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Abstract— In recent years, unmanned aerial vehicles (UAVs)
are used for numerous inspection and video capture tasks.
Manually controlling UAVs in the vicinity of obstacles is
challenging, however, and poses a high risk of collisions. Even
for autonomous flight, global navigation planning might be too
slow to react to newly perceived obstacles. Disturbances such
as wind might lead to deviations from the planned trajectories.

In this work, we present a fast predictive obstacle avoidance
method that does not depend on higher-level localization or
mapping and maintains the dynamic flight capabilities of UAVs.
It directly operates on LiDAR range images in real time
and adjusts the current flight direction by computing angular
potential fields within the range image. The velocity magnitude
is subsequently determined based on a trajectory prediction
and time-to-contact estimation.

Our method is evaluated using Hardware-in-the-Loop simu-
lations. It keeps the UAV at a safe distance to obstacles, while
allowing higher flight velocities than previous reactive obstacle
avoidance methods that directly operate on sensor data.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are increasingly applied

to many different tasks requiring observation of objects

or environments that are difficult to access. This includes

fields like industrial inspection, agriculture, and search and

rescue. Their ability for agile flight and high velocities

makes UAVs especially suitable for time-critical applications

like target tracking and disaster response. Such scenarios

often require flights close to obstacles or even indoors, thus

posing significant strain on human pilots during manual

operation. The application of autonomous flight systems is

also challenging, however, since one has to deal with large,

initially unknown environments. In our previous work [1],

we presented a hierarchical navigation and control pipeline

for autonomous flights in GNSS-denied environments. We

now propose an additional reactive obstacle avoidance layer

(Fig. 2) that can be added to our system to increase flight

safety in the vicinity of obstacles.

Obstacle avoidance methods must be able to react quickly

to unknown obstacles without depending on other modules

like localization or mapping, thus ensuring safe flights even if

external disturbances or errors in higher-level modules occur.

Our method can be directly applied to LiDAR range images

without requiring a local map. However, we still aggregate

LiDAR scans over a short time interval into a history range

image. This is necessary to be able to avoid small structures
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Fig. 1: Our predictive obstacle avoidance method successfully avoids a
collision. The UAV (coordinate axes) receives a velocity command (green
arrow) that would result in a collision with an obstacle. Our method adjusts
the flight direction using angular potential fields, which are computed on
aggregated LiDAR range images (top left). Note that distant obstacles are
pruned since they do not pose a risk of collision. The velocity magnitude of
the final command (red arrow) is chosen based on a time-to-contact estimate
along the future trajectory (orange), which is generated by iteratively
applying potential fields to range images transformed into the future sensor
frames. The predicted range image for the end of the unrolled trajectory is
shown on the top right. Note that the obstacle (circled red) is now behind
the UAV.

like cables, which might not be measured in every scan.

Since we only aggregate over a short time interval, the

transformation between different LiDAR range images can

be approximated by integrating velocities. Thus, we do not

depend on global position estimates but only assume that an

estimate of the current UAV velocity is available, which is

also needed for the low-level controller to track the velocity

commands generated by our method.

A key advantage for the application of UAVs is their ability

for high flight velocities and thus short mission execution

times. Many obstacle avoidance methods unnecessarily limit

the flight velocity, though. For example, the repulsive forces

of classic potential field methods do not only adjust the flight

direction but also decelerate the UAV, although obstacles

might be passed at a safe distance. To address this issue,

we propose a novel method that adjusts the flight direction

based on an angular potential field directly defined on LiDAR

range images. To choose an appropriate velocity magnitude,

the future trajectory is subsequently predicted to estimate

the time-to-contact and the velocity command is scaled

accordingly.
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In summary, our proposed method includes:

• the aggregation of LiDAR range images over a short

time horizon into a history range image, which does

not depend on global localization or mapping modules,

• an angular potential field method with dynamic consid-

eration that is applied to range images to determine the

flight direction, and

• trajectory prediction with time-to-contact estimation to

scale the velocity magnitude.

