning
For imitation learning, the user is asked to demonstrate the
motion for the given situation. In doing so, his motions
are recorded using a motion capture rig and a data glove,
yielding trajectory data for the human’s body parts. As our
robot features a human-like joint configuration and upper-
body proportions, the mapping from human to robot kine-
matics is straightforward.
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After segmentation, we extract the demonstrated action
from the recorded data in the form of a parameterized mo-
tion primitive that is suitable as input to our controller. For
this step, we apply two different techniques for the two dif-
ferent categories of parameters of our controller.
Parameters corresponding to geometric or kinematic fea-
tures, such as the location of the first and last points of the
trajectory or the speed at a certain point, can be computed
directly from the trajectory data using closed formulas that
only depend on trajectory points. Out of the 31 parameters
of our controller, the majority (23) belong to this group: the
initial, via, and final points, the corresponding directions,
and the parameters that determine the degree to which the
hand is opened. These parameters also allow for an intu-
itive geometric interpretation.
The remaining eight parameters cannot be computed in
closed form and thus need to be determined iteratively. In
this work, we use the Downhill Simplex method by Nelder
and Mead [13] to optimize a non-differentiable cost func-
tion and to determine the optimal parameter values. The
cost function was designed to punish distance in space and
time between the human’s trajectory TD and the robot’s
trajectory TR(θ):

c(θ) = dist(TD, TR(θ)) + λ

(
1− tD

tR(θ)

)2

. (7)

The variables tD and tR(θ) signify the duration of the
movements and λ is a weighting factor. The distance mea-
sure dist computes the mean squared distance between the
two trajectories by averaging a point-to-line metric which
was inspired by [14].
Once all parameter values have been determined, the cor-
responding movement is generated by the controller and
evaluated by the robot. The resulting reward is stored,
along with the computed parameter values, as a new train-
ing example.

5.3 Reinforcement Learning
In reinforcement learning, we use Gaussian Process pre-
diction to determine promising actions. To this end, we
propose an explorative optimization strategy that safely
maximizes value. We achieve this by trading off expected
improvement and degradation. The chosen action along
with the experienced reward eventually becomes a new
training example that contributes to future predictions.
Expected improvement optimization [10] selects points
that achieve highest expected improvement compared to
the current best value. The expected improvement consid-
ers mean and variance of the GP posterior. Thus, the opti-
mization strategy performs informed exploration which is
based on the knowledge gathered so far. We also incor-
porate a lower bound on the expected degraded value into
our optimization criterion. By considering the expected
improvement as well as the expected degradation, our ap-
proach is able to produce an efficient search strategy that

also protects the robot from executing unpredictable ac-
tions. Additionally, an adjustable lower bound on the ad-
missible degraded value allows us to gradually focus the
search on relevant parts of the search space with increas-
ingly high performance.

6 Experiments

6.1 Experiment Setup

For our experiments, we used a robot with an anthropo-
morphic upper body scheme [15]. In particular, its two
anthropomorphic arms have been designed to match the
proportions and degrees of freedom (DoF) of their average
human counterparts. From trunk to gripper each arm con-
sists of a 3 DoF shoulder, a 1 DoF elbow, and a 3 DoF wrist
joint. This endows the robot with a workspace that is sim-
ilar to that of humans, which greatly facilitates imitation
learning. Attached to the arm is a two-part gripper.
In our setup, the robot is situated at a fixed position in front
of the table. The human teacher demonstrates grasping
motions on a second table.

6.2 Task Description

We define the task of the robot as grasping an object as
precisely as possible from arbitrary positions on the ta-
ble. Thus, the state for our learning problem is the two-
dimensional location of the object. The robot can measure
the location with its laser range finder. After the robot per-
formed the grasping movement, we score its performance
by the displacement ∆ (in meters) of the object to its ini-
tial location. Additionally, we penalize collisions, motions
outside the workspace, and the missing of the object by the
reward function

r(s, a) =

 −1 collision or workspace failure,
0 object missed,
1−∆ otherwise.

