
Fast Edge-Based Detection and Localization of Transport Boxes and
Pallets in RGB-D Images for Mobile Robot Bin Picking

Dirk Holz and Sven Behnke, Autonomous Intelligent Systems Group, University of Bonn, Germany

Abstract

Mobile manipulation tasks in shopfloor logistics require robots to grasp objects from various transport containers such as
boxes and pallets. In this paper, we present an efficient processing pipeline that detects and localizes boxes and pallets
in RGB-D images. Our method is based on edges in both the color image and the depth image and uses a RANSAC
approach for reliably localizing the detected containers. Experiments show that the proposed method reliably detects and
localizes both container types while guaranteeing low processing times.

1 Introduction
Picking parts from transport boxes and pallets is a fun-
damental task in so-called kitting type distribution. Kit-
ting became popular in the automotive industry due to
a paradigm shift from mass production to increased cus-
tomization of products (build-to-order). More customized
products with increased assembly combinations implicitly
means more components to store, transport and feed to the
production line. Due to this variability of the production
and to the diversity of suppliers and parts, part handling
during the assembly stages in the automotive industry is
the only task with automation levels below 30%.
The main idea of kitting type distribution is to concentrate
the value added on the production line and decentralize
re-packing operations. Kitting operations are usually per-
formed by (human) operators called pickers. These pickers
collect parts as needed from the containers they are stored
in, i.e., bins and pallets, and place them in kitting boxes
with several compartments. Once complete, the kits are de-
livered to the production line and synchronized with the car
to be produced. The full automation of such tasks will not
only have a huge impact in the automotive industry but will
also act as a cornerstone in the development of advanced
mobile robotic manipulators capable of dealing with semi-
structured environments, thus opening new possibilities for
manufacturing in general.
In the course of a larger project on kitting using mobile
manipulators we have developed a system for automated
grasping of parts from pallets. The pipeline comprises sev-
eral steps where we first localize the transport container,
then move the gripper above the found container to view
the inside, and finally localize and grasp a part inside the
container [1]. A particularly important component in this
pipeline is the detection and localization of the transport
containers, i.e., boxes and pallets. We use multiple con-
sumer color and depth (RGB-D) cameras in our setup, one

Figure 1 Robot platform (left) consisting of a Universal
Robots UR10 arm, a Robotiq 3-finger gripper and RGB-D
cameras for perceiving the workspace and the objects in
front of the gripper, and the result of detecting and localiz-
ing the pallet (right).

mounted close to the gripper (wrist camera) and the others
on a rack above the base of the arm to perceive the sur-
rounding workspace (workspace cameras). A photo of our
setup and a typical scene with a pallet is shown in Figure 1.
In an initial version of the part picking pipeline, we as-
sumed both a rough estimate of the position of the pallet
and that the horizontal support surface in the pallet is vis-
ible in the respective workspace camera. That is, instead
of detecting and accurately localizing the pallet, we sim-
ply detected the horizontal support surface and clustered
the objects thereon. The cluster being closest to the cen-
ter of the detected surface was then approached to detect
and accurately localize the part with the wrist camera using
multi-resolution surfel registration [2].
In this paper, we present an extension to this first pipeline

behnke
Text-Box
47th International Symposium on Robotics (ISR), Munich, Germany, June 2016.

behnke
Text-Box

and an efficient method for detecting and localizing trans-
port boxes (bins and pallets). This method is integrated
into the final pipeline and we present experimental re-
sults where the setup is used to(1) detect and localize the
container, (2) compute and approach an observation pose
above the container with the wrist camera, and (3) segment
the objects in the container and grasp them.

