
Directional TSDF: Modeling Surface Orientation for Coherent Meshes

Malte Splietker and Sven Behnke

Abstract— Real-time 3D reconstruction from RGB-D sensor
data plays an important role in many robotic applications, such
as object modeling and mapping. The popular method of fusing
depth information into a truncated signed distance function
(TSDF) and applying the marching cubes algorithm for mesh
extraction has severe issues with thin structures: not only does
it lead to loss of accuracy, but it can generate completely wrong
surfaces. To address this, we propose the directional TSDF—
a novel representation that stores opposite surfaces separate
from each other. The marching cubes algorithm is modified
accordingly to retrieve a coherent mesh representation. We
further increase the accuracy by using surface gradient-based
ray casting for fusing new measurements. We show that
our method outperforms state-of-the-art TSDF reconstruction
algorithms in mesh accuracy.

I. INTRODUCTION

3D models are a useful way to describe objects or whole
environments, which can be used in a variety of robotic
applications like scene understanding, manipulation, and
navigation. Since the publication of KinectFusion [1] in
2011, TSDF fusion has turned into a de facto standard for
fast registration and reconstruction using low-cost RGB-D
sensors. TSDF fusion divides the modeled volume into a
discretized grid of voxels and fuses distance information
into it. Even though alternative approaches based on surfel
predictions [2], [3] or direct meshing [4], [5] have emerged,
TDSF fusion still remains the most popular choice.

Since the publication of KinectFusion, much work has
been done to improve reconstruction speed and quality.
There are, however, some fundamental limitations within the
method itself. Firstly, it cannot represent anything thinner
than the voxel size. While loss of fine details would be
acceptable, the extracted surfaces can become completely
wrong as illustrated in Fig. 1. Secondly, the state-of-the-
art method of iteratively integrating new measurements is
erroneous for steep observation angles and different obser-
vation directions as it overwrites and, in this way, destroys
the representation.

A common way to mitigate these issues is to decrease the
voxel size, which increases details and makes the problem
less noticeable. However, for embedded hardware or large-
scale mapping tasks a coarser voxel resolution might be
required due to computation and memory restrictions. More-
over, the effect is not only affected by the voxel resolution,
but also by the often depth-dependent truncation distance
which is required to deal with measurement noise and usually
spans multiple voxels. The problem lies in the representation

This research has been supported by MBZIRC 2017 price money.
All authors are with the Autonomous Intelligent Systems Group, Univer-

sity of Bonn, Germany. splietke@ais.uni-bonn.de

Ground TruthDirectional TSDF MeshHashing

X+ X−

Y + Y −

Fig. 1: Directional TSDF (proposed) solves the problems
of reconstructing thin objects, which state-of-the-art TSDF
fusion methods have issues with (here MeshHashing [6]).
The bottom row shows the TSDFs (left: directional, right:
undirected) in cross section, where the blue rectangle indi-
cates the ground truth. The green and red colors denote areas
that are in front or behind the surface, respectively. Color
gradients indicate the signed distances to the object and the
surface is extracted at the transition between the colors.

itself, as the TSDF implicitly encodes surfaces as zero
crossings and the density of these transitions is bounded
by the voxel resolution and the truncation distance. The
direction from which surfaces have been observed is only
encoded indirectly by the gradient normal. This is especially
problematic during fusion, because information from differ-
ent directions (at corners or on opposite sides of a wall) might
be contradictory within the truncation range. This leaves
the TSDF in an inconsistent state with false information.
Furthermore, the state-of-the-art method for data integration,
voxel projection, where each voxel is projected into the
camera image and associated with the nearest pixel, has
disadvantages. It causes serious aliasing, incorrectly handles
steep surfaces and neglects large amounts of input data,
especially for larger voxel sizes. To address these issues, we
introduce the directional TSDF—a novel data structure that
encodes the surface orientations by dividing the modeled vol-
ume into six directions according to the positive and negative
coordinate axes. This representation can handle observations
of thin structures from different, opposing directions, without
introducing aliasing. Data integration is done in a ray-casting
fashion along the surface normals for every input point. The
advantages are that all data is utilized and that the resulting
representation is more accurate with respect to steep angle

behnke
Schreibmaschine
International Conference on Intelligent Robots and Systems (IROS), Macau, China, November 2019.



