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DiffSSC: Semantic LiDAR Scan Completion using Denoising Diffusion
Probabilistic Models
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Abstract— Perception systems play a crucial role in au-
tonomous driving, incorporating multiple sensors and corre-
sponding computer vision algorithms. 3D LiDAR sensors are
widely used to capture sparse point clouds of the vehicle’s
surroundings. However, such systems struggle to perceive oc-
cluded areas and gaps in the scene due to the sparsity of
these point clouds and their lack of semantics. To address
these challenges, Semantic Scene Completion (SSC) jointly
predicts unobserved geometry and semantics in the scene
given raw LiDAR measurements, aiming for a more complete
scene representation. Building on promising results of diffusion
models in image generation and super-resolution tasks, we
propose their extension to SSC by implementing the noising and
denoising diffusion processes in the point and semantic spaces
individually. To control the generation, we employ semantic
LiDAR point clouds as conditional input and design local and
global regularization losses to stabilize the denoising process.
We evaluate our approach on autonomous driving datasets,
and it achieves state-of-the-art performance for SSC, surpassing
most existing methods.

I. INTRODUCTION

Perception systems collect low-level attributes of the
surrounding environment, such as depth, temperature, and
color, through various sensor technologies. These systems
leverage machine learning algorithms to achieve high-level
understanding, such as object detection and semantic seg-
mentation. 3D LiDAR is widely used in self-driving cars to
collect 3D point clouds. However, 3D LiDAR has inherent
limitations, such as unobservable occluded regions, gaps
between sweeps, non-uniform sampling, noise, and outliers,
which present significant challenges for high-level scene
understanding.

To provide dense and semantic scene representations for
downstream decision-making and action systems, Semantic
Scene Completion (SSC) has been proposed, aimed at jointly
predicting missing points and semantics from raw LiDAR
point clouds. Given its potential to significantly improve
scene representation quality, this task has garnered significant
attention in the robotics and computer vision communities.
Understanding 3D surroundings is an inherent human abil-
ity, developed from observing a vast number of complete
scenes in daily life. When humans observe a scene from
a single view, they can leverage prior knowledge to infer
unseen geometry and semantics. Drawing inspiration from
this capability, the SSC model learns prior knowledge of
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Fig. 1: DiffSSC estimates unseen points with semantics (b) from
raw LiDAR point clouds (a). The unknown areas, as defined by
ground truth, are visualized at 20% opacity in (b).

scenes, P(scene), by estimating the complete scene from
partial inputs during training. During inference, new partial
inputs captured from the scene serve as the likelihood,
P(observation|scene), and the model finally estimates a
reasonable posterior result. Notably, the final estimation is
not a unique answer but rather a sample from the posterior
distribution, P (scene|observation). This aligns with intuition,
since humans also infer plausible results from partial inputs,
while the unobserved parts can have multiple possible com-
pletions.

However, most traditional SSC methods are limited to
learning the prior distribution of data directly, i.e., training
a model to estimate the target output directly from par-
tial inputs. Another approach to learning prior distributions
is to estimate residuals. Denoising Diffusion Probabilistic
Models (DDPMs) gradually inject noise into the data in
the forward diffusion process and employ a denoiser to
learn how to remove these noise residuals. The denoiser
iteratively predicts and removes noise, allowing the model to
recover high-quality data from pure noise. This mechanism
effectively learns the prior distribution of the data, which has
the potential to be applied in SSC tasks.

In this work, we propose DiffSSC, a novel SSC approach
leveraging DDPMs. As shown in Fig. 1, our method jointly
estimates missing geometry and semantics from a scene
using raw sparse LiDAR point clouds. During training, the
model learns the prior distribution by predicting residuals at
different noise intensity levels. These multi-level noisy data
are generated from ground truth using data augmentation.
In the inference stage, the sparse semantic logits serve as
conditional input, and the model generates a dense semantic
scene from pure Gaussian noise through a multi-step Markov
process. We model both the point and semantic spaces, de-
signing the forward diffusion and reverse denoising processes
to enable the model to learn the scene prior to the semantic
point cloud representation. In summary, our key contributions
are:
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« We utilize DDPMs for the SSC task, introducing a
residual-learning mechanism compared to traditional
approaches that directly estimate the complete scene
from partial input.