2 Related Work
Most approaches to bin-picking do not address mobile
robots but work in static setups in which the container does
not need to be detected. Buchholz et al. [3], for example,
solely process depth images of the content of the box to
identify graspable regions. They determine the exact pose
of the object in the gripper after grasping it. In a similar
fashion, Domae et al. [4] move a camera mounted on an in-
dustrial manipulator to pre-defined poses above a container
with known position and orientation, and identify feasible
grasps instead of objects. Drost et al. [5] use pair-wise
point features to detect and localize objects in bins but also
assume a static setup and only process depth images of the
box content. In our approach, we address bin picking with
mobile manipulators and cannot assume that the exact pose
of the box is known. Instead, we detect and localize the
box, and either compute and approach an observation pose
for the wrist camera or extract the content of the box for
further processing, e.g., object detection and localization.
In own previous work [6] on bin picking with a mobile
manipulator, we used a 2D laser range finder to position
the robot relative to the sensed side walls of the boxes. The
detected 2D bounding box was projected into the view of a
3D camera to obtain an initial guess of the 3D pose of the
container and to localize objects therein. This approach,
however, assumed the containers to be positioned in the
height of the 2D scan plane of the laser range finder. In this
paper, we do not make any assumptions on the position or
orientation of the box, but only assume that the container is
visible in one of the workspace cameras.
A particularly challenging aspect of our setup is that not
all parts of the box are visible in the RGB-D camera im-
ages (see Figure 1 for an example). Most often, only the
top four edges of the side walls are visible and the top layer
of the parts is captured, but the the side wall planes are
usually not visible. Related works on box and cuboid de-
tection, however, most often focus on the side walls and,
in particular, on planar patches or identifiable regions that
form the cuboid. Jiang et al. [7], for example, pre-segment
the RGB-D images using super pixels, generate candidates
sharing planes with the extracted patches, and select the
most promising candidates as a mixed integer linear pro-
gram. Zhang et al. [8] identify regions likely belonging to
cuboids using CMPC [9], generate cuboid hypotheses and
select the most likely configuration using maximum clique.
Both the approaches of Jiang et al. and Zhang et al. require
that especially the sides of the cuboids are visible.
Jimenez et al. [10] proposed for similar scenarios to focus

1. Edge Detection

2. Line Detection

3. Container Detection

Preprocessing

Edge Detection

Line Detection

Line Veri�cation (optional)

Model Sampling

Model Veri�cation (optional)

Model Registration

Point cloud P

Edges E ⊆ P

Lines L

Valid lines L∗

Tuples (l0, l1, . . . , ln), l0...n ∈ L

Valid tuples (l0, l1, . . . , ln)∗, l0...n ∈ L

Transformation TTT , con�dence c

Iterate

Continue

Figure 2 Overview of the processing pipeline.

on the linear edges of visible planes, combining planar and
edge features. Our approach does not need to see parts of
the planar surface. Berner et al. [11] also addressed visi-
bility constraints by combining 2D contour and 3D shape
primitives for the detection of industrial parts. In contrast
to their work, we focus here only on the 2D contours, but
also include edges detected in the RGB image.
Xiao et al. [12] presented a linear approach to cuboid de-
tection that is based on edges and corners, but requires three
sides of the cuboid to be visible in the scene. Our approach
is designed to reliably detect edges and to find subsets of
these edges which form the top of the box we are looking
for. At the same time, the involved matching provides an
accurate estimate of the position and orientation of the de-
tected container.
Richtsfeld et al. [13] presented a framework for detect-
ing and tracking objects based on a perceptual grouping
of edges. In principle, the same approach could also be
applied to detect and track the containers based on the de-
tected edge points and lines. However, to instantiate the
3D wire-frame models and initialize detection and track-
ing, Richtsfeld et al. assume that the objects initially rest
(well segmented) on a horizontal surface. Instead, our ap-
proach does not make any assumptions on the pose of the
container and only uses a simple point-based model that is
reliably detected in the extracted points.