(a) MeshHashing [6] (b) Ground truth (c) Proposed

Fig. 2: Qualitative reconstruction comparison on the Dragon model from the Stanford 3D scanning repository [7]. Voxel
size in both cases is 10 mm.

observations. To extract surfaces from the directional TSDF,
a modified marching cubes algorithm is proposed, which can
also model opposite faces while remaining computationally
inexpensive.

In summary, the contributions of this paper are a novel
representation which is better suited for mapping scenes from
different viewing directions. We also present an improved
data integration scheme which considers the actual surface
gradient for determining the correct voxels for fusion. Fi-
nally, a mesh extraction method for this new representation
is proposed. We thoroughly evaluate our methods on standard
data sets.

II. RELATED WORK

Surface reconstruction from range data has been an active
research topic for a long time. It gained in popularity through
the availability of affordable depth cameras and parallel com-
puting hardware. Zollhöfer et al. [8] give a comprehensive
overview on modern 3D reconstruction from RGB-D data.
The two main streams or research are TSDF fusion [1], [6]
and surfel extraction [2], [3]. TSDF-based methods make up
the majority, due to their simplicity and mesh output. Surfels,
however, maintain the surface and observation direction in
form of a normal per surfel. Thus they can distinguish ob-
servations from different sides. Another interesting approach
is presented by Schöps et al. [9], who triangulate surfels to
create a mesh representation.

An important step in data keeping was the switch from
statically allocated voxel arrays to hash tables, allocating
only required areas as proposed by Niesner et al. [10]. This
enables scanning of large areas with limited memory and is
considered state-of-the-art [6], [11], [12]. We base our work
on Dong et al. [6], who further improve the data structure
by tightly coupling voxel and meshing data. Signed distance
data is stored on the corners of mesh cubes, which makes

interpolation superfluous. Also the allocation, storage and ac-
cess of vertex information is coupled to the structure, which
decreases memory consumption and computation time.

As stated earlier, a major drawback of the TSDF rep-
resentation is the voxel resolution, because the maximum
object resolution is proportional to the voxel size. While
decreasing the voxel size is one option, it is also wasteful
in many areas with little detail. Steinbrücker et al. [13]
address this by dynamically adjusting the voxel resolution
at the cost of additional octree nesting depth and a very
complex surface extraction algorithm. This does, however,
not solve the problem completely as depth-dependent noise
needs to be considered in choosing the truncation range.
The undirected TSDF of Fig. 1 shows, how the truncation
range from the opposite direction pushes the zero crossing
away from the ground truth. Henry et al. [14] dynamically
create new TSDF volumes whenever the angle of the surface
changes too much. This is similar to our approach, but
relies on managing a huge number of separate volumes.
Also the volume separation decision relies on larger surfaces;
therefore it does not deal with small details. Moreover, their
approach lacks a mesh extraction method and renderings are
created by ray casting.

The de facto standard method for integrating measure-
ments, voxel projection [1], [6], [13], [14], suffers from
aliasing effects especially for large voxel sizes and steep
observation angles [11]. Curless et al. [15] perform voxel
projection onto an intermediate mesh generated from the
input, thereby using the interpolated values of multiple
input points to update a voxel. Many approaches have tried
to overcome the issues of voxel projection TSDF fusion.
Commonly data integration is weighted according to the
quality of measurements. Stotko and Golla [16] evaluated
different weighting options for fusion. This helps to com-
pensate distance- and angle-dependent noise. To reduce the



effects of integrating false information from surfaces with
high observation angles, the point-to-plane distance metric
can be applied [17]. As an alternative to voxel projection,
ray casting [11] shoots a ray from the camera through every
observed point and all voxels within the truncation range
are updated. A sped up version using grouped ray casting
was presented by Oleynikova et al. [12]. While for larger
voxels the computational overhead is higher, the advantage
is that there are no aliasing effects and that all information is
utilized. Fossel et al. [18] address the issue that—especially
for wide-angle sensors like LIDARs—the line-of-sight ray
casting direction does not always comply with the surface
direction. They estimate the surface gradient and choose the
truncation range along the normal in a 2D SLAM system.