« We jointly model the noise injection process in both the
spatial and semantic domains and design corresponding
local and global regularization losses to enhance gener-
ation quality.

e Our approach operates directly on the point cloud,
avoiding quantization errors and reducing memory us-
age, while making it a more efficient method for LiDAR
point clouds.

II. RELATED WORK
A. LiDAR Perception

LiDAR is widely used in various autonomous agents
for collecting 3D point clouds from the environment. In
the past, extensive research was dedicated to employing
LiDAR for odometry [1] and mapping [2], [3]. Given the
inherent challenges of LiDAR, including data sparsity, noise,
and outliers, researchers concentrated on developing filtering
algorithms [4] and robust point cloud registration [5] to
achieve accurate and efficient LIDAR-SLAM systems. With
the advent of deep learning, researchers began focusing on
the semantic properties of LiDAR data, with notable applica-
tions in object detection [6] and semantic segmentation [7].
Additionally, unlike dense representations such as images,
the sparse nature of LiDAR point clouds presents unique
challenges for models. To address these challenges, some
researchers focus on estimating the gaps between sweeps and
occluded regions from sparse point clouds. This has led to
the development of semantic scene completion, an emerging
technique in LiDAR perception.

B. Semantic Scene Completion (SSC)

Semantic scene completion (SSC) aims to jointly infer
complex geometric structures and diverse semantic cate-
gories of a scene from partial observations. Since its intro-
duction, various input data modalities, such as occupancy
grids [8], images [9], and LiDAR-camera fusion [10], have
been explored. In parallel, a wide array of methodologies,
including transformers [11], bird’s-eye view (BEV) assis-
tance [12], and object-centric modeling [13], have been
employed to advance the state of the art in this domain.
However, these approaches generally operate on voxelized
grids, which poses specific challenges for LiDAR point
clouds, as voxelization can introduce quantization errors,
leading to resolution loss and increased memory usage. In
this work, we operate directly on point clouds, offering a
more efficient and resolution-preserving method for handling
LiDAR data.

C. Denoising Diffusion Probabilistic Models

Although diffusion models were originally discovered and
proposed in the field of physics, DDPMs [14] were the first
to apply this method to generative models. In subsequent
research, Rombach et al. [15] introduced latent diffusion

models, where the diffusion process is performed in the latent
space of the image. This significantly improved computa-
tional efficiency and reduced resource consumption, enabling
the generation of high-quality and high-resolution images,
marking a breakthrough in the field of artistic creation.
Beyond artistic applications, diffusion models have been
extended to spatiotemporal prediction tasks [16] and LiDAR
perception [17], [18], where 3D data is often projected
onto range images, allowing methods developed for image
domains to be directly applied. Notably, due to the higher
demands for accuracy in robotics, controlling the generative
process to achieve realistic results remains a significant
challenge when applying diffusion models in this field. The
recent LiDiff [19] directly applies diffusion models to 3D
point clouds for scene completion. However, it still lacks the
capability to model and process semantics simultaneously. In
this work, we apply DDPM to semantic scene completion,
to generate dense and accurate semantic scenes.

III. METHODOLOGY

Given a raw LiDAR point cloud, our objective is to
estimate a more complete semantic point cloud, including un-
observed points with associated semantic labels within gaps
and occluded regions. As illustrated in the Fig. 2, we build
a diffusion model supported by a semantic segmentation
module and a refinement module. First, the raw LiDAR point
cloud is semantically segmented using a Cylinder3D [20]
to generate initial semantic logits. Next, we upsample the
semantic point cloud to increase point density for the dif-
fusion process. The duplicated semantic points undergo a
forward diffusion and a reverse denoising process to adjust
their positions and semantics. Notably, the semantic point
cloud also serves as a conditional input for the diffusion
model, guiding the generation process. The generated scene
includes semantic points located in gaps and occluded areas.
To further enhance the quality of the generated scene, we
designed a refinement model based on MinkUNet [21]-[24]
to densify the point cloud.