3 Method
Our approach is specifically designed for situations where
we can only assume the top edges of the box to be visi-
ble. It is based on extracting lines along the edges in the
RGB-D images and finding the best fitting models of the
container we are looking for. Referring to Figure 2, the
container detection and localization pipeline is organized

(a) Detected edges and lines (b) Detected box

Figure 3 Container detection example: box inside an industrial shelf. (a) Detected edges (cyan: color edge, green: oc-
cluding edge) and lines (randomly colored). (b) Detected and localized container (coordinate frame indicates estimated
pose of the container model).

in three stages: (1) we first detect edges in both the color
image and the depth image, (2) we fit lines into the detected
edge points, and (3) we sample subsets of lines and fit pa-
rameterized models of the containers to the subset. The
best fitting candidate gives both the lines forming the top
of the box and the pose of the box. An example of our
approach applied to a typical scene is shown in Figure 3.
We distinguish two variants of the pipeline: one for par-
tially visible containers where parts of the container are oc-
cluded and one for fully visible containers. In our kitting
scenario, we can assume the boxes to be fully visible and
use the letter variant which is more restrictive in the indi-
vidual processing steps and yields more reliable detections,
but we present the details of both variants.

3.1 Edge Detection
For detecting edges, we use both the color image and the
depth image, and the respective channels in the organized
colored point cloud P. In the color image, we detect edge
points ERGB using Canny edge detection. In the depth
image, we inspect the local neighborhood of points, fo-
cus on points at depth discontinuities, and identify occlud-
ing edges by selecting those points ED that are closer to
the camera. In addition, we efficiently compute local co-
variance matrices using a method based on integral im-
ages [14]. From the local covariance matrices, we com-
pute local surface normals and curvature to obtain convex
edges Econv and concave edges Econc, similar to [15]. For
the next processing steps, we combine all points at color
edges, occluding edges, and convex edges to a set of edge
points E = ERGB∪ED∪Econv, E ⊆ P.

3.2 Line Fitting
Since boxes are solely composed of lines and planes
(where we cannot assume the latter to be visible), we fit
line segments to all extracted edge points E.

3.2.1 Line Detection
Our line detection approach is based on RANSAC. In each
iteration, we first select two points ppp and qqq from the set
and then compute a line model (point on the line ppp and
direction of the line qqq− ppp), We then check the distance of
all points in E to the computed line model and extract all
inliers which support the line model. We use a distance
threshold εd for identifying inliers. The line models with
the largest number of inliers is selected as the detected line
l. If the number of inliers of line l exceeds the minimum
number of inliers, l is added to the set of lines L.
We then remove the inliers of l from E and continue de-
tecting other lines. If the residual number of points in E
falls below a threshold or the minimum number of inliers
for line segments is not reached, we stop line detection.

3.2.2 Line Validation
Depending on the pipeline variant, i.e., whether we are de-
tecting fully visible containers or not, we add two restric-
tions to the line detection. Detected lines which are ne-
glected in this validation step are not contained in the final
set of line segments L∗.

1. Connectivity Restriction The inliers of a detected
line may lie on different unconnected line segments.
While partial occlusions can cause multiple uncon-
nected line segments on the edges of the box if it is
not fully visible, we cluster the inliers and split the
detected line into multiple segments in case the box
should be fully visible. If the number of points in a
cluster falls below the minimum number of inliers for
line segments, it is neglected.

2. Length Restriction In case the container is fully vis-
ible, we neglect line segments which are shorter than
the shortest edge in the model and longer than the
longest edge in the model. To account for noise, miss-
ing edge points, or other errors, we allow a deviation
of 20 % from these thresholds.

If we use the pipeline to also detect partially occluded con-
tainers, we skip both restrictions and use the originally
detected lines, i.e., L∗ = L, or only check the maximum
edge length. Detected lines are shown for an example in
Figure 3a.

3.3 Container Fitting
After all line segments have been extracted, we start to
detect and localize the container in a RANSAC-based
paradigm: in each iteration of the detection, we first sam-
ple a subset of line segments and then register the model of
the container with the sampled line segments to obtain both
a pose estimate and a measure of overlap between the line
segments and the model.

