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Abstract— In this paper, we propose a novel Deep Reinforce-
ment Learning approach to address the mapless navigation
problem, in which the locomotion actions of a humanoid robot
are taken online based on the knowledge encoded in learned
models. Planning happens by generating open-loop trajectories
in a learned latent space that captures the dynamics of the
environment. Our planner considers visual (RGB images) and
non-visual observations (e.g., attitude estimations). This confers
the agent upon awareness not only of the scenario, but also of its
own state. In addition, we incorporate a termination likelihood
predictor model as an auxiliary loss function of the control
policy, which enables the agent to anticipate terminal states of
success and failure. In this manner, the sample efficiency of the
approach for episodic tasks is increased. Our model is evaluated
on the NimbRo-OP2X humanoid robot that navigates in scenes
avoiding collisions efficiently in simulation and with the real
hardware.

I. INTRODUCTION

Mobile robot navigation typically requires a robot to

traverse a series of static and dynamic obstacles in the

environment to reach desired target poses, e.g., by walking

with pedestrians on sidewalks. Traditional methods tackle

this problem by processing raw sensor information (e.g.,

RGB images or laser scans) in order to construct local maps

for path planners [1–3]. Traditional approaches, however,

lose expressivity with the increment of uncertainty and com-

plexity of the environments mainly because of computational

limitations associated with high-dimensional systems and

real-time constraints. In the last decade, the rapid advances

of learning methods have paved the path for an increasing

development of robot learning approaches, which are a

promising alternative to solve these issues by leveraging

data [4–8].

In this paper, we address the problem of mapless naviga-

tion, in which the robot needs to reach a known relative target

pose without constructing a map of the environment. The

target pose is assumed to be given by higher-level modules

(e.g., object detection, semantic segmentation or Wi-Fi signal

localization). Several Deep Reinforcement Learning (DRL)

approaches have been proposed to solve this problem based

on 3D data (e.g., laser scans) [9–11]. In our approach,

however, the environment is perceived by RGB-only images

which, in contrast to depth data, render a harder problem for

planning, since no direct measurements to object distances

are provided. Our learned path planner considers additionally

non-visual observations such as IMU measurements. In this

manner, the planner can act upon large instabilities of the

robot posture in order to avoid falls.
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Fig. 1. The NimbRo-OP2X robot navigates to reach the goal (ball) while
avoiding obstacles. The actions are inferred online by a control policy (at
10 Hz), given a segmented image (surrounded by black squares) and non-
visual sensor data. For clarity, only three segmented images are shown.

Our approach is able to plan collision-free paths without

local maps by learning a latent world model and by imagin-

ing possible future outcomes based on learned models. These

open-loop (imagined) trajectories address the problem of lack

of memory of Markov Decision Processes which are typi-

cally used to formulate Reinforcement Learning (RL) tasks.

Re-planning happens implicitly with each new inference step.

This allows our approach to handle uncertainty present in

scenarios with dynamic obstacles.

In order to handle episodic tasks, as the one discussed

here, we incorporate a predictor model that infers a ter-

mination likelihood and provides this information to the

control policy as an auxiliary loss. We explicitly differentiate

between successful and failed terminal states; the former

encourages the agent to finish the episode collecting a high

reward, while the latter contributes to the sample efficiency

and training time reduction by neglecting experiences col-

lected during failed terminal states, e.g., when the robot is

lying on the floor after falling.

We evaluate our approach on a real autonomous humanoid

robot (Fig. 1). To handle the sim-to-real transfer, segmented

images are employed for training the learned models, which

in conjunction with noise injection and system identification

allows to transfer the control policy to the real robot without

retraining.

In summary, the main contributions of this paper are:

• the formulation of a novel approach for mapless nav-

igation that considers visual (RGB images) and non-

visual observations to learn a control policy and an

environment dynamics model;
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• the introduction of a termination likelihood predictor

to handle multiple terminal states specially relevant for

episodic tasks;

• and the demonstration on a real humanoid robot of the

learned policy for mapless navigation.

II. RELATED WORK

Previous research on visual control problems, in which

an agent takes actions based on image observations, has led

to multiple analytical open-loop approaches [12–14]. To ad-

dress the typical shortcomings of analytical solutions, espe-

cially related to the curse of dimensionality, novel learning-

based methods have called the attention of the community

due to their generalization capabilities to uncertainty and due

to the inference time that enables their usage in real-world

tasks [15–17].