A. Denoising Diffusion Probabilistic Models (DDPMs)

Ho et al. [14] introduced DDPMs to produce high-quality
images through iterative denoising from Gaussian noise.
This promising capability is driven by a residual learning
mechanism that efficiently captures the data distribution.
Specifically, the process begins with a forward diffusion
step, during which noise is gradually injected into the target
data over T' steps. The model is then trained to estimate
the noise injected at each step. By predicting and removing
noise at time step ¢, the model generates results that closely
approximate the raw data distribution.

1) Forward Diffusion Process: Assuming a sample xg ~
g(x) from a target data distribution, the diffusion process
gradually adds noise to xy over 7' steps, producing a
sequence Ii,...,xr. When T is large enough, ¢(xr) is
approximately equal to a normal distribution N(0, I). The
intensity of noise added at each step is determined by the
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Fig. 2: The overall pipeline of DiffSSC. The raw LiDAR point cloud is semantically segmented using Cylinder3D [20] to generate initial
semantic logits. The semantic point cloud is then upsampled. These duplicated points undergo forward diffusion and reverse denoising.
The original semantic point cloud serves as a conditional input, guiding the scene generation. To further enhance the generated scene, we
introduce a refinement model based on MinkUNet [21]-[24], which increases the density of the point cloud.

noise intensity factors f1, ..., S, which significantly influ-
ences the performance of the diffusion model. Specifically,
at step t, Gaussian noise amplified by (; is sampled and
added to x;_1. In [14], the noise parameter 3; is determined
using a linear schedule, starting from an initial value [y
and linearly increasing over 1" steps to a final value [r.
Subsequently, several improved noise schedules have been
proposed, such as the cosine schedule [25] and the sigmoid
schedule [26]. Due to the inefficiency of adding noise step by
step, especially during batch loading, where the noise from
different steps can be shuffled, one can simplify this process
by sampling x; from xy without computing the intermediate
steps «1,...,x4—1. To achieve this, Ho et al. [14] define
ar =1—f; and ay = Hle a;, allowing x; to be sampled
as:

Ty = /Oy + 1-— Q€ (1)

where € ~ N(0,I). It is important to note that when 7 is
large enough, ¢(x7) approaches A/(0, I') because ar tends
to zero.

2) Reverse Denoising Process: The denoising process
reverses diffusion and aims to recover the original sample
x( from Gaussian noise. This is accomplished by a denoiser,
which estimates and removes the noise at each step. The
reverse diffusion step can be formulated as:

1 1—at ( t) +
L1 = Ty — €l T gt€
t—1 \/OTt t m@ ty t€,
1—ay_
with 02 = — X=1g, )
’ 1—0[15

where €g (¢, t) is the noise estimated from «, at step ¢. The
process of generating the original data can be formulated as a
Markov process that repeatedly calls the denoiser until £ = 0.
At this point, the model generates a result that approximates
x(. Due to the denoiser effectively learning the high quality
of the data distribution ¢(r), the generated samples are of
similarly high quality.

While the denoising process generates samples with qual-
ity similar to the dataset, it only produces random samples.
Hence, the denoising process cannot control the generation
of specific desired data, which poses challenges for certain
downstream applications. [25] addresses this issue by intro-
ducing conditional inputs to guide the generation process.
This advancement allows us to apply diffusion models to
tasks like SSC.

B. Diffusion Semantic Scene Completion

Regarding the principles of DDPMs, we introduce its
application in SSC. To focus on the main components,
we assume that primary semantic segmentation has been
obtained using Cylinder3D. In the context of the diffusion
model, the input is a partial semantic point cloud X =
{z!,..., &N}, where each semantic point " is a tuple of
a point position and a semantic probability vector (p", s™).
Here, p” € R? represents the 3D coordinates, and s" €
Al = {5 € R | % 5" = 1,s" > 0} lies in the
standard (C —1)-dimensional simplex, assuming there are C'
classes in total. The output is the estimated complete point
cloud Y = {g',...,9M}. We generate the reference ) =
{y!,...,y™M} by fusing multiple frames with ground-truth
semantic labels and then taking the corresponding region as
the input scan X. Our goal is to make the estimated Y as
close as possible to the ground truth ).