3.3.1 Model Sampling
For detecting the container, we select a subset of the de-
tected line segments and collect the inliers of the sampled
line segments to obtain a single point cloud for later pro-
cessing steps. In case of fully visible containers, we select
n line segments where n is the number of line segments in
the parameterized model. That is, we sample as many line
segments as contained in the model of the container. As a
result, we obtain tuples of line segments (l0, . . . , ln). If the
container is not fully visible, we also randomize the num-
ber of sampled line segments (2 to n) in each iteration of
the container detection. Samples with a larger number of
line segments obtain higher confidences in the model reg-
istration and are thus favored over samples with fewer line
segments.
In order to avoid repetitively re-checking the same tuple,
we use a hash table in which sampled tuples are marked
as being processed. In case no unprocessed tuple can be
found, we stop the container detection.

3.3.2 Model Validation
Since the final registration in the container detection is the
computationally most expensive step, we can considerably
reduce computation time by immediately neglecting tuples
of line segments which are not compatible with the model.
In the case of our transport boxes, for example, the model
contains four edges which are pairwise parallel and perpen-
dicular to each other. Consequently, incompatible tuples
can be easily be skipped in later processing steps if the sam-
pled edges do not show the expected relations. In our im-
plementation, we simply compute the angles between the
first sampled line segment to all other line segments. In
case of a fully visible container, we expect one of the other
line segments to be parallel and the other two line segments
to be perpendicular to the first one. If not, we neglect the
sampled tuple of line segments.
In case the box is not fully visible, we either skip this step
or allow subsets of these constraints, e.g., finding another
edge which is either parallel or perpendicular in case only
two line segments have been sampled.

3.3.3 Model Registration
If the tuple of sampled line segments is valid, we con-
tinue to register the model against the sampled line seg-
ments. For the model registration, we sample points from
the given parameterized container model in order to ob-
tain a source point cloud P for registration (in the simplest
case the model is simply given by the length and width of
the box). In addition, we extract the inliers of the sampled
segments to form a single target point cloud Q for registra-
tion. In contrast to extracting the inliers for the target point
cloud, the source point cloud of the model only needs to be
sampled only once.
Iterative registration algorithms align pairs of 3D point
clouds by alternately searching for correspondences be-
tween the clouds and minimizing the distances between
matches. In order to align a point cloud P with a point
cloud Q, the ICP algorithm searches for closest neighbors
in Q for points pppi ∈ P and minimizes the point-to-point dis-
tances ddd(TTT)

i j =qqq j−TTT pppi of the set of found correspondences
C in order to find the optimal transformation TTT ∗:

TTT ∗ = armmin
TTT

∑
(i j)∈C

‖ddd(TTT)
i j ‖

2. (1)

As a result, points in P are dragged onto their correspond-
ing points in Q. Assuming (predominantly) correct corre-
spondences, the ICP algorithm can reliably register point
clouds (if the initial alignment is not considerably off).
In addition to the transformation TTT ∗, we also compute a
confidence c that is based on the overlap between the model
and the sampled line segments:

c =
|C|
|P|

, (2)

where |C| is the number of corresponding points within a
predefined distance tolerance εd and |P| is the number of
points in the generated model point cloud. That is, the more
points from the container model find a corresponding point
in the inliers of the sampled line segments, the more con-
fident are we in the estimated transformation. In case of a
complete overlap (and a fully visible container), the confi-
dence c is roughly 1. Naturally, for containers that are not
fully visible, the confidence can only reflect the amount of
overlap and the size of the container that is not occluded,
respectively. For fully visible containers, however, the con-
fidence can be used to drastically reduce the processing
time by immediately terminating the detection once the de-
sired number of detections (in our scenarios usually only
one) with a confidence above a user-defined threshold has
been found. In addition, the confidence can be used in the
course of the registration to detect if the registration got
stuck in a local minimum. This check together with a max-
imum number of iterations allows for limiting the execution
time of this processing step.
While the initial version of the pipeline [1] assumed a pre-
segmentation and an initial pose estimate, in this method
we do not make any assumptions and, instead, initialize the
model to lie in the origin of the camera coordinate frame.