In contrast to the related works, we are proposing an
improved representation based on the TSDF that utilizes the
idea from Henry [14] to represent surfaces with different
orientations separate from each other. The implementation
is based on the work of Dong et al. [6], which also serves
as a baseline for state-of-the-art methods using voxel projec-
tion and the marching cubes algorithm. Also we apply the
gradient-based ray casting concept from Fossel et al. [18].
The key features of our method are:
• the directional TSDF representation that divides the

modeled volume into six directions, thereby separately
representing surfaces with different orientations,

• a gradient-based ray casting fusion for improved results,
• a thread-safe parallelization of ray casting fusion, and
• a modified marching cubes algorithm for mesh extrac-

tion from this representation.

III. DIRECTIONAL TSDF

A Signed Distance Function (SDF) denotes a function that
for every 3D point yields the shortest distance to any surface.
The sign denotes, whether the point is in front or behind the
surface (inside an object). Let Ω ⊂ R3 be a subset of space,
e.g. a number of objects. In surface reconstruction, the points
of interest lie on the boundary ∂Ω. For a distance function d
and any point p ∈ R3, the SDF Φ defines the signed distance
to the surface:

Φ : R3 −→ R, Φ(p) =

{
−d(p, ∂Ω) if p ∈ Ω,
d(p, ∂Ω) if p ∈ Ωc.

(1)

That is, points that lie inside of the object have a negative
value and the surface lies exactly at the zero crossing
between positive and negative values. Consequently, most re-
gions of the SDF are superfluous for determining the surface.
The Truncated Signed Distance Function (TSDF) cuts of all
values above a truncation threshold τ , so everything outside
the truncation range can be omitted. Typically TSDFs are
estimated by a discretized grid of voxels and interpolation
between the grid points. The truncation range is required
to cope with aliasing effects and sensor noise and typically
spans multiple voxels. While the method has proven to work
in many scenarios, it has limitations, especially regarding
thin objects, because the voxel resolution and truncation
distance dictate the minimum thickness of objects. This effect

occurs when observing small structures from opposite sides,
as shown on the right hand side of Fig. 1 where the object
“blows up” as the truncation range pushes the contour further
out. The cross section of the TSDF shows how far the
estimated contour (transition between red and green) is away
from the ground truth (blue rectangle).

The problem obviously lies in the representation itself,
since a zero transition cannot be represented by fewer than
two voxels (one with for each positive and negative value).
We propose a new representation, called Directional TSDF
(DTSDF), which stores the signed distance information in
different volumes according to the surface gradient

Φd : R3 −→ R6, Φd(p) = (ΦD(p))D∈Directions. (2)

The Directions = {X+, X−, Y +, Y −, Z+, Z−} are de-
fined by the positive and negative coordinate axes v =
{(1, 0, 0)ᵀ, (−1, 0, 0)ᵀ, · · · }. This way, each voxel can en-
code up to six surfaces, which is beneficial for modeling
orthogonal or opposite surfaces and arbitrarily thin objects.
Each direction spans a sector of applicable surface normals
to determine which information belongs where. While the
number of sectors can be arbitrarily high, six is an obvious
choice due to the cuboid voxel shape. Fewer sectors are prob-
lematic, as the covered angle increases, though in principle
four sectors spanning a tetrahedron would be sufficient.

Given a measurement point’s surface normal n and a
direction vector vD, the direction-correspondence weight is
defined as

wD(n) = 〈n,vD〉 . (3)

A measurement is integrated into all directions, whose weight
is above a threshold of sin(π/8). This allows for a smooth
transition between the sectors, which is important for the
creation of coherent meshes. Note, that each measurement
point is integrated into at most three directions.