(8)
Obviously, this reward function does not meet the basic un-
derlying assumption for GPs that any set of function values
is jointly normal distributed. To still be able to apply our
approach for this function, we apply GPR for each com-
ponent and combine the predictions in a Gaussian mixture
model.
Throughout our experiments we set the kernel widths for
the object location to 0.2 for the successful and 0.02 for
the unsuccessful cases. For the motion parameters we set
the kernel widths to 0.02 and 0.002, respectively. We set
the decision threshold on the expected degraded value of
the known best action to δ = 0.8.
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Figure 3: Evolution of the combined costs (7) during the
optimization process, averaged over 30 example move-
ments at different locations on the table.
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Figure 4: Left: Evaluated trajectories during optimization
for a single movement. Right: Resulting trajectory.

6.3 Imitation Learning Experiments

In our approach, imitation learning is used to provide ini-
tial actions when not enough information on executable ac-
tions for the current location of the object are available. In
such a situation, the robot asks for a demonstration. The
human teacher places the object at a similar location in his
workspace and demonstrates the grasping movement (cf.
Figure 1). Due to the generalization properties of our ap-
proach, the objects do not have to be placed at exactly the
same position. From the recorded trajectory, we extract the
parameters of a motion primitive as action. As a measure
of imitation quality, we used the similarity in space and
time between the human demonstrations and the trajecto-
ries generated by our algorithm. Out of the 31 parameters
that are required by our controller, 23 were determined di-
rectly from the demonstrated trajectory. The remaining 8
parameters were optimized iteratively.
Figure 3 shows how the combined costs for spatial and
temporal dissimilarity decrease and finally converge to
10−4 after 150 iterations. These results were obtained
by averaging the costs during the learning process for 30
demonstrated grasps at different locations on the table.
Figure 4 depicts how the reproduced trajectories approach
the demonstration during optimization. The locations of
the first, the last and the highest point of the trajectory
are amongst the parameters that can be determined directly
and are thus fixed during optimization. Our method is also
robust against errors in the motion capture data and fills
gaps smoothly in combination with our controller. In the
end of the optimization process, the optimized trajectory is

visually indistinguishable from the demonstration.

6.4 Reinforcement Learning Experiments

For the task at hand, our learning approach has to compen-
sate for kinematic differences between the human teacher
and the robot. In our experiments, we thus choose four pa-
rameters of the motion controller for optimization. These
parameters determine offsets to the position of the grasp on
the table and the closure of the hand along the trajectory.
The other parameters of our controller describe the anthro-
pomorphic characteristics of the movement and hence do
not affect reward. They are solely determined by human
demonstration. In simulation, the mapping between hu-
man and robot motion is close to perfect. We thus add an
artificial x-offset of 15cm to the grasping position parame-
ters.

6.4.1 Evaluation of the Optimization Strategy

In a first simulation experiment, we limit the optimization
to the two offset parameters to visualize the learning strat-
egy of our algorithm. We also keep the position of the
object fixed during the experiment. First, we demonstrate
a motion for the object location as a starting point for op-
timization. Then, we apply our reinforcement learning ap-
proach to reduce the error induced by the artificial offset.

6.4.2 Evaluation of the Optimization Strategy

Figure 5 (top) shows the evolution of reward in this exper-
iment. Imitation learning already yields a grasping move-
ment with a reward of 0.92. After about 30 reinforcement
steps, the optimization converges to a mean reward of ap-
prox. 0.998 with standard deviation 0.0015, close to the
optimal reward.
In Figure 5 (bottom), we visualize the adjustments made
to the offset parameters by our optimization strategy. Each
circle represents an action chosen by our learning ap-
proach.
Filled blue circles indicate selected actions without ran-
dom perturbation. Actions at unfilled red circles have been
found after random reinitialization to escape potential lo-
cal maxima. The optimization stategy proceeds in a goal-
directed way towards the optimal parameters.
Note that after larger steps, the strategy often takes smaller
steps into the direction of known points. This is due to the
fact, that the expected improvement is still large in regions
of the state space where GPR predicts high mean value and
medium variance. As soon as the uncertainty in these re-
gions shrinks, our strategy proceeds towards new promis-
ing regions. It is also interesting to note that close to the
optimal parameters, the optimization exhibits a star-shaped
exploration strategy.
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Figure 5: Evaluation of the optimization strategy for a
fixed object position in simulation. Top: Reward of the
executed motion during optimization. Bottom: Proceeding
of the optimization strategy. Filled blue circles indicate
selected actions without random perturbation. Actions at
unfilled red circles have been found after random reinitial-
ization.