Particularly, RL approaches have gained increased popu-

larity in robotics, where policies are learned by interaction

with the environment. Popular model-free RL methods, such

as DQN [18], aim to construct a state-action value function

(Q-value) that quantifies the quality of state-action pairs to

maximize an accumulative reward in the long term [4–6].

Other model-free RL approaches, called policy gradient

methods, construct a policy by optimizing a cost function

directly, such as D4PG [7] and PPO [19]. Although these

RL methods have been successfully implemented in robotics

applications [11, 20] including visual control tasks [15, 21],

the training with raw images requires a large amount of

data—due to the absence of a learned dynamics model,

which could encode the state evolution effectively.

While model-free RL approaches are often straightfor-

ward to employ, model-based methods can be more sample-

efficient by exploiting a learned dynamics model. One of

the first attempts to learn a control policy in conjunction

with a dynamics model is Dyna-Q [22]. Recent approaches

such as [8], [23] and [24] are able to process raw image

observations directly by using self-supervised representation

techniques, i.e., autoencoders. Inspired by these works, in

this paper, we present a novel model-based RL approach for

mapless navigation.

Mapless navigation using RL have been previously ad-

dressed [9–11]. Khan et al. [11] proposed a two-stage

architecture consisting of local planners defined by value

iteration networks and differentiable memory networks that

provide past information. Zhelo et al. [9] do not define

any memory component but encourage curiosity-based ex-

ploration formulated in a secondary reward function, and

consequently the agent is able to navigate in long corridors

and dead corners. None of these approaches, however, are

able to handle dynamic obstacles and require depth data

as input. Moreover, these approaches were evaluated in

known scenarios only, thus their generalization capabilities

are questionable.

Few RL approaches for robot navigation based on RGB

images have been demonstrated in real robots [15, 21].

Xie et al. [15] propose a depth prediction network based

on monocular RGB images that infers a depth field and

a Q-value function for controlling a mobile robot. Lobos-

Tsunekawa et al. [21] investigate visual navigation on a

bipedal platform and learned a control policy by using

DDPG. None of these approaches, however, incorporate

latent dynamics models and terminal states for episodic tasks

are not explicitly handled.

III. BACKGROUND

As common in RL, we model the environment as a

Markov Decision Process (MDP) described by a tuple

(S,A, P,R, γ) of environment states S, action space A,

state transition probabilities P : S ×A× S → [0, 1], reward

function R : S ×A→ R, and discounted factor γ ∈ [0, 1].
The goal of the agent is to take actions at ∈ A that

maximize the expected reward. Often, the agent only has

access to partial observations ot ∈ O of the environ-

ment, which are provided according to state observation

probabilities Ω : S ×O → [0, 1]. This results in a Partially

Observable Markov Decision Process (POMDP) defined by

(S,A, P,R, γ,O,Ω).
In domains where the observations are defined as images,

policies are often expensive to train due to the high dimen-

sionality of the observation space O. Thus, representation

techniques such as autoencoders (E : O →W ) are frequently

incorporated to reduce the dimensionality of the image input

and to define a latent state W of the environment model [8,

23, 24]. The latent state dynamics D : W ×A→W can

be learned effectively to resemble the unknown true state

transition P of the environment. Both, the autoencoder and

the latent state dynamics can be combined to form a non-

linear Kalman Filter, in which the state prediction w̃ is given

by D, and the filtering is done by the encoder E [23].

Hafner et al. [24] recently proposed a model-based RL

approach that builds a latent space W and dynamics model

D which are ultimately employed in an open-loop fashion

to plan latent trajectories w̃t0 . . . w̃tN . For each of the latent

states wti , a state value is calculated by use of the Bellman

return:

vti =

tN
∑

t=ti

γ(t−ti)r̃t , (1)

given predicted rewards r̃t inferred by a predictor

R : W → R. Additionally, a value predictor model

V : W → R is incorporated to optimize the Bellman

consistency. The predicted rewards r̃t, values ṽt and actions

at are modeled stochastically. More precisely, the means

of Gaussian distributions are dictated by the prediction

models R,V, π. The standard deviations of the action

distributions are also inferred by the actor π, while a unit

standard deviation is chosen for the other predictors. In

contrast to the fully stochastic prediction models, the latent

state is constructed using the Recurrent State Space Model

(RSSM), which represents the latent space by a mixture of

deterministic and stochastic states [23, 25].