As mentioned in Sec. I, by learning scene priors, the
model gains the ability to estimate a complete scene (pos-
terior) from partial observations (likelihood). The diffusion
model efficiently learns the distribution of the ground truth
data, acquiring knowledge of the scene prior. To achieve
this, we gradually inject noise into the ground truth ),
resulting in Vs, ..., Y7, until Y approximates a Gaussian
distribution. However, the noise injection process in Eq. 1
assumes that xy is approximately isotropic, which is not
suitable for LiDAR-scanned 3D scenes due to significant
scale variations across the three spatial dimensions. While
normalization can compress the scene into a more isotropic



form, it also leads to a significant loss of fine details. To
adapt noise injection for LiDAR-scanned 3D scenes, [19]
apply local noise offsets at each point. This ensures that
the noise intensity remains consistent across all spatial loca-
tions. Similarly, semantic categories in autonomous driving
follow a long-tailed distribution [27], indicating that their
distribution exhibits anisotropy. Inspired by [19], we adopt
a local noise offset strategy for semantic noise injection.
Specifically, we first scale the one-hot semantic encoding
of the ground truth ) into the logit domain, then add noise
offsets independently to each category’s semantic logit, and
subsequently restore the probabilistic semantic distribution
via softmax. Combining the spatial and semantic domains,
we propose a local anisotropic noise injection mechanism.

UpIg 0
0 O'SIC:| (3)

Here, we employ an anisotropic scaling matrix W, con-
trolled by the scaling factors o, and o, to modulate the stan-
dard Gaussian noise €, ensuring that it appropriately adapts
to the scale differences in both the spatial and semantic
logits domains. The modulated noise is then injected into the
local semantic point y™ € R3+¢ Given a specific time step
t € [0,T], applying Eq. 3 to all points allows for computing
the entire noised scene ); in a single step, eliminating
the need for intermediate computations. This significantly
reduces both memory consumption and computational time.

To enable the model to generate a corresponding complete
semantic scene based on the current partial input, we encode
the partial semantic point cloud X as a conditional input,
which is then fed into the model to guide the point cloud
generation process. Thus, the denoiser integrates the noised
scene ), the conditional input X', and the time step ¢,
which indicates the intensity of noise, to estimate the noise
€9 (yt, X y t) .

Based on our residual learning mechanism, we employ
the Ly loss to regularize the local discrepancy between the
estimated noise and the real noise, rather than comparing the
generated scene and the target scene.

y =y +vV1I-—auWe W = [

Ly = |VT—a@We — eV, X, 1) @)

Therefore, to generate the final scene, we additionally re-
move the estimated noise from the sample, followed by
transforming the semantic logits into a semantic probability
vector via the softmax function.

Besides the local loss Ly commonly used in DDPM
models, [19] propose a global regularization for the mean
and variance of the estimated noise, enforcing it to follow the
statistical properties of the injected noise, i.e., a Gaussian dis-
tribution. While first- and second-order moments effectively
regularize noise in the spatial domain, the estimated noise in
the semantic domain tends to exhibit a skewed distribution
due to the long-tailed nature of semantic data in autonomous
driving. Therefore, we introduce skewness regularization as
the third-order constraint to improve the noise distribution in
the semantic domain. Thus, the overall loss is formulated as
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Fig. 3: Architecture of our MinkUNet Denoiser. As shown in the
red area, we design information fusion layers and insert them
between MinkUNet blocks to integrate the conditional input and
step information, guiding the generation of the point cloud.

follows:

L = Ly + Ap(Lpmean + Lpyar) + As(Lsmean + Lisvar + L skew)
Lpsar = (€, — 1)?

Loskew = €7 (5)

where €, and €, correspond to the spatial and semantic
domains, respectively, with their contributions weighted by
Ap and A;. Meanwhile, €y, €, and €y represent the mean,
standard deviation, and skewness of the estimated noise €y,
respectively. Compared to the local term Lo, the global term
is used to regularize the statistical properties of the noise,
ensuring that it approximates a Gaussian distribution.