II. RELATED WORK

Due to their long planning times, global trajectory plan-

ning methods cannot be executed at the high frequencies

needed to avoid dynamic or previously unknown obstacles

during fast UAV flight. Thus, many approaches to low-level

obstacle avoidance locally adjust a global trajectory to newly

perceived obstacles. For example, Oleynikova et al. [2] fit

continuous-time polynomials to a global geometric path,

which are locally optimized with respect to obstacles and

control costs. A similar method was proposed by Usenko et

al. [3] using B-Splines instead.

Zhang et al. [4] use a hierarchy of multiple precomputed

offline trajectories to quickly react to previously unknown

obstacles in cluttered environments. If a collision for the

currently tracked path is detected, they efficiently switch to

an alternative trajectory that locally avoids obstacles. This

method significantly reduces onboard computations but de-

pends on a prior map of the environment. Thus, it is extended

in [5] to model parts of the environment probabilistically if

they are not currently covered by onboard sensors. Instead

of searching for the shortest path, the trajectory with highest

probability of reaching the goal is executed. For the case

where no prior map is known, a heuristic is introduced to

estimate this probability.

All of the above methods aggregate an environment map

and thus depend on global position estimates. To ensure

collision-free flights even if errors in higher-level localization

modules occur, obstacle avoidance methods should directly

operate on sensor data. For example, Beul and Behnke [6]

generate time-optimal trajectories which are checked for col-

lisions against LiDAR point clouds. If necessary, additional

trajectories to alternative waypoints are computed until a

collision-free trajectory is found. However, the target points

do not depend on the environment structure but are sampled

around the initial trajectory and the current UAV position.

Thus, the performance depends on the parametrization of

the sampling process and it is prone to local minima in

constrained environments.

A common method for low-level obstacle avoidance is the

Dynamic Window Approach (DWA) introduced by Fox et

al. [7]. A set of control inputs is sampled and each is

evaluated by predicting the corresponding future trajectory.

The best control input is chosen based on obstacle clearance,

progress towards the goal, and velocity. Multiple extensions

to DWA have been introduced. For example, Missura and

Bennewitz [8] propose a dynamic collision model that pre-

dicts the motion of obstacles and thus can handle non-static

environments. Dobrevski et al. [9] adjust DWA parameters

dynamically based on the current environment perception

using a neural network and reinforcement learning. Due to

sampling the control inputs and a limited planning horizon,

DWA-based methods are prone to local minima. To increase

the look-ahead, Missura et al. [10] propose short-term abort-

ing A* searches, but they again depend on global localization

and environment mapping.

Instead of searching for a collision-free trajectory, artificial

potential field-based methods [11] are commonly used to

instantaneously adjust movement commands to the most

recent sensor measurements. Nieuwenhuisen et al. [12] com-

bine potential field-based obstacle avoidance with a learned

motion model to predict the future trajectory and reduce

the current velocity if necessary. In [13], the requirement

to learn a motion model is removed by introducing two

different influence spheres around the robot: A larger, passive

avoidance sphere, where the UAV is decelerated in the

obstacle direction, and an inner sphere, where the UAV is

actively pushed away from the obstacle. Thus, smoother

trajectories through narrow corridors are achieved. However,

classic potential field-based methods do not scale well to

high velocities and are prone to local minima.

The idea to choose the movement direction based on

range images has been proposed before, e.g., by Sezer et

al. [14], who steer a vehicle towards the obstacle gap with

largest angle in the current scan. Houshyari and Sezer [15]

extend this approach to use the Euclidean distance instead

of angles to measure the gap width. Cho et al. [16] define

a Gaussian potential field on range images. In contrast to

our approach, these methods have only been applied to 2D

planning for ground vehicles and they do not consider the

vehicle’s dynamics.

We propose a reactive obstacle-avoidance method that

directly operates on 3D LiDAR range images and does not

depend on global localization or mapping. We use velocity-

dependent angular potential fields to determine the flight

direction and scale the velocity magnitude by predicting the

future trajectory and a time-to-contact estimation.

III. METHOD

In the following sections, we give a detailed description of

the different components of our obstacle avoidance approach

depicted in Fig. 2. First, the current 3D LiDAR scan is

preprocessed (Sec. III-A) by reducing the resolution and

removing distant points that do not pose a risk of a collision

in the near future. Additionally, we aggregate the current

range image with the previous ones over a short time horizon

to be able to avoid small obstacles that are not measured in

every scan.