In order to avoid orientation ambiguities (due to the sym-
metry in rectangular shapes), we register the model two
times: first with no initial orientation and then with a ro-
tation of π

2 around the z-axis, i.e., the axis pointing into the
depth image. The result with a higher confidence is chosen
as the estimated pose and confidence, respectively. Since
the source point cloud is generated in a local frame, the
initial deviation from the container pose may be large. In
order to obtain a rough initial alignment in the first itera-
tions and obtaining an accurate pose estimate in later iter-
ations, we use different distance thresholds between corre-
sponding points: a larger distance in the first iterations, and
smaller distances later for refining the estimated transfor-
mation. A typical detection result is shown in Figure 3b.

4 Evaluation
In order to assess the performance of our container detec-
tion pipeline, we have conducted a series of experiments
with the robot setup shown in Figure 1. The system con-
sists of a Universal Robots UR10 arm, a Robotiq 3-finger
gripper and three Asus Xtion cameras, one mounted on the
arm close to the gripper, and two mounted on a rack above
the arm. We focus on two criteria in our evaluation: the
success rate and the overall cycle time. In the first series of
experiments, we evaluate the performance of our approach
for detecting boxes, pallets, and scenes not containing the
container we are looking for. In the second series, the con-
tainer detection was integrated into the complete perception
and grasping pipeline from our previous work [1] and used
for grasping two different automotive parts in boxes.

4.1 Detecting Boxes and Pallets
In order to assess the performance of our container detec-
tion pipeline, we have captured RGB-D images in different
scenes with boxes, scenes with pallets and scenes not con-
taining the container we have been looking for. In case the
container being searched for is not contained in the scene,
we expect our pipeline to correctly report that no container
was found. This is a special requirement of the industrial
end-user: whenever failures are detected such as containers
not being in the vicinity of the pose stored in the logistics
system or containers not containing any objects, the robot
is expected to report this error to the logistics system.
For both types of containers (boxes and pallets) we cap-
tured images where the container is fully visible—standard
case—and where the container is partially occluded. As
mentioned in Section 3, we distinguish these two cases and
use different variants of the pipeline. We report the detailed
results of our experiments in Table 1.
In case of full visibility, we used the restrictive variant and
a confidence threshold εc = 0.9. For the scenes with par-
tially occluded containers, we use the less restrictive vari-
ant of the pipeline without the confidence check. That is,
for the 75 % occlusion and the 50 % occlusion scenes, the
line validity and model confidence checks were skipped
while the model validity check was relaxed, i.e., not re-

Container Total True False Runtime

Fu
ll

vi
s. Box 100 100 0 105 ± 23 ms

Pallet 100 100 0 98 ± 22 ms
None 100 100 0 141 ± 28 ms

75
% Box 100 100 0 111 ± 24 ms

Pallet 100 100 0 102 ± 27 ms

50
% Box 100 96 2 131 ± 39 ms

Pallet 100 95 1 139 ± 33 ms

Table 1 Detection results and runtimes.

quiring a particular number of parallel and perpendicular
line segments, but simply neglecting the sample when the
other edge(s) are neither parallel nor perpendicular. In all
experiments, the results of our detection pipeline have been
visually inspected to assess detection success.
In order to estimate the average processing time per frame,
each captured RGB-D image was processed 10000 times
on a single core of an Intel Core i7-3740QM CPU @
2.7 GHz without parallelization and the measured times
have been averaged. Overall, we achieve a frame rate of
6.5 −10 Hz for detecting and localizing both boxes and pal-
lets. This is more than sufficient for our application.
For our targeted scenario of fully visible containers, in
all 100 cases both container types are reliably detected
and localized (without any false positives). The RANSAC
paradigm in all processing steps makes the approach par-
ticularly robust.
For the scenes where the container was partially occluded,
the method does not achieve a 100 % success rate and also
produces a small number of false positives. Naturally, the
more of the container is occluded the higher is the risk
of false positives. With increasing occlusions, the scene
may contain many other edges which better fit the con-
tainer model than the edges and line segments measured on
the real physical container. Furthermore, since more line
segments and different configurations of samples (different
numbers of line segments per sample) are drawn, the pro-
cessing time until a good sample is found slightly increases.
Consequently, we ensure full visibility of containers in our
application scenario.