— 2
Lp,mean =€p,

Ls,var = (és - 1)27

— 2
Ls,mean =€,

C. Denoiser Architecture

As shown in Fig. 3, the denoiser is based on the MinkUNet
architecture [21]-[24]. Given the feature F extracted from
a layer of MinkUNet, we integrate the conditional input
and step information between layers to obtain the fused
feature F'. The raw semantic point cloud X is encoded as a
conditional input C. To embed the most relevant conditional
input into the feature space, a closest point algorithm is
employed to effectively align the conditional input with the
features. Simultaneously, the step ¢ is encoded as 7 using
sinusoidal positional encodings. After passing through an
MLP individually, the conditional input and step information
are concatenated to form the weight V. To align the dimen-
sions with the feature F, WV is processed through an MLP to
produce W'. Finally, W' and F are element-wise multiplied
to form the refined feature F’, which is then passed to the
next layer.

D. Refinement

Inspired by Lyu et al. [28], we design a refinement and
upsampling scheme based on MinkUNet to further enhance
the density of the diffusion model’s output. This module
predicts k bias by € R? for each point position in the
completed scene, while the semantics are propagated to the
biased points. The refinement module offers a marginal im-
provement in scene quality, but it functions as interpolating



points in the gaps, rather than learning to predict missing
geometry and semantics. The main contribution is made by
the diffusion model, as will be demonstrated in the ablation
study.

IV. EXPERIMENTS

A. Benchmark Result

To conduct a comprehensive comparison with other lead-
ing SSC methods, we first evaluate our model on the Se-
manticKITTI [27] Benchmark. SemanticKITTI is a widely
used autonomous driving dataset that provides point-wise an-
notations on raw LiDAR point clouds, extending the original
KITTI dataset for semantic understanding tasks. The SSC
Benchmark is a subtask within SemanticKITTI, focusing on
predicting both the semantic class and occupancy status of
each voxel within a grid volume. To obtain the ground truth,
the annotated sequential scans are first accumulated and then
chopped based on a predefined range represented in the
LiDAR sensor’s coordinate system: Vi = {(z,9,2) | = €
[0,51.2] m,y € [-25.6,425.6] m,z € [-3.2,+3.2] m}.
The extracted region is then voxelized into a 256 x 256 x 32
grid volume, where each voxel represents a 0.23m? cube
in the real world. Although our method operates directly
on point clouds, the discrete nature of point clouds makes
it challenging to directly evaluate performance using tra-
ditional IoU metrics, which are designed for continuous
spatial regions. To address this, we voxelized our results and
employed IoU for scene completion and mloU for semantic
scene completion evaluation. While voxelization introduces
quantization errors that may slightly degrade our model’s
performance, this approach ensures a fair and meaningful
comparison.

TABLE I: Quantitative results on the SemanticKITTI benchmark.

Method | Reference | IoU(%) mlIoU(%)
LMSCNet [8] 3DV’20 55.3 17.0
S3CNet [12] CoRL21 45.0 29.5
SSA-SC [29] IROS’21 58.8 23.5
JS3C-Net [30] AAAT21 56.6 23.8

LODE [31] ICRA’23 51.2 23.4
SCPNet [32] CVPR’23 56.1 36.7
TALoS [33] NeurIPS’24 60.2 37.9

Ouws | - | 634 274

IoU is used to evaluate only the occupancy status, while mloU assesses
performance across all semantic classes. Best and second best results are
highlighted.

We follow the official dataset split: sequences 00-07 and
09-10 are used for training, 08 for validation, and 11-21
for testing. Model performance is evaluated through the
official online benchmark server. The model is trained on
an NVIDIA A6000 GPU for 20 epochs. For the diffusion
parameters, we employ a cosine schedule to modulate the
intensity of noise at each step. Specifically, we set 5, =
3.5 x 107 and Ar = 0.007, with the number of diffusion
steps 7" = 1000, and define 1, ..., Br—1 using the following

equation.