A. Data Structure

Given the directional correspondence computation, it is
easy to spot that not all voxels need to store information
for all directions. In order to save memory, the classical
voxel hashing data structure [6], [10] is extended to hold
varying numbers of voxel arrays, each of which represents a
certain direction. Fig. 3 shows the connections: The block
coordinates from the world are hashed. Then a conflict-
resolving hash table maps to a dynamically allocated block.
For every block the up to six voxel arrays are allocated as
needed. For clearer visualization, the modeled volumes in all
example images are depicted in 2D, but all arguments easily
extend to 3D.

B. Gradient-Directed Ray Casting Fusion

Another novelty of our work is the surface gradient based
ray casting fusion which, to our knowledge, has not been
applied in 3D TSDF fusion before. The default method for
fusing new measurements into the TSDF is voxel projection
(VP), where voxels in view range and inside the camera
frustum are projected onto the camera plane and are then



World HashTable Block VoxelArrays

MeshUnits

...

Fig. 3: Data structure for dynamically allocating blocks and
per-direction voxel arrays.

associated with a single pixel in the depth image. Fig. 4a
depicts an example of the drawbacks pointed out before,
where the projected SDF point (black) is far away from the
projected measurement (red dot), thus gets a high SDF value,
even though it is very close to a surface. Handling misassoci-
ations like those can be partially mended by using the point-
to-plane metric for updating the SDF value [17]. Fig. 4b
shows ray casting fusion, where the algorithm casts a ray
through every depth pixel and all intersected voxels within
truncation range around the surface point are updated [11],
[12]. While improving the association problem and better
utilizing the available data, steep observation angles remain
problematic [18]. Our experiments have shown that this
method, especially using the standard TSDF, worsens corners
when rays shoot through them from different directions.
Instead we extend the idea from Fossel et al. [18] to our
method and use the surface normals as shown in Fig. 4c.
Starting from the projected surface point, a ray is cast along
the normal (in both directions) and all intersecting voxels in
truncation range are updated. To circumvent expensive voxel-
ray intersection computations, the algorithm applies voxel
traversal as proposed in [19].

SDF

(a) Voxel projection (b) Ray casting (c) RC with normal

Fig. 4: Fusion mode comparison. A measured surface point
(blue dot) of the ground truth surface (black curve) is used
to update voxels (yellow squares) along the fusion ray (red).

As the SDF corners of traversed voxels stray left and right
from the ray, we furthermore apply the point-to-plane metric
to increase the accuracy of the SDF. For a given surface point
p and corresponding normal np the distance function is

dp2pl(x) = (p− x)ᵀnp. (4)

The normals are computed using simple neighborhood esti-
mation on the depth image. Due to noise and discretization
in the depth image the estimated normals can be inaccurate,
so a bilateral filter is applied. The depth image remains
unfiltered to preserve reconstruction detail. While voxel

projection updates every voxel exactly once, ray casting
requires multiple updates per iteration. Details on the thread-
safe fusion implementation are explained in Sec. V.

For the SDF update a combined weighting scheme is
applied. The noise of RGB-D cameras depends on the
measured distance, which is accounted for in wdepth. A high
surface to view direction angle also increases inaccuracy,
so it is down-weighted by wangle. The factor wD, defined
above, works the same way as wangle, but down-weights
measurements that do not comply with the current fusion
direction D. The combined weight is

w = wdepth · wangle · wD. (5)

Stotko [16] gives a detailed overview on weighting factors.

IV. DIRECTIONAL MARCHING CUBES

A straight-forward and efficient method for mesh extrac-
tion from the TSDF representation is the marching cubes
(MC) algorithm [20]. It can be easily parallelized. The
world is again divided into a regular grid of mesh units,
which in this implementation is identical to the voxel grid.
For every mesh unit, the SDF values at the corners are
checked and for all edges which contain a zero transition,
an appropriate set of triangles is generated. Since there are
only 256 configurations for positive and negative corners,
called MC index, a lookup table is used for efficiency.