The autoencoder E as well as the prediction model R are

trained using the negative log likelihood of the true data

from an experience replay buffer. In addition, the latent state
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Fig. 2. Approach overview. Visual ot and non-visual zt observations are fused into a latent vector wt which is used by the policy π to infer actions
at. The dimensionality of the images is reduced by employing an autoencoder Eo. The dynamics model D predicts the next latent state w̃t+1 which is
later filtered by sensor data observed in t+ 1, namely by zt+1 and by Eo(ot+1). During training, a decoder is also learned which aims to reconstruct an
observed image ot from wt. Additionally, the state value V , the reward R, and the termination likelihood F predictors are learned, which are used in the
loss function of the policy π (Eq. (6)).

dynamics loss is based on the Kullback-Leibler divergence

between the open-loop 1-step prediction and the closed-

loop 1-step prediction. The loss is based on the Information

Bottleneck objective [26], defined as:

LE,R,D = −E
[

∑

t

ln E (ot|wt) + lnR (rt|wt)

− β KL [E (wt|D (w̃t|wt−1, at−1) , ot) ||D (w̃t|wt−1, at−1)]
]

.

(2)

In contrast to the E ,R and D networks, the value model V
and the actor π are not trained on the recorded episodes, but

on state trajectories that are generated through consecutive

inference of the learned latent state dynamics D in conjunc-

tion with the actor π on a single filtered state posterior. This

results in a tuple (wti , . . . , wti+H
) of unfiltered states that are

used to train the value and actor models over a horizon of

length H . The loss of the value prediction network minimizes

the regression error of the state value that is calculated via

reward predictions:

LV = −E

[

ti+H
∑

t=ti

‖V(wt)− vt‖
2

]

, (3)

while the loss of the actor π maximizes the value of the

generated state tuples:

Lπ = E

[

ti+H
∑

t=ti

vt

]

. (4)

IV. METHOD

Our approach aims to solve the mapless navigation prob-

lem. We fuse visual ot and non-visual observations zt into a

latent state wt. Actions at are taken by a learned policy π that

is trained by open-loop (imagined) latent trajectories inferred

by an environment dynamics model D. State value V , reward

R, and termination likelihood F predictors are also learned

during training. The latter is employed to increase the sample

efficiency of this episodic task. The high dimensionality

of images is reduced by the incorporation of a variational

autoencoder Eo. Fig. 2 shows an overview of our approach;

the algorithm is summarized in Algorithm. 1.

A. Observation Model

We enrich the observation space by considering both,

image inputs and non-visual sensory data. Consequently, we

propose two separate autoencoders, Eo and Ez , where Eo
represents the convolutional autoencoder for image inputs

and Ez processes non-visual sensor information. Since zt
is low dimensional, we forego the encoder part of Ez and

only utilize the decoder to predict the measurements from

the latent state. The autoencoders Eo and Ez are trained by

optimizing the negative log likelihood of the true observa-

tions under the observation models:

LEz,Eo
= −E

[

∑

t

ln Eo(ot|wt) + ln Ez(zt|wt)

]

. (5)

B. Termination Likelihood Predictor

A terminal state can represent either success or failure

in episodic tasks. Typical such tasks define a successful

terminal state that indicates the achievement of the task’s

goal. Moreover, early termination is an established strategy

for improving sample efficiency, so that an episode is ter-

minated when certain states are reached whose contribution

is considered negligible, e.g., states that represent a biped

robot lying on the floor in a navigation task. In this manner,

the sample acquisition time and the corresponding gradient

propagation are avoided for these terminal states that do not

contribute to reaching the task’s goal.



Algorithm 1 Training

1: Initialize E ,D,F ,V,R, π
2: E ← {}

3: e0 ← Collect initial episodes using a random agent

4: E ← E ∪ e0

5: while training do

6: Draw random subset Ê from E
7: Fit E ,D,R,F on Ê (similar to Eq. (2))

8: Ê+ ← Extrapolate each state in Ê using π and D
9: r̃+ ← Predict rewards in Ê+ using R

10: v+ ← Calculate returns from r̃+ (see Eq. (1))

11: ṽ+ ← Predict value using V

12: Fit V on v+ (see loss in Eq. (3))

13: Maximize π w.t. ṽ+ (see loss in Eq. (6))