5t:60+;(1+cos<;~w>) (Br—Fo)  ©

We set the ratio of global regularization to A\, = 5.0 and
As = 4.0. Additionally, we define the scaling factors as
op = 1.0 and o, = 0.2. As shown in Tab. I, our method
outperforms all state-of-the-art LiDAR-based approaches in
scene completion, indicating that the model effectively cap-
tures geometric information. However, for semantic scene
completion (measured by mloU), a obvious gap remains
compared to SCPNet and TALoS. It is important to note
that both methods leverage additional information beyond
single-frame input. Specifically, SCPNet utilizes multi-frame
knowledge distillation to enhance the prediction of the cur-
rent frame, while TALoS employs a test-time adaptation
strategy, incorporating multi-frame observations and future
data to refine its outputs. In contrast, DiffSSC relies solely
on single-frame information and does not incorporate online
model adjustments.

While the SemanticKITTI SSC benchmark provides a
valuable framework for evaluating SSC models, its design
is notably influenced by early indoor SSC tasks. These early
methods mainly relied on RGB-D cameras, which inherently
limited perception to front-facing scenes. To leverage the
technical foundations of these methods and simplify their
transition to outdoor environments, SemanticKITTI restricts
the LiDAR field of view to the front half, covering only the
range [—90°,+90°] in the sensor coordinate system, while
completely ignoring the rear part of the scene. Although this
simplification facilitated early exploration of outdoor SSC, it
fundamentally deviates from the natural properties of LIDAR
data and the core requirements of autonomous driving tasks.
Rear-view perception is equally critical for driving safety,
especially for tasks like lane changes, reversing, and obstacle
avoidance. Since LiDAR sensors capture data through con-
tinuous 360° rotations without directional bias, restricting
input to the front half disrupts the spatial consistency of the
data and limits the model’s ability to fully understand the
driving environment. To address this limitation, we extend
the scene completion task to a full 360° panoramic view,
preserving the intrinsic characteristics of LiDAR data and
providing a more comprehensive representation of real-world
autonomous driving scenarios.

B. Extended Experiment on Panoramic Scenarios

1) Panoramic Settings: In the raw SSC setting of Se-
manticKITTI, the scene is limited to a cuboid region
Vkiwi» covering the range [—90°,490°]. To extend this to
the full [—180°,4180°] panoramic range while preserv-
ing spatial symmetry, the panoramic volume is defined
as the combination of two SemanticKITTI volumes fac-
ing forward and backward. Specifically, in the LiDAR’s
local coordinate system, this is formulated as: Vpuo, =
{(x,y,2) | € [-51.2,51.2] m,y € [—25.6,+25.6] m, z €
[—3.2,+3.2] m}. The front and rear halves of the panoramic



volume are designed to be identical to the original Se-
manticKITTI volume. Given the similar statistical character-
istics of LiDAR data in the front and rear regions, retaining
the original SemanticKITTI volume settings allows baseline
methods to be seamlessly transferred to the panoramic setting
without significant performance degradation.

We generate the ground truth following the guidelines
of SemanticKITTI. First, using the pose information of
each frame, we construct a global map by aggregating the
semantic LiDAR sweeps within the sequence. Next, we
extract the region within Ve, with the LiDAR positioned
at its center. Additionally, unknown areas defined by the raw
dataset are mapped into Vjun, using the known poses, and
these regions are excluded from the evaluation.

Besides SemanticKITTI, we also conduct panoramic
experiments on the SSCBench-KITTI360 dataset [34].
SSCBench-KITTI360 is another SSC benchmark derived
from KITTI-360 [35], with semantic information aligned
to the SemanticKITTI format. This consistency allows SSC
methods evaluated on SemanticKITTI to be seamlessly trans-
ferred to the KITTI-360 scenario. However, both benchmarks
only use the front half of the LiDAR scan as input. To address
this, we apply the same panoramic processing approach to
SSCBench-KITTI360 as we did for SemanticKITTI.