4.2 Integrated Experiments
In order to assess the performance of the overall system
with the container detection integrated, we have conducted
two series of experiments where in each series we grasped
20 parts from a transport box. The overall perception and
grasping pipeline for these experiments is implemented as
follows:
(1) Using the workspace camera, the container is detected

and localized.
(2) An observation pose above the container is computed

and approached with the wrist camera. The observa-
tion pose guarantees full visibility of the container tak-
ing into account its pose and the camera model.

Time

Initial Detection Observation Grasping Removal

(a) Picking a tube connector (from top to bottom: workspace camera image, wrist camera image, 3D visualization).

Execution times Success rate
Component Mean Stdev Min Max Successful / Total

Container detection 0.121 s 0.034 s 0.037 s 0.198 s 20 / 20 (100 %)
Part segmentation 0.077 s 0.021 s 0.032 s 0.089 s 20 / 20 (100 %)
Grasping a found part 8.812 s 0.429 s 5.012 s 13.673 s 20 / 20 (100 %)

Overall cycle time 27.342 s 2.341 s 21.934 s 37.548 s
(b) Execution times per component and overall cycle times. Cycle times include moving back to the initial pose.

Figure 4 Success rates and cycle times for picking tube connectors. In all experiments, the robot was able to localize
the container, approach the observation pose, segment the container content, and grasp a part (success rate of 100 %).

(3) Using the wrist camera, the container is detected and
localized. Measurements belonging to the content of
container are extracted.

(4) The extracted content measurements are segmented
and further processed to compute grasping points and
end-effector poses for grasping.

The first object is a tube connector for engines which is
stored unorganized in larger boxes (57×38×31 cm). The
second object is an engine support part which is stored well
organized in smaller boxes (38×29×22 cm). For both ob-
jects, we run a total of 20 experiments in which the task is
to localize the container and to grasp a part. In all experi-
ments we assume the boxes to be fully visible.
The container detection pipeline for all experiments is con-
figured as follows: we use all three edge types (color, oc-
cluding, and convex) to extract edge points in local win-
dows of 50 pixels. We use a distance threshold of 2 cm for

line detection and a minimum number of inliers per line of
50 points. Clustering of the detected lines to line segments
is enabled using a maximum distance of 5 cm between
points in the same cluster. In addition, we neglect line seg-
ments whose lengths fall below or above, respectively, the
minimum and maximum edge lengths in the model by more
than 20 %. For detecting the container, we sample four
line segments in each iteration and check the validity of the
samples by neglecting samples not showing one other par-
allel line and two other perpendicular lines (angle threshold
of 20◦). The model registration starts without a distance
threshold (εd = ∞), and then linearly decreases from 1 m
to 2.5 cm—the final distance threshold for the confidence
check. The model confidence check is enabled and we ac-
cept registered models with a confidence of c > 0.9.
In order to determine grasps for the tube connectors in the
extracted container content, we cluster the extracted point

Time

Initial Detection Observation Grasping Removal

(a) Picking a tube connector (from top to bottom: workspace camera image, wrist camera image, 3D visualization).

Execution times Success rate
Component Mean Stdev Min Max Successful / Total

Container detection 0.132 s 0.041 s 0.033 s 0.202 s 20 / 20 (100 %)
Part segmentation 0.021 s 0.009 s 0.005 s 0.087 s 20 / 20 (100 %)
Grasping a found part 7.741 s 0.561 s 5.642 s 15.001 s 20 / 20 (100 %)

Overall cycle time 25.145 s 3.091 s 19.885 s 31.939 s
(b) Execution times per component and overall cycle times. Cycle times include moving back to the initial pose.