In order to keep safe distances to obstacles while still

allowing fast flights on collision-free trajectories in narrow

passages, we represent velocity commands in spherical coor-

dinates and split their generation into two parts: In Sec. III-

B, we determine the flight direction, i.e., the angular com-

ponents, by applying a potential field method to the sensor

range image. Subsequently, we predict the future trajectory
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Fig. 2: System overview. The computation blocks Potential Field and
Prediction are executed iteratively to unroll the future trajectory. Black dots
mark the entry points to these iterations. Starting from the second iteration,
the results of the previous iteration (gray arrows) are forwarded instead of
the initial input.

(Sec. III-C) by iteratively applying our potential field method

and unrolling the resulting velocity commands (scaled with

the commanded target velocity). Thus, we can detect future

collisions and scale the actually executed velocity command

such that the UAV will not enter the safety region around

obstacles within the minimal time-to-contact tcontact.

A. LiDAR Scan History Aggregation

Our method is able to directly operate on LiDAR range

images. Only considering the most recent scan is dangerous,

however, since thin structures might not be represented

in every measurement. Furthermore, during dynamic flight,

obstacles might be moved out of the sensor’s limited vertical

field of view. This is illustrated in Fig. 3. During frequent

aggressive changes of flight direction, a velocity command

might be chosen that steers the UAV closer to currently

not visible obstacles, even when restring commands to the

sensor’s field of view. In combination with control latencies,

this might result in the UAV entering the safety region

around obstacles or even in a collision. To address this

issue, we aggregate measurements over a short time interval

thistory = 1 s into a history range image H. For each pixel

(φ, θ), we additionally keep track of the age t(φ, θ) of the

corresponding measurement.

For lower computation times, we discard all pixels of the

current image with range values that are too high to pose a

risk of collision in the near future. To this end, we predict

the area Apos of possible future UAV positions by applying a

maximum acceleration command ±amax to the current UAV

velocity v0 for a time interval t = thistory + tcontact. Here,

tcontact denotes the minimum allowed time-to-contact, which

equals the prediction horizon used in Sec. III-C. All pixels

Current Scan Aggregated Scans

Fig. 3: Comparison of a single range image (top left) against the aggregated
range image (top right) during an aggressive change in flight direction.
The corresponding 3D view of the environment is shown at the bottom
including the UAV (coordinate axes), the target trajectory (gray), the target
and adjusted velocity commands (green and red arrows) as well as the
predicted trajectory (blue). Due to the UAV orientation, the ground in front
of the UAV is not visible in the current scan. Aggregating range images
over a short time interval efficiently extends the vertical field of view. As a
result, the ground is still considered during obstacle avoidance.

corresponding to 3D points whose distance to Apos exceed

a safety margin dsafe can be skipped during the processing

described below.

Every time a new 3D scan is obtained, we transform the

history range image Hi−1 of the previous iteration into the

new sensor frame. First, we project every pixel pImage =
(φ, θ) into 3D space. For simplicity of notation, we state

the transformations for continuous angles and discard the

discretization into image coordinates:

TImage 7→3D(pImage) =
r(φ, θ)

‖p3D‖
p3D,

with p3D =



cos(θ) cos(φ)
cos(θ) sin(φ)

sin(θ)


 .

(1)

Here, r(φ, θ) denotes the range value associated with the

pixel (φ, θ). The offset between the previous and current

sensor frame can be estimated by integrating UAV velocity

measurements. The projected point p3D = (x, y, z) is then

transformed accordingly and reprojected into the new image

frame using

T3D7→Image(p3D) =

(
atan2(y, x)

π
2 − acos( z

‖p3D‖2
)

)
. (2)

Subsequently, we merge the transformed history image Ĥi−1

with the current scan Si. Range values and pixel ages of

the history image should be updated if the corresponding

obstacle is present in the current scan, although the new

range value might be larger than the history value. Thus,

instead of taking the pixel-wise minimum of Ĥi−1 and
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Fig. 4: Comparison of Cartesian and spherical repulsive forces. a) Top-down
view in Cartesian coordinates. The sum of the repulsive forces f1 + f2
cancels out the commanded velocity (black arrow). b) Top: The angular
repulsive forces α1, α2 are computed in image coordinates on the LiDAR
range image. They cancel out each other and guide the robot towards the
center of the gap between the obstacles. Bottom: Top-down view of the
projection into spherical coordinates.