14: e← Generate episodes from policy

15: E ← E ∪ e
16: end while

Having multiple terminal states fi poses a challenge to the

design of the reward function, as it is no longer possible to

reward or to penalize termination per se. Due to the different

nature of each terminal state, success and failure need to

be addressed separately. In episodic tasks, one issue with

successful termination emerges when the agent prefers to

collect rewards instead of terminating because it continues

accumulating reward. While termination rewards at the end

of an episode promise a fast and straightforward solution to

this issue, their inherent discontinuity makes them hard to

predict. Thus, we introduce a termination likelihood model,

which predicts a continuous indicator fi,t for reaching a

terminal state. In contrast to R,V and π, the termination

likelihood is modeled as beta distributed. The inferred termi-

nation likelihood is weighed and passed as a smooth learning

signal to the actor model, enabling the agent to anticipate

success and failure states. The actor loss is reformulated as:

Lπ = −E

[

∑

t

(

vt +
∑

i

λiF(fi,t|wt)

)]

. (6)

While the Dreamer [24] also computes an approximation

of the termination probability, it is aimed to weigh down the

return, as the agent cannot collect rewards after termination.

However, this reward weighing reduces the effect of constant

termination rewards when reaching the goal. In contrast, we

let the termination likelihood influence the actor loss di-

rectly, without influencing the per-step-reward. Furthermore,

we consider the semantically different failure and success

termination states separately.

C. Task Definition

The goal of the agent is to reach a desired 2D pose

on a flat ground plane without collisions with obstacles

in the environment. The agent perceives the environment

through RGB images and additional non-visual sensors. The

images are taken from an ego perspective of a walking

humanoid robot and, hence, contain much walking-induced

motion. Similar to [21], they are passed through a seman-

tic segmentation module that classifies obstacles pixelwise.

Unnecessary textural information and background pixels are

therefore removed. This image segmentation facilitates the

image prediction and the real-world transfer. The resulting

segmented image (resolution 64× 64 in our experiments)

defines the visual observations ot of our approach.

In addition, the non-visual observation is defined as

zt = [Vt, ht, dt, θt,Rt]
T , where Vt is the current gait ve-

locity, ht is the yaw joint position of the head, [dt, θt]
T is

the relative target position expressed in polar coordinates,

and Rt contains the pitch and roll rotation of the robot base

link. Note that in real world applications, the relative target

position is often determined by high level-task planners or

perception modules.

In each time step, the agent selects an action at =
[∆Vt,∆ht]

T , where ∆Vt is an increment of the gait

velocity, i.e., Vt+1 = Vt +∆Vt, and ∆ht represents an

increment of the yaw head position. Note that the incremental

action representation is introduced to guide the agent learning

process, especially at the beginning of training where explo-

ration of the action space might lead to oscillating motions

that saturate the low-level joint controllers. The velocity

vector Vt = [vx, vy, ωz]
T consists of the translational x-

and y-velocities, as well as a rotational velocity around the

z-axis of the robot. Overall, a 4D action space is defined.

D. Terminal States

We propose two different termination criteria. The robot

arrives into a successful terminal state when the distance dt
to the target is below a certain threshold, whereas the failure

terminal state is reached when the sum of the absolute roll

and pitch rotations |R0,t| + |R1,t| of the robot surpasses

limit values that indicate an imminent robot fall. Both error

values, i.e., the distance and orientation errors, are passed

through an exponential decay to yield a continuous signal fi,t
that indicates termination whenever fi,t = 1. Note that the

causality fi,t = 1 =⇒ ∀∆t > 0 : fi,t+∆t = 1 holds, which

can be incorporated into the latent world model.

E. Reward Function

We define the task reward at time t, rt =
∑N

i=0 ηiri,t as

the weighted sum of N sub-reward terms. For brevity, the

dependence of time will be dropped in the equations.

The main sub-rewards encourage the agent to reach the

target pose and are formulated as:

rd = 1−
d

d0
∈ (−∞, 1], (7)

rθ = −

∣

∣

∣

∣

θ

π

∣

∣

∣

∣

∈ [−1, 0] , (8)

where d is the distance to the target position, d0 is the

distance from the initial pose to the target, and θ ∈ (−π, π]
is the relative orientation of the robot to the target position,

for example, θ = 0 means the robot is directly facing the



target position. The former sub-reward encourages the agent

to walk towards the target by reducing the distance d, while

the latter penalizes the robot when it is not facing the target.