2) Baselines: We compare our approach against LMSC-
Net [8], JS3C-Net [30], and LODE [31]. Both LMSCNet
and JS3C-Net take the front half of the quantized LiDAR
sweep as input and are evaluated on the SSC benchmark
of SemanticKITTI. LODE primarily focuses on geome-
try completion using implicit representations; however, to
demonstrate its flexibility, the authors also report results with
extended semantic parsing.

To enable these baselines to predict panoramic scenes,
we split the 360° LiDAR point cloud into two halves and
feed them separately into the baseline models. The front half
follows the same settings as in SemanticKITTI, while the rear
half is rotated by 180° before being passed to the models.
After obtaining predictions for both halves, we concatenate
them to form the complete panoramic scene. Although the
baselines were trained solely on the front part of the scene,
the statistical characteristics of LIDAR data in the front and
rear regions are similar. This suggests that models trained on
the front half remain effective when applied to the rear re-
gion. This approach minimizes performance degradation due
to domain shift, ensuring a fair comparison. Additionally, we
directly utilized the official code and pretrained checkpoints
from the baselines to predict the panoramic scenes, further
maintaining consistency in evaluation.

While these baselines have reported results on Se-
manticKITTI, they had not previously been tested on
SSCBench-KITTI360 [34]. To supplement our evaluation,
we ran these baselines on SSCBench-KITTI360 without fine-
tuning. Since the semantic labels and the overall pipeline
in SSCBench-KITTI360 are consistent with SemanticKITTI,
the baselines could be seamlessly applied to this dataset.

3) Training and Inference: Since our method operates
directly on point clouds rather than voxel-based volumes, the

processing of training pairs differs from that of the baselines.
Although we generate the ground truth by aggregating the
semantic LiDAR sweeps and extracting point clouds within
the Vpano, we do not further voxelize the data. To facilitate
better diffusion and learning, we define the generated scene
range during both training and inference as a spherical area
centered on the LiDAR with a radius of 60 meters, i.e.,
Viphere = {(, 9, 2) | V22 + y? + 22 < 60 m}. During evalu-
ation, we voxelize the predicted point cloud scene and extract
the portion within Vpano. Thus, while the generated scene
range differs from Va0, the evaluation region is restricted
t0 Vpano» €nsuring consistency with the baselines. Moreover,
the model does not leverage any information outside Viano
but within Viphere during the learning process, ensuring a
fair comparison with the baselines. Our model is trained
and validated purely on SemanticKITTI, using sequences
00-07 for training and sequences 09-10 for validation. We
evaluate our model on the official validation sets of both
datasets: sequence 08 of SemanticKITTI and sequence 07
of SSCBench-KITTI360. Since the baselines were not fine-
tuned on SSCBench-KITTI360, we likewise did not perform
any fine-tuning on SSCBench-KITTI360.

4) Experimental Results: Based on the experimental set-
tings described above, we compare the performance of
existing SSC methods with our approach in Tab. II. Al-
though voxel-based evaluation introduces quantization errors,
the output of our diffusion model surpasses all baselines,
demonstrating the effectiveness of our method.

TABLE II: Quantitative results of the panoramic experiments on
the SemanticKITTI and SSCBench-KITTI360 validation sets.

SemanticKITTI SSCBench-KITTI360
Method
IoU%) mloU(%) | IoU(%) mloU(%)
LMSCNet [8] 48.2 154 33.6 13.5
JS3C-Net [30] | 513 21.4 35.6 17.0
LODE [31] 50.6 18.2 38.2 15.4
Ours | 60.3 26.7 41.3 20.4

Best results are highlighted in bold.

Qualitative results are presented in Fig. 4. To highlight the
advantages of our approach, which operates directly on point
clouds, we visualize samples from both the SemanticKITTI
and SSCBench-KITTI360 datasets in point cloud form. For
voxel-based methods, point clouds are generated by sampling
the center point of each occupied voxel. As shown in
Fig. 4, our DiffSSC model predicts more accurate semantic
segmentation of the background and offers a more precise
representation of foreground shapes. Moreover, voxel-based
baselines, which estimate the scene using two halves of
a LiDAR sweep, exhibit discontinuities at the boundary
between the front and rear parts. This further underscores
the importance of learning from panoramic LiDAR data.