Figure 5 Success rates and cycle times for picking engine support parts, again achieving a success rate of 100 %.

cloud into cylinders and select the centroid of the highest
cylinder (with sufficient space around it for the gripper) as
the grasping point. The orientation of the grasp pose is
chosen according to the principal axis of the cylinder to
be grasped and aligned with the local coordinate frame of
the detected container in order to approach the part straight
from the top of the container. Examples of the segmented
cylinders and the computed grasp poses can be seen in
Figure 4 together with the detailed results of all 20 exper-
iments. We achieve a success rate of 100 % at an average
cycle time of 27 s. The overall cycle time includes moving
the arm from its initial pose to the computed observation
pose, grasping the part and moving back to the initial pose.
Most of the cycle time is spent on motion planning and ex-
ecution, with perception contributing only about 1 %.
In contrast to the tube connectors which are stored in an
unorganized pile in the box, the engine support parts are
well organized and pose a depalletizing task. In order to

segment the parts in the container and to compute grasp-
ing poses, we filter out the packaging material by remov-
ing all points on and under the horizontal support surface in
the container and cluster the residual points. The centroids
and the principal axes of the clusters are used to compute
the grasping poses in a similar fashion as in our previous
work [16]. Examples of the detected container, the seg-
mented parts and the computed grasping poses can be seen
in Figure 5 together with the measured success rates and
processing times in these experiments. As for the tube con-
nectors, we also achieve a success rate of 100 % for the
engine support parts at an average cycle time 25 s. Again,
most of the cycle time is spent on motion planning and ex-
ecution.
In our experiments, we only focus on fast perception com-
ponents and it is expected that the overall cycle times can be
considerably reduced by improving and speeding up mo-
tion planning. In addition, in our lab setup, we do not op-

erate the robot at full speed for safety reasons.
As can be seen in both experiment series, the storage con-
tainers are reliably detected and localized, and even the
simple segmentation methods for obtaining grasp poses are
sufficient in this setup. Since the content of the containers
is extracted as an organized colored RGB-D point cloud,
the simple segmentation methods can be easily replaced
by more sophisticated approaches, e.g., that of Domae et
al. [4] to identify graspable points or that of Drost et al. [5]
or Berner et al. [11] to accurately localize the parts.

5 Conclusions
For bin picking and depalletizing with a mobile manipu-
lator, we have presented an efficient pipeline for detecting
boxes and pallets. Since in our scenario, most often only
the top edges of the containers are visible, the proposed
method is based on detecting edges in the color image and
the depth image. We fit line segments to the extracted edge
points and sample subsets of the detected line segments as
hypotheses for potential container inliers. An ICP-based
registration of the known container model (simple parame-
terized model of the top edges) provides both a pose es-
timation and a detection confidence. In a series of ex-
periments, we evaluated the performance of our approach
for both fully visible and partially occluded containers and
achieved for fully visible containers success rates of 100 %
without false positives at frame rates of up to 10 Hz. Only
for scenes where larger parts of the container have been
occluded the success rates dropped and few false positives
have been generated. Consequently, in our application sce-
nario, we ensure visibility and use the more restrictive vari-
ant of the pipeline with a strict threshold on the detection
confidence.
In two final series of experiments, the container detection
was integrated into the complete perception and grasping
pipeline. The containers are reliably detected with both
the workspace camera above the arm, and the wrist cam-
era mounted on the arm close the gripper. We then seg-
mented the parts in the container and computed grasping
poses using two simple methods as application examples.
We could show success rates of 100 % for grasping two dif-
ferent parts at overall cycle times of roughly 25 s (including
motion planning and execution).
In this paper, we have only conducted experiments with
the lab setup used for development. It is a matter of on-
going and future work to run more experiments on the fi-
nal demonstrator setup at the industrial end-user site as has
been done in our previous work [1].

Acknowledgments
This work has received funding from the European Union’s
Seventh Framework Programme for research, technologi-
cal development and demonstration under grant agreement
no 610917 (STAMINA).

References
[1] D. Holz, A. Topalidou-Kyniazopoulou, J. Stückler, and S. Behnke.