In addition, we define a sub-reward based on the location

of the target inside the robot’s camera image. This target

attention reward is generated by the multiplication of an

importance map L ∈ [0, 1]64×64 with a binary segmented

image I ∈ {0, 1}64×64 showing only the target:

ra =

∑

i,j Li,jIi,j
∑

i,j Ii,j
∈ [0, 1] . (9)

We set ra = 0 if the target is not visible in the image, i.e.,
∑

i,j Ii,j = 0. To ensure that the agent prefers to keep the

target in the center of the observed egocentric images, we

set Li,j = 1 for pixels at the center while we quadratically

discount the values towards Li,j = 0 at the borders of the

image. Consequently, the agent will try to keep the target in

the center of its field of view mainly by controlling the head

yaw joint, whose motion relates directly with the relative

movement of the target in the observed images. Note that

this target relative position is also affected by the gait.

In order to avoid oscillating motions of the head, we

penalize the normalized head position h and the normalized

head control action ∆h quadratically:

rh = −(∆h)2 ∈ [−1, 0], (10)

rH = −(h)2 ∈ [−1, 0] . (11)

In addition, we encourage the agent to maintain a safe

distance to obstacles by penalizing its distance towards the

closest obstacle ρ:

rρ = clip (−(1− ρ),−1, 0) ∈ [−1, 0] . (12)

Finally, we penalize the current gait velocity using a

sigmoid kernel k(x) = 1/[1 + exp(−αx − c)] to limit

the maximum gait velocity of the agent due to difference

between the simulated and the real gait. This penalization is

formulated as:

rv = 1− k(||V||2) . (13)

V. EVALUATION

We evaluate our approach on the NimbRo-OP2X hu-

manoid robot [27]. All training is done using experience

collected only in simulation employing MuJoCo as multi-

body simulator. Eight environments are executed in parallel

to speed up the data acquisition. The policy frequency is

10 Hz, while the simulation runs at 1 kHz. The robot incor-

porates a bipedal gait engine, which generates leg motions

based on a target gait velocity Vt [27, 28]. The gait runs

at 100 Hz. For collision checking operations, the robot links

are approximated by geometrical primitives.

Each episode starts with the humanoid robot standing

without any obstacle in its direct vicinity. The target position,

the number of obstacles, their poses and geometries are

drawn uniformly at random. To encourage the development

of robot skills to circumvent obstacles, each episode places

an obstacle between the initial position of the robot and the

target pose with probability pblock = 0.5. The feasibility

of reaching the target is checked by an A* planner; if no

path is found, a new environment is generated. The agent

has a maximum time of 60 s to complete the task before the

episode ends.

In simulation, the renderer provides the segmented image

(64 × 64), while a threshold in the HSV space is used

for the real world experiments. For applications with non-

distinctive object colors, segmentation approaches, such as

[29], could be applied. The inferred actions are bounded

to ∆V ∈ [−0.06, 0.06]3 and ∆h ∈ [−0.012, 0.012]. The

weights of the reward functions are: ηd = 1.0, ηθ = 0.2,

ηa = 0.2, ηh = 0.08, ηH = 0.08, ηρ = 0.2, and ηv = 0.35,

and the weights of the terminal states are: λs = −1150 and

λf = 3250. The models are trained every 4,000 recorded

steps. Other hyperparameters match the Dreamer model [24].

The policy is trained for 2 million simulation steps, resulting

in a total training time of around 2 days on a computer

with an Intel i9-9990K CPU, 64GB of RAM and an nVidia

GeForce 2080 Ti with 12GB of VRAM. This model is able

to solve simple scenes after 200.000 steps, i.e., less than five

hours of training.

After training, the control policy is able to command

the robot to reach target poses avoiding obstacles. Figure 3

shows sample scenarios where the robot navigates collision-

free with our learned control policy. The robot circumvents

obstacles and goes through narrow passages without falling.

All the environments are presented to the robot for the first

time. A model-free DDPG [30] agent trained for the same

amount of steps was not able to solve the environment.

We compare our approach against two ablated versions

of our method. The first ablation (Mf) does not include the

termination likelihood predictor and the second one (Mnv)

does not consider non-visual observations. The return and

success rate are presented in Fig. 4. Note that although the

Mnv model accumulates more reward compared to our model,

it is not able to reach the target indicated by its low success

Fig. 3. The learned policy successfully navigates in different scenarios
where a direct path to the goal pose is blocked by obstacles. Observe that
the agent is able to circumvent small and large single obstacles. Finer control
is evidenced in scenarios where the robot is required to go through a passage
of obstacles (bottom right)
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Fig. 4. Performance over the number of collected episodes. We compare
our approach against two ablations by removing the non-visual observations
and the termination likelihood predictor. The mean and standard deviation
are calculated over the last 250 collected test episodes.