C. Ablation Studies

To systematically analyze the contribution of each com-
ponent in our model, particularly the core diffusion model
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Fig. 4: Qualitative results of the panoramic experiments on the SemanticKITTI and SSCBench-KITTI360 validation sets. All 19 classes
are displayed without empty spaces. Predicted points located in unknown regions are visualized with 20% opacity.

TABLE III: The results of ablation studies for the proposed DiffSSC. The performance is evaluated on SemanticKITTI and SSCBench-

KITTI360 validation sets. Best results are highlighted.

Method Module Noise Schedule Regularization| SemanticKITTI |SSCBench-KITTI360
Segmentation Diffusion Refinement|Linear Sigmoid Cosine|Local Global |ToU(%) mIoU(%)|ToU(%) mlIoU(%)

Ours \ A \ v v v \ - v \ v v \ 60.3 26.7 \ 47.3 20.4
Module-level B v - v - - - - 234 7.6 20.7 7.2
C v v - - v v v 58.7 26.3 42.1 19.3

D v v - v - v v 52.6 20.7 37.1 16.3

Policy-level E v v - - v - v v 56.9 25.8 40.9 18.5
F v v - - v v - 40.3 10.9 30.7 9.6

and key learning strategies, we ablate our method on Se-
manticKITTI and SSCBench-KITTI360, with results sum-
marized in Tab. III. Our model architecture comprises three
primary modules: semantic segmentation, diffusion, and re-
finement. We performed module-level ablations to evaluate
the individual contributions of each submodule. Additionally,
we conducted policy-level ablations to examine the influence
of two critical factors on the diffusion model: the noise
schedule function and global regularization.

1) Module-level: The semantic segmentation module is
essential for providing initial semantic priors. Therefore,
we focused on analyzing the individual contributions of the
diffusion and refinement modules. In Method B, we removed
the core diffusion module from our pipeline, directly refining
the output of Cylinder3D. Without the diffusion step, the
noise schedule and regularization become irrelevant. This
resulted in poor performance, indicating that refinement
alone cannot effectively predict unknown areas in the scene.
In Method C, we used only the diffusion model without
refinement. While performance slightly dropped compared
to the full Method A, this suggests that refinement improves
scene densification but relies on accurate predictions from
the diffusion model.

2) Policy-level: As mentioned in Sec. III, the noise sched-
ule determines the intensity of noise injected at each step,
commonly including linear, cosine, and sigmoid schedules.
We investigated the impact of different noise schedules on
the diffusion process. To isolate this effect, we removed

the refinement module, allowing a clearer view of how
the noise schedule influences diffusion. Results are shown
in Tab. III. Comparing Method C, D, and E, we observe
that the linear schedule, being the simplest form, performs
significantly worse than the other two schedules. The cosine
schedule, with its S-shaped curve and precise control over
noise introduction, balances faster convergence with high
final generation quality, achieving the best results. The sig-
moid schedule also shows competitive performance, slightly
lagging behind the cosine schedule. Therefore, we adopted
the cosine schedule in our main results.

We also investigated the impact of global regularization
on model performance. By setting A\, = 5.0 and A\, = 4.0,
we removed global regularization in Method F. Compared
to Method C (A, = A; = 0), the model exhibited poorer
performance, highlighting the advantages of incorporating
global regularization.

V. CONCLUSIONS AND OUTLOOK

We proposed DiffSSC, a novel SSC approach based on
DDPMs. It takes raw LiDAR point clouds as input and jointly
predicts missing points along with their semantic labels,
thereby extending the application boundaries of diffusion
models. We evaluated our method on two autonomous driv-
ing datasets, achieving state-of-the-art performance. In future
work, we plan to explore integrating cross-modal signals
and prompt-guided learning to enhance scene understand-
ing [36]-[38]. We will also explore strategies for improving



inference efficiency and reducing resource consumption,
inspired by recent advances in lightweight modeling [39],
[40].
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