For the directional TSDF, finding those zero transitions
becomes more complicated as it is not immediately clear how
to combine the information collected for different directions.
Also there can be opposite faces within the same mesh unit,
which the original algorithm cannot handle. Every edge must
now be able to hold up to one zero transition per direction.
Therefore, the data structure from [6] is extended as depicted
in Fig. 5. The data structure makes SDF interpolation super-
fluous as the relevant SDF values can be directly fetched.
Every mesh unit handles three edges, each of which can

ex

ey

ez

v1x

v1y

v1z
v2x

Vertex stored in this
voxel

Vertex stored in adja-
cent voxel

SDF value

Fig. 5: Every mesh unit is responsible for storing vertices
(red dots) on the thick edges ex, ey, ez . If triangles have
vertices on other edges, these are stored in adjacent voxels
(yellow dots).

have up to two vertices for opposite surfaces. Triangles may
have vertices on other edges, which are stored in adjacent
mesh units. The outline of directional marching cubes is
described in Algorithm 1. The steps are explained throughout
this section.



Algorithm 1 MC Index Combining

1: for every mesh unit do
2: for every direction D do
3: get MC index mcD, SDF weights wD

4: end for
5: Directional MC index filtering
6: Inter-directional filtering
7: Compute surface offsets for each edge
8: Determine combined MC indices (up to 2)
9: Allocate Vertices and Edges

10: end for

A. Filtering

It is necessary to filter the MC indices, as due to the
nature of the representation some degree of false information
occurs. Especially at the edge of the TSDF or at spots where
different geometry collides, deviation and overhangs appear.
Filtering is done in two stages, intra-directional and inter-
directional.

n

+ +

−−

surface normal
validity

X−

Direction

Fig. 6: Filtering an implausible MC index by surface normal.
The normal n exceeds the validity range (green semicircle)
for direction X−. The white and black corners of the mesh
unit indicate whether the value is in front of or behind the
surface, respectively.

Firstly, all surfaces that would contradict the respective
directions are discarded. This is performed using a pre-
computed lookup table and comparison in cases where the
orientation of the surface decides. Fig. 6 shows an example,
where the normal of the potential surface is outside the
valid range for direction X−, so it is discarded. In this
case the simple table lookup is insufficient, because there are
configurations with the same MC index, where the normal
is inside the valid range. The SDF gradient is utilized to
identify these outliers.

In the second step, the different directions are weighted
against each other in order to decide, whether a hypothesized
surface is correct. The blue mesh unit in Fig. 7 shows a
typical example, how the overhanging edge of direction Y +

is identified as a false positive by X+. To reduce false
cancellations, the decision is made using a voting scheme.
The credibility of a direction’s information is accounted for
by the SDF weight and surface gradient w.r.t. this direction.
For SDF weight wsdf

D , voxel center gradient ∇ΦD, direction
vector vD and vote aD,

a =
∑
D

wsdf
D 〈∇ΦD,vD〉 aD, aD ∈ {−1, 1} (6)

yields the consensus. If a is smaller than 0, the MC index is
set to 0 and no surface is extracted.

Y +

+ + + +

− − − −

X+

+

+

+

−

−

−

Inter
Directional
Filtering

Index
Combining

+ + +

+

+

− −

−

Fig. 7: MC index combining (orange) and inter-directional
filtering (blue) is applied to TSDFs of directions X+ and
Y − to retrieve the combined surface on the right side.

B. Surface Offset Estimation

From the remaining directions, the combined vertex posi-
tions are computed similar to what is described in [6]. For
every edge the MC indices of all directions are checked for
potential zero transitions. The offset is added to a weighted
average with the same combined weight used in Eq. (6).
Since there can be opposite surfaces sharing the same edge,
two offsets are stored per edge and the data structure is
updated accordingly (c.f. Fig. 5).