Real-time object detection, localization and verification for fast
robotic depalletizing. In Proc. of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages 1459–1466,
2015.

[2] J. Stückler and S. Behnke. Multi-resolution surfel maps for efficient
dense 3D modeling and tracking. Journal of Visual Communication
and Image Representation, 25(1):137–147, 2014.

[3] D. Buchholz, D. Kubus, I. Weidauer, A. Scholz, and F. M. Wahl.
Combining visual and inertial features for efficient grasping and bin-
picking. In Proc. of the IEEE International Conference on Robotics
and Automation (ICRA), pages 875–882, 2014.

[4] Y. Domae, H. Okuda, Y. Taguchi, K. Sumi, and T. Hirai. Fast gras-
pability evaluation on single depth maps for bin picking with general
grippers. In Proc. of the IEEE International Conference on Robotics
and Automation (ICRA), pages 1997–2004, 2014.

[5] B. Drost, M. Ulrich, N. Navab, and S. Ilic. Model globally, match
locally: Efficient and robust 3d object recognition. In Proc. of
the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 998–1005, 2010.

[6] D. Holz, M. Nieuwenhuisen, D. Droeschel, J. Stückler, A. Berner,
J. Li, R. Klein, and S. Behnke. Active recognition and manipula-
tion for mobile robot bin picking. In Florian Röhrbein, Germano
Veiga, and Ciro Natale, editors, Gearing up and accelerating cross-
fertilization between academic and industrial robotics research
in Europe: Technology transfer experiments from the ECHORD
project, volume 94 of Springer Tracts in Advanced Robotics, pages
133–153. Springer International Publishing, 2014.

[7] H. Jiang and J. Xiao. A linear approach to matching cuboids in
RGBD images. In Proc. of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2171–2178, 2013.

[8] H. Zhang, X. Chen, Y. Zhang, J. Li, Q. Li, and X. Wang. Cuboids
detection in RGB-D images via maximum weighted clique. In
Prof. of the IEEE International Conference on Multimedia and Expo
(ICME), 2015.

[9] J. Carreira and C. Sminchisescu. CPMC: automatic object segmen-
tation using constrained parametric min-cuts. IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 34(7):1312–
1328, 2012.

[10] David Jimenez Cabello, Sven Behnke, and Daniel Pizarro Perez.
Linear plane border: A primitive for range images combining depth
edges and surface points. In Proceedings of 8th International Con-
ference on Computer Vision Theory and Applications (VISAPP),
2013.

[11] Alexander Berner, Jun Li, Dirk Holz, Jörg Stückler, Sven Behnke,
and Reinhard Klein. Combining contour and shape primitives for
object detection and pose estimation of prefabricated parts. In Pro-
ceedings of IEEE International Conference on Image Processing
(ICIP), 2013.

[12] J. Xiao, B. C. Russell, , and A. Torralba. Localizing 3D cuboids in
single-view images. In Advances in Neural Information Processing
Systems (NIPS), 2012.

[13] A. Richtsfeld, T. Mörwald, M. Zillich, and M. Vincze. Taking in
Shape: Detection and tracking of basic 3D shapes in a robotics con-
text. In Proc. of the Computer Vision Winter Workshop (CVWW),
2010.

[14] S. Holzer, R. B. Rusu, M. Dixon, S. Gedikli, and N. Navab. Adap-
tive neighborhood selection for real-time surface normal estimation
from organized point cloud data using integral images. In Proc. of
the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 2684–2689, 2012.

[15] C. Choi, A. J.B. Trevor, and H. I. Christensen. RGB-D edge detec-
tion and edge-based registration. In Proc. of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages
1568–1575, 2013.

[16] Jörg Stückler, Ricarda Steffens, Dirk Holz, and Sven Behnke. Effi-
cient 3D object perception and grasp planning for mobile manipula-
tion in domestic environments. Robotics and Autonomous Systems,
61(10):1106–1115, 2013.