Si, we keep the most recent range values rSi
(φ, θ) even

if they are larger than the history values rĤi−1
(φ, θ), as

long as the difference is below a threshold T . To model the

uncertainty of history values rĤi−1(φ,θ)
, this threshold should

be different for each pixel and should grow monotonically

with increasing pixel age t(φ, θ). Thus, we define the range

values of the updated history image Hi as

rHi(φ,θ) =

{
rĤi−1

(φ, θ), if rĤi−1
(φ, θ)e

t(φ,θ)
τ ≤ rSi

(φ, θ)

rSi
(φ, θ), otherwise,

(3)

where τ > 0 controls the growth rate of the threshold T =

e
t(φ,θ)

τ .

B. Potential Field Method

The repulsive forces of classical potential field methods

are defined in Cartesian coordinates and thus influence both,

the UAV flight direction and its velocity. For example,

consider the situation depicted in Fig. 4 a, where the UAV

is commanded into a gap between two obstacles. The UAV

is pushed away from each obstacle by the repulsive forces

f1 and f2, respectively. Depending on the force magnitudes

‖f1‖ and ‖f2‖, the commanded velocity is reduced or even

completely cancelled out, resulting in a local minimum. To

address this issue, we propose to formulate the problem in

spherical coordinates and apply the repulsive forces only

to the angular components φ and θ (Fig. 4 b). Thus, a

potential field is computed for the LiDAR range image. The

corresponding angular repulsive forces α1, α2 steer the UAV

towards the center of the gap between the obstacles without

influencing the magnitude of the resulting velocity command,

which will be determined in a subsequent step based on a

time-to-contact estimation. Our experiments show that this

method is less prone to local minima and allows fast flights

through narrow corridors, while keeping sufficient distance

to the walls.

1) Angular Potential Field Method: In a first step, we

project the commanded target velocity vtarget into the range

image using (2), obtaining the target pixel (φtarget, θtarget).

a)

r
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Fig. 5: Definition of the support radius for repulsive force computation.
Depicted is the top-down view in Cartesian coordinates of a situation where
the UAV has an initial velocity towards the obstacle. a) When defining the
support (gray circle) using the Euclidean range value r, the actual UAV
trajectory (blue) passes the obstacle at a too close distance since the UAV
cannot instantaneously change its flight direction. b) Using the velocity-
dependent predicted future range value rvel := r− tcontactv results in larger
acceleration commands. Thus, the UAV does not enter the safety area around
the obstacle.

The angular components (φout, θout) of the adjusted velocity

command are then computed by adding repulsive forces αi =
(φi, θi) induced by all other pixels.

For the repulsive force computation, we define the support

of a pixel as the area where its repulsive forces are non-zero.

Since the UAV should keep a safety distance dsafe to each

obstacle, the support of a pixel pobs = (φobs, θobs) can be

chosen as the projection of a 3D sphere with radius dsafe and

center TImage7→3D(pImage) into the range image. Depending on

the range value r, the resulting support radius is given by

dsupport = atan2(dsafe, r). The repulsive force induced by pobs

acting on a pixel p′ = (φ′, θ′) is then defined as

α =

{
dsupport−‖p′−pobs‖

‖p′−pobs‖
(p′ − pobs), if ‖p′ − pobs‖ ≤ dsupport

0, otherwise.
(4)

This definition of repulsive forces adjusts the UAV flight

direction such that it has a safety distance dsafe to the obstacle

once the UAV reaches the obstacle depth (see Fig. 5 a).