C. Combined MC Index

After filtering false positives there might still be a mesh
unit with multiple surface hypotheses from different direc-
tions. There are multiple ways for combining these, but
intersection has shown good results. The orange encircled
voxels in Fig. 7 are combined, such that a connection
between the surfaces of the two directions is established.
This combination is computationally cheap, as it can be
done entirely on level of MC indices. Algorithm 2 shows
how the index-wise intersection is performed. The MC index
is split into it’s up to four unconnected components. For
each of these components the compatibility to the already
combined indices is checked. The intersection of the indices
is equivalent to the binary and operation.

Before extracting the final mesh, regularization between
MC indices of neighboring voxels is performed for all
modified blocks. This helps to reduce slits and overhangs
induced by previous steps and close the surface. Fig. 8 shows
a mesh before and after the regularization. The procedure
works solely on the MC indices by minimizing irregularities
across voxel borders.

V. THREAD-SAFE RAY CASTING FUSION

The integration of new measurements into the TSDF is
done by a weighted cumulative moving average. Let Dt and
Wt be a voxel’s signed distance and weight values as time
t. dt and wt are signed distance and weight update factors



Algorithm 2 MC Index Combining

Input: MCIndex[6]
Output: combined[2]

1: combined = (0, 0)
2: for D = 0 to 5 do
3: for component in MCIndex[D] do
4: if compatible(component, combined[0]) then
5: combined[0] &= component
6: break
7: else if compatible(component, combined[1]) then
8: combined[1] &= component
9: end if

10: end for
11: end for
12: return combined

(a) before (b) after

Fig. 8: Voxel neighborhood MC index regularization.

which are to be integrated. Then the update is

Dt =
Wt−1Dt−1 + wtdt

Wt−1 + wt
=

∑t
i=1 widi∑t
i=1 wi

, (7)

Wt = Wt−1 + wt. (8)

In contrast to voxel-projection fusion, ray casting leads to
multiple SDF updates per voxel within the same iteration.
While being mathematically sound, it is problematic for a
parallel implementation, as Eq. (7) and Eq. (8) cannot be
performed atomically by most hardware. Eq. (7) implies,
that instead of applying an incremental update step for
every pixel affecting a voxel, the following equivalent and
thread-safe operation can be performed. Let Sd, Sw be per-
voxel summation values for signed distance and weight,
respectively. They are initialized with zero at the beginning
of each update iteration.

Sd

atomic
+ = widi, Sw

atomic
+ = wi (9)

In the second step all modified voxels are iterated and the
final update is computed as follows:

Dt =
Wt−1Dt−1 + Sd

Wt−1 + Sw
, Wt = Wt−1 + Sw. (10)

VI. EVALUATION

MeshHashing [6] serves as a baseline for recent TSDF
RGB-D reconstruction algorithms with voxel hashing and
marching cubes. Here, it is sometimes denoted as state-
of-the-art (SOTA). Our proposed method is referred to as
DTSDF. Registration is currently not implemented, so we
compare the reconstruction quality and computation time.

For comparability, the well-known datasets by Zhou et
al. [21] and the Stanford Computer Graphics Laboratory [7]
are used. The Zhou dataset already provides trajectory and
scans. For the Stanford dataset the 3D models are scaled,
such that the longest side equals one meter. The camera
performs an even circular motion with a two meter radius
around the object, acquiring 1000 depth images with ground
truth poses. The renderer uses the standard Kinect model
(f, cx, cy) = (525, 319.5, 239.5) with resolution 640 × 480
pixels. All experiments were run on a notebook with an Intel
i7-4710HQ CPU (2.50GHz) and a GTX960M.

The truncation distance is fixed to four times the voxel
size, as suggested by Oleynikova et al. [12]. Smaller factors
tend to create holes in some spots, especially for voxel
projection. No other parameters were changed.