TABLE I. Success rate, accumulated reward and episode length of our

model and ablations over 100 samples.

w/o non-visual w/o Pterm fi Ours

Success rate 0.0 0.7 0.86
Acc. reward 108.50 104.37 111.59
Ep. length 585.36 401.15 419.77

rate. The larger reward is attributed to longer sequences that

do not reach the goal (e.g. the robot might stand in front

of the target). The main contribution in the performance

increment is clearly attributed to the introduction of non-

visual information, because the agent is not forced to obtain

information from the images but it is given directly. Thus,

the incorporation of non-visual information improves the

data-efficiency of the overall approach. However, in complex

scenarios where the robot has to back up, the agent often only

reaches local minima.

We evaluate the performance of each of the learned models

compared above. We generate a set of 100 random scenes

sampled as during training. The results are presented in

Table I. After 2 million steps, the Mnv model is not able

to successfully complete the task. The accumulated reward

and the long episodes indicate that the agent does not fall

but does not find the target in the given time per episode

(60 s). The higher success rate and reward of our approach

compared against the model without termination predictor

F demonstrates the improvement in the sample efficiency

by incorporating a predictor for fi.
Since the performance of the agent depends on the ability

of the model to reproduce the actual observations and reward

values from the latent state, we evaluate the quality of their

reconstruction. Figure 5 shows the reconstructed non-visual

observations and reward for a random sequence. For clarity in

the figure, only one sequence is shown, but other sequences

present a similar behavior. Note how well the model tracks

the ground truth signals, which is to be expected once the

models have converged. The accuracy of the reconstruction

is an indicator of the quality of the inferred open-loop

trajectories used for training the value and actor networks.

A. Real-World Transfer

The simulated robot is equipped with the same sensors as

the real robot. This allows, in conjunction with the semantic

segmentation, a real-world transfer with low additional effort
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Fig. 5. Reconstructed non-visual observations and reward signal for a
sampled sequence inferred by our models. The better the reconstruction,
the more realistic are the imagined trajectories used for training.

and no retraining. Due to sim-to-real dissimilarities in the

robot model, joint controllers and contact properties, the

simulated gait does not behave as the one on the real robot.

To facilitate the sim-to-real transfer, we inject Gaussian

noise, N (0, 0.3), on the inferred actions during training. In

addition, the gaits are tuned by introducing scaling factors

to the inferred actions in order to obtain a similar response

in simulation and with the real hardware. Figure 6 shows

a real and a simulated robot performing the same scenario

consisting of traversing a narrow passage. The row in the

middle presents the segmented images captured with the real

robot, whereas the bottom row shows the task performed

in simulation. This is a challenging scenario that requires

precise actions from the agent to avoid collisions. The

temporal differences between the real and the simulated

trajectories are attributed mainly to contact parameters such

as frictions.

Finally, the control policy is tested with dynamic obstacles

0 s 7 s 13 s 17 s 20 s 34 s

32 s24 s17 s12 s7 s0 s

Fig. 6. The top row shows the real robot navigating a scene by taking a
right turn, followed by rotating left to walk through a tight corridor between
the obstacles. At the end, the robot walks into the target (soccer ball)
by stepping laterally. The corresponding segmented image observations of
the real experiment are shown in the middle row. At the bottom rows, a
simulated scene is presented, where the agent chooses a similar path as the
real-world one.
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Fig. 7. The real NimbRo-OP2X robot avoids a moving obstacle that is
constantly blocking the path to the target pose (top row). The segmented
images taken from a first-person view are shown in the bottom row.

with the real robot. Figure 7 shows snapshots of the robot

avoiding a moving obstacle which is blocking the direct path

to the target pose. Note that the policy has not been trained

on dynamic obstacles, and it has not seen such object shapes.

VI. CONCLUSION

In this paper, we have proposed a novel approach for

learning mapless navigation around obstacles based on visual

and non-visual observations. We have demonstrated that the

incorporation of a termination likelihood predictor increases

the data-efficiency of the approach. In addition, we have

shown that our model produces a robust policy that can be

successfully transferred to a real humanoid robot.

In the future, we would like to extend our approach

to incorporate hierarchies. Multiple consistent policies are

envisioned to solve more complex tasks that require long-

term planning. Additionally, learning local and global maps

seems to be a promising alternative to provide the agent with

more sophisticated navigation skills, such as remembering

dead ends. More dynamic scenarios where multiple objects

move simultaneously require the agent to track and estimate

the velocities of the moving bodies, which also states an

interesting problem to enrich our approach.
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