However, the direct line-of-sight to this position intersects

with the safety area around the obstacle. Since the UAV

cannot instantaneously change its flight direction—especially

at high velocities—the actual future trajectory would pass

the obstacle at an even smaller distance. To address this

issue, we propose not to use the pixel range value r, i.e.,

its Euclidean distance to the UAV, for the support radius

definition, but a different distance metric that incorporates

the UAV velocity. Thus, we define rvel := r − dcontact as the

predicted future range value after moving a distance dcontact

towards the obstacle. This virtually moves the obstacle closer

to the UAV, as depicted in Fig. 5 b. As a result, the change in

flight direction will be larger for higher velocities, and a safe

distance to the obstacle is maintained. The distance dcontact

is defined as the predicted movement towards the obstacle

pobs. Thus, it depends on the current (scalar) velocity v into

the obstacle direction, which is obtained using the vector



projection of the current velocity vector onto the direction

towards pobs. To increase the change in flight direction even

if the current velocity is zero, we ensure a lower threshold

dmin_contact. Thus, we define

dcontact := max{tcontactv, dmin_contact}. (5)

For lower computation times, we additionally discard

obstacles that are still far away. The support radius of a pixel

pobs with range r is thus defined as

dsupport =





0, if rvel ≥ dsafe

atan2(dsafe, rvel), if rvel > 0
π
2 , otherwise.

(6)

When obstacles spread over multiple pixels, the corre-

sponding repulsive forces accumulate and adjust the flight

direction stronger than necessary. This can even lead to

unstable flight trajectories with frequent large jumps in the

direction command. To avoid unbounded accumulation while

still allowing repulsive forces with different directions to

cancel each other out, we keep track of the minimum and

maximum forces θmin, θmax, φmin, φmax along each dimension

independently. The sum of repulsive forces is then clipped to

these values. Thus, using the repulsive forces αi = (φi, θi),
the angular components (φout, θout) of the adjusted velocity

command are computed as
(
φout

θout

)
=

(
φtarget

θtarget

)
+

(
min{max{

∑
i φi, φmin}, φmax}

min{max{
∑

i θi, θmin}, θmax}

)
.

(7)

To ensure that the UAV is only moving into a direction that

is covered by the LiDAR, θout is subsequently clipped to the

vertical field-of-view. Finally, the adjusted velocity command

is transformed back into Cartesian coordinates, scaled to the

target velocity magnitude.

2) Push Force: The angular potential field method

changes the commanded flight angle at most by 90◦. If the

UAV already is too close to an obstacle, adjustments of up to

180◦ are necessary to move the UAV away from the obstacle.

Thus, such situations have to be addressed separately. Note

that the angular potential field method was introduced to

allow dynamic flights. If the UAV is within the safety area

around obstacles, we do not allow high flight velocities

anymore. Instead, the UAV should be pushed slowly away

from the obstacle. Thus, we use a classical potential field

method in Cartesian coordinates for this situation.

Every time a new range images is available, we first check

it for obstacles closer to the UAV than dsafe. Each such

obstacle induces a repulsive force with a magnitude that

grows linearly with decreasing distance to the UAV. The total

push force Fpush is obtained as the sum of repulsive forces,

scaled to the desired movement velocity.

If the UAV is closer to an obstacle than a threshold

dclose < dsafe, the target command is completely discarded

and the adjusted velocity command equals the push force.

However, if the distance to the nearest obstacle exceeds

dsafe, the adjusted velocity command is generated by the

angular potential field method described above. To allow

a smooth transition between those two cases, we combine

both methods if the closest obstacle distance is between

dclose and dsafe. Thus, we add the push force Fpush to the

target command vtarget. To avoid speeding up the UAV if the

directions of Fpush and vtarget align, we additionally subtract

the part of the target command that steers the UAV into the

direction of the push force, i.e.,

v′target = vtarget + Fpush − cFpush, (8)

where c is the scalar projection of vtarget onto Fpush. The

resulting command v′target is then further adjusted by the

angular potential field method described above. To avoid

oscillations where the UAV is repeatedly commanded into the

safety area and pushed out again, we additionally limit the

acceleration, i.e., the difference between two subsequent ve-

locity commands, if the UAV approaches the distance dclose.

Afterwards, the velocity command is sent to the trajectory

prediction module to determine the velocity magnitude.

C. Trajectory Prediction and Velocity Generation

The angular potential field method only adjusts the angular

components of the flight command. In this section, we

describe how the velocity magnitude is chosen based on a

time-to-contact estimation.