6.4.3 Reinforcement Learning with 4 Parameters on
the Real Robot

We repeated the experiment of the preceding section with
the real robot, this time learning all 4 parameters. The po-
sition of the cup remained fixed. Figure 6 depicts the evo-
lution of reward over time. It shows that the initialisation
through an imitation already achieved a reward of 0.96 in
this experiment which was improved to 0.995 after 55 it-
erations. This corresponds to a displacement of 5 mm. In
contrast to the experiments in the simulated enviroment,
the reward does not increase further because of uncertain-
ties in the robot kinematics which were not present in sim-
ulation.
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Figure 6: Learning curve of the experiment using the real
robot. The object was placed at a fixed position 40cm in
front of the robot and 20cm to its right.
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Figure 7: Top-down view of the robot’s entire workspace.
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simulated experiment, where the robot asked for a demon-
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Figure 8: Top: Performance when learning grasping
movements within a 600cm2 area in simulation. Obtained
reward is shown in dark blue/gray. For values below the
plotted range the robot failed to grasp the object and re-
ceived zero reward. The light blue/gray line shows the me-
dian reward within a window of 100 iterations. Bottom:
Achieved reward for different object locations. The itera-
tion count is encoded by the dots’ color. For clarity, only
the first 500 iterations are plotted and failures to grasp the
object were omitted.

6.5 Interactive Learning Experiments
Finally, we evaluate our combined approach to rein-
forcement and imitation learning within the complete
workspace of the robot in simulation. The area has a size
of 10x60cm. The robot was asked to grasp a object in ran-
dom positions. It then had to decide whether to try to grasp
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the object based on its experience or to demand a demon-
stration. In the latter case, a human trainer put a cup at a
similar place in his/her one workspace and demonstrated
the desired movement. Figure 7 shows a top down view
of the robots workspace and the blue points indicate posi-
tions at which the robot asked for demonstrations. All of
these 15 demonstrations were required during the first 42
iterations, 13 of them even within the first 24 iterations.
Figure 8 shows the corresponding evolution of reward.
Within 600 trials it achieves high performance for random
object locations. Considering the large workspace and the
number of different grasping movements this is a persua-
sive result. The layered structure of the points is an in-
dication of generalisation ability, as the reward increases
simultaneously all over the workspace.

7 Conclusion

In this work, we presented a new approach to intuitively
and efficiently teach robots anthropomorphic movement
primitives. For this, we seamlessly integrate the well
known paradigms of learning from demonstration and re-
inforcement in a single coherent framework. In contrast to
previous approaches, that chained an imitation and a rein-
forcement learning phase, our method implements them as
two alternative control paths. In every situation, the sys-
tem decides which one to use to exploit each method’s
strengths while mitigating their shortcomings.
To facilitate this, our approach relies on Gaussian Pro-
cess Regression (GPR) to generalize a measure of reward
across the combined state-action-space. From this, we
compute the expected deviation which is the basis upon
which our system decides for imitation learning or rein-
forcement learning. Furthermore, we use it to select ac-
tions during reinforcement learning that trade off high re-
ward versus predictable actions.
To evaluate our approach, we considered the task of grasp-
ing an object at an arbitrary position on a table. Our
imitation learning algorithm was able to produce move-
ments that are visually indistinguishable from the demon-
strations. The reinforcement strategy produced movements
with near-optimal reward in a goal-directed fashion, avoid-
ing outlier movements that pose a threat to the robot. Our
combined approach was able to teach the grasping task for
arbitrary positions in a 600cm2 workspace to our robot
from only 15 demonstrations.
The advantages of our approach are manifold. First, the
use of learning methods that are known from human teach-
ing psychology renders our method intuitively operable
and helps in making robot programming accessible to aver-
age users. Second, our unique combination of both meth-
ods allows for flexible learning that uses the most appropri-
ate method in every situation. This way we achieve data-
efficient learning and circumvent shortcomings of the indi-
vidual methods.
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