We scale the adjusted velocity command vcmd,0 from the

potential field method to the initially commanded velocity

and predict the future UAV positions. Here, we assume that

the low-level controller tries to reach the commanded veloc-

ity as fast as possible by applying a maximum acceleration

amax. For a single axis with current velocity v0, the time taccel

needed to reach the velocity command vcmd is thus given by

taccel =
vcmd − v0

amax

. (9)

The position after a time step ∆t is

p′ = min{taccel,∆t}v0 +
1

2
min{taccel,∆t}2amax

+max{∆t− taccel, 0}vcmd.
(10)

Note that the initial position p0 = 0, since all calculations are

performed in the egocentric sensor frame. The corresponding

future velocity is given by

v′ = v0 +min{taccel,∆t}amax. (11)

Using a more complex motion model would also be pos-

sible. Obtaining an accurate model of the UAV dynamics

is challenging, however, and it has to be done for every

UAV independently. Instead, we use this simplified generic

model, which proved sufficiently accurate in our experiments

to allow safe, dynamic flights in the vicinity of obstacles.

We do not only consider the influence of the UAV dy-

namics on the trajectory, but also future velocity commands

generated by our potential field method. Thus, we choose

the prediction time step ∆t = 0.05 s corresponding to the

frequency with which new LiDAR scans are obtained. We

then transform the current history range image into the

predicted sensor frame as already described for the history



TABLE I: Results using random velocity commands for the indoor envi-
ronment (Fig. 6). We report the average flight velocity vavg, as well as the
minimal and average obstacle distances dmin and davg. As an indicator for
the proneness to local minima, we additionally report the average distances
to the commanded waypoints dtarget at which the UAV stopps.

Method
dtarget vavg dmin davg

[m] [m/s] [m] [m]

PF [13] - 2.38 0.00 1.62
TG [6] 27.05 1.70 1.21 2.30
Ours (rvel) 27.11 1.02 1.30 2.05
Ours (reuclidean) 30.80 1.27 1.20 2.40
Ours (rvel+pred.) 27.73 1.56 1.41 2.59

aggregation in Sec. III-A and apply the potential field method

from Sec. III-A to generate the next velocity command

vcmd,1. This process is iterated until we reach the prediction

horizon tcontact or until the closest obstacle distance is smaller

than dsafe. In the latter case, let t denote the time of the last

iteration. Since we want the time the UAV needs to reach

the safety area around obstacles to be at least tcontact, we

scale the velocity command accordingly. Thus, the velocity

command sent to the low-level flight controller is

vout =
t

tcontact

vcmd,0. (12)

If the initial UAV position already is within the safety area,

the time-to-contact based approach cannot be applied. In this

case, we execute the velocity command only if the future

obstacle distance increases in every prediction step.

IV. EVALUATION

We apply our obstacle avoidance approach to the UAV

described in [1]. It was specially designed for search and

rescue missions and is based on the DJI Matrice 210 v2

platform equipped with an Ouster OS-0 3D-LiDAR. The

experiments were done using the DJI Hardware-in-the-Loop

simulation and Gazebo [17]. The velocity commands gen-

erated by our method were executed using the onboard DJI

flight controller.

We evaluate our approach against the potential field

method (PF) from [13], where two influence spheres around

obstacles are used. In the larger one, i.e., the passive avoid-

ance sphere, repulsive forces slow down the UAV move-

ment into the obstacle direction, while the smaller active

avoidance sphere is used to push the UAV away from the

obstacle. Additionally, we compare against the trajectory

generation method (TG) from [6], which generates time-

optimal trajectories to sampled target points until a collision-

free trajectory is found. To evaluate our different design

decisions, we additionally apply two variants of our method

to all experiments. First, we use the Euclidean distance

reuclidean instead of the velocity-dependent future range value

rvel for the support definition of angular repulsive forces.

Second, we remove our trajectory prediction and estimate

the time-to-contact based on the vector projection of the

commanded velocity onto the obstacle directions.

For all experiments, we use the following parameters:

dsafe dclose amax tcontact dmin_contact

1.5m 1.0m 2m/s 1.5 s 2
.

TABLE II: Results for the path following experiment (cf. Fig. 7 and Fig. 8).
Success denotes whether the path was fully tracked X, the method got
stuck in a local minimum (X) or a collision occurred ×. Additionally, we
report the length of the flight path lpath (until the UAV stops, either due to
reaching the end of the target path, getting stuck in a local minima or due
to a collision), the average flight velocity vavg, as well as the minimal and
average obstacle distances dmin and davg.

vmax Method Suc.
lpath vavg dmin davg

[m/s] [m] [m/s] [m] [m]

1

PF [13] (X) 81.27 0.91 1.04 1.84
TG [6] (X) 102.00 0.87 1.24 1.76
Ours (rvel) (X) 125.17 0.77 1.37 1.79
Ours (reuclidean) X 125.36 0.91 1.37 1.72
Ours (rvel+pred.) X 124.89 0.95 1.38 1.91

2

PF [13] X 130.19 1.85 0.46 1.75
TG [6] (X) 104.13 1.71 1.31 1.79
Ours (rvel) (X) 126.37 0.92 1.37 1.77
Ours (reuclidean) X 128.51 1.97 1.40 2.12

Ours (rvel+pred.) X 127.88 1.89 1.39 2.01

3

PF [13] X 133.83 2.79 0.31 1.72
TG [6] (X) 106.89 2.21 1.20 1.80
Ours (rvel) (X) 125.02 0.84 1.37 1.75
Ours (reuclidean) X 133.82 2.14 1.35 1.83
Ours (rvel+pred.) X 134.48 2.77 1.39 2.43

4

PF [13] × 123.30 3.70 0.00 1.63
TG [6] (X) 3.67 1.29 1.29 1.81
Ours (rvel) (X) 126.07 0.87 1.37 1.76
Ours (reuclidean) X 134.04 2.50 1.34 1.93
Ours (rvel+pred.) X 140.00 3.48 1.39 2.55

5

PF [13] × 73.82 4.57 0.00 1.61
TG [6] (X) 50.44 1.60 1.36 1.74
Ours (rvel) (X) 126.12 0.88 1.37 1.77
Ours (reuclidean) (X) 56.91 2.08 1.45 1.75
Ours (rvel+pred.) X 142.33 3.84 1.33 2.45

6

PF [13] × 72.89 4.90 0.00 1.58
TG [6] (X) 135.06 2.59 1.38 1.79
Ours (rvel) (X) 103.93 0.85 1.37 1.75
Ours (reuclidean) (X) 57.44 1.97 1.44 1.88
Ours (rvel+pred.) X 144.75 4.29 1.39 2.42

Our method starts decelerating the UAV if the predicted

obstacle distance falls below the safety threshold dsafe within

the look-ahead tcontact. Thus, the radius of the passive avoid-

ance sphere for the potential field method [13] is chosen as

dpassive = dsafe+vmaxtcontact, where vmax denotes the maximum

allowed flight velocity. The size of the active avoidance

sphere corresponds to our safety threshold, i.e., dactive = dsafe.

Obstacle avoidance methods must ensure a safe distance

to obstacles independent of the—possibly adversarial—input

commands. In a first experiment, we thus investigate how

the different methods react to randomly chosen velocity

commands. For this, we designed the indoor warehouse

environment shown in Fig. 6. The UAV starts at the center

of the map with an altitude of 2m and is commanded to

move at a velocity of 3m/s into the direction of a randomly

sampled target position, which might even be outside the

warehouse. Every 10 s, a new target is sampled.

Tab. I summarizes the results for a flight time of 300 s
per method. The flight velocities were too high for the

potential field method [13] and it collided with an obstacle.

While all other methods successfully avoided collisions, our

method maintained the largest distance to obstacles. Using

the velocity-dependent range value rvel for the repulsive force

definition significantly increases the obstacle distance and the

trajectory prediction allows higher velocities.



Fig. 6: A simulated indoor environment for the random input experiment. The randomly chosen waypoints are marked by gray spheres. The initial UAV
position is at the map center, marked by the coordinate axes.
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TG [6]

Target Trajectory

Fig. 7: Top-down view of example trajectories for our method (red), the potential field method from [13] (blue) and the trajectory generation method [6]
(green). On each trajectory, spheres are sampled with a time difference of 1 s. The target trajectory (gray) shall be tracked at a velocity of 3m/s. Our
method shows the most far-sighted behavior and thus also maintains the largest distances to obstacles.
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Fig. 8: Top-down view of example trajectories for our method (bright red), our method without velocity-dependent support radius (dark red), and our
method without trajectory prediction (purple). On each trajectory, spheres are sampled with a time difference of 1 s. The target trajectory (gray) shall be
tracked at a velocity is 4m/s. Combining the velocity-dependent support radius with trajectory prediction results in a smooth trajectory at high velocities.

In a second experiment, we analyze at which velocities the

different obstacle avoidance methods can track a pre-planned

path that is too close to (initially unknown) obstacles. The

results are summarized in Tab. II and Fig. 7 depicts example

trajectories. Our method shows a more far-sighted behavior

than the Cartesian potential field method and the sampling-

based trajectory generation. Thus, our method can maintain

larger distances to the obstacles, even at high flight velocities.

Furthermore, it is less prone to local minima. Fig. 8 compares

trajectories from the different variants of our method. The

velocity-dependent support radius results in smoother tra-

jectories, while the trajectory prediction allows significantly

higher flight velocities.

One advantage of our proposed angular potential field-

based obstacle avoidance method is the possibility to adapt

the flight direction to nearby obstacles without affecting the

velocity. To further evaluate this aspect, we designed an

experiment where the UAV moves through a corridor with

changing height values for both, floor and ceiling. Thus,

the vertical flight angle has to be frequently adjusted to

keep a safe distance to obstacles. Tab. III shows that the

trajectory prediction is essential for our method to obtain
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PF [13]

TG [6]

Target Trajectory

Fig. 9: Side view of an excerpt of the environment with vertical obstacles. Shown are the trajectories of our method (red), the potential field method from
[13] (blue) and the trajectory generation method [6] (green). On each trajectory, spheres are sampled with a time difference of 1 s. The target trajectory
(from right to left) is depicted in gray. The maximal allowed velocity is 3m/s.

TABLE III: Results for the path following experiment with vertical obstacles
(cf. Fig. 9). We report the length of the flight path lpath, the average flight
velocity vavg, the flight duration tflight, as well as the minimal and average
obstacle distances dmin and davg.

Method
lpath vavg tflight dmin davg

[m] [m/s] [s] [m] [m]

PF [13] 128.13 2.85 44.96 1.03 1.68
TG [6] 130.63 2.61 50.05 1.57 1.97
Ours (rvel) 124.98 1.53 81.67 1.59 2.16
Ours (reuclidean) 129.20 3.00 43.07 1.47 1.94
Ours (rvel+pred.) 130.20 2.92 44.59 1.29 2.59

TABLE IV: Comparison of the computations times per control iteration.

Method
tmin tavg tmax

[ms] [ms] [ms]
PF [13] < 1 4 11

TG [6] 15 24 227
Ours 1 15 32

high flight velocities which are about twice the velocities

of our method without prediction. Interestingly, the classic

potential field method achieves similar velocities in this

experiment. This is due to the fact that it does not adjust

its trajectory to the obstacles much, as can be seen in Fig. 9.

Our angular potential field method, however, maximizes the

obstacle distance while still achieving fast flights.

Finally, we compare the computation times of each method

in Tab. IV. As expected, the classic potential field method

is the fastest one. The sampling-based trajectory generation

method shows a large runtime variance between different

control iterations. Especially in constraint environments, it

can be difficult to sample valid target points, resulting in high

maximal computation times. Our method reliably achieves

runtimes significantly below the sensor measurement fre-

quency of 20Hz.

V. CONCLUSION

In this work, we proposed a fast predictive obstacle

avoidance method that combines angular potential fields to

determine the flight direction with trajectory prediction and

time-to-contact estimation to scale the flight velocity mag-

nitude. Our method operates directly on 3D LiDAR range

images and does not depend on higher-level localization or

mapping. The conducted experiments show that the proposed

method reliably keeps a safe distance to obstacles, while

showing a more far-sighted behavior than previous obstacle

avoidance methods that directly operate on sensor data. Thus,

our method is suitable for high-velocity flights in cluttered

environments.
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