Fig. 2 shows a qualitative comparison between SOTA,
DTSDF and the ground truth at 10 mm voxel size. While
at the given voxel resolution the amount of detail is limited,
our method maintains a better surface (tail) and preserves
geometry thinner than the voxel size (ridge, tail tip). The
SOTA tends to enlarge the overall object. To quantify these
findings we conducted a number of experiments at different
voxel resolutions and measured the RMSE against the ground
truth model. Tab. I and Tab. II show the findings for different
resolutions. Most notably, our method outperforms the SOTA
in almost all cases by a good margin. Note, that we chose
larger voxel sizes for the Zhou dataset due to the larger
overall size of the scenes.

TABLE I: RMSE (in mm) of state-of-the-art and proposed
method under different voxel sizes on the Stanford dataset.

Voxel Size [mm]
dataset mode 5 10 20 30 40 50
Arma-
dillo

SOTA 1.55 3.67 11.83 25.27 41.02 58.36
DTSDF 1.14 1.74 3.58 6.53 14.56 21.39

Asian
Dragon

SOTA 2.34 7.11 19.94 38.70 55.17 67.86
DTSDF 1.56 2.87 6.81 11.90 19.00 30.74

Bunny SOTA 1.90 3.82 9.01 17.70 27.97 37.98
DTSDF 0.98 1.23 2.18 4.17 8.59 18.37

Dragon SOTA 1.73 4.44 12.09 22.40 35.93 52.67
DTSDF 1.23 2.15 5.35 8.99 11.70 18.70

TABLE II: RMSE (in mm) of state-of-the-art and proposed
method under different voxel sizes on the Zhou dataset.

Voxel Size [mm]
dataset mode 25 50 75 100

Burghers SOTA 12.80 27.28 57.69 102.46
DTSDF 6.86 13.38 19.60 26.53

Cactus-
garden

SOTA 12.78 32.40 59.35 85.96
DTSDF 13.19 16.69 33.00 41.68

Lounge SOTA 14.96 33.91 57.85 85.52
DTSDF 12.41 25.11 41.95 51.86

Copyroom SOTA 23.17 26.25 30.66 39.82
DTSDF 14.08 27.89 36.62 45.90

Stonewall SOTA 7.23 13.84 26.22 39.71
DTSDF 6.89 11.47 18.85 31.20

Totempole SOTA 10.41 15.19 27.65 43.00
DTSDF 7.86 9.80 14.88 24.93

Fig. 9 shows a distance error heatmap visualization which
matches this observation. The models reconstructed by the
SOTA have hotspots, wherever there is thin geometry (ears,



SO
TA

D
T

SD
F

(a) Armadillo (b) Asian Dragon (c) Bunny (d) Dragon

0mm ≥ 10mm5mm

Fig. 9: Distance error heatmap comparison between state-of-the-art (top) and proposed (bottom) on the Stanford dataset.
Voxel size is 10 mm.

tail, and ridge). But other areas benefit from the DTSDF, as
well.

To examine the impact of the surface gradient ray casting
fusion we conducted another experiment. Tab. III shows the
RMSE at 10 mm voxel resolution for different algorithm
modes, which are encoded as follows: Def and Dir (TSDF or
DTSDF), voxel projection (VP), point-to-plane (P2PL), ray
casting (RC) and ray casting along normals (RCN). Using ray

TABLE III: RMSE (in mm) for different fusion modes, voxel
size = 10 mm.

model
mode Def

+VP

Def
+RC
+P2PL

Def
+RCN
+P2PL

Dir
+VP

Dir
+RC
+P2PL

Dir
+RCN
+P2PL

Armadillo 3.670 4.915 4.839 1.931 2.478 1.741
Asian Dragon 7.106 10.148 9.211 3.016 3.545 2.865
Bunny 3.816 2.792 2.958 1.625 1.674 1.229
Dragon 4.438 6.570 6.169 2.534 2.930 2.146

casting on the default TSDF in most cases actually worsens
the results, except for the bunny. This matches our earlier ob-
servation, because standard ray casting causes overshooting
at corners while ray casting along normals inflates the thin
parts to the maximum extent of the truncation distance. The
DTSDF outperforms the SOTA even using voxel projection,
but adding ray casting along normals further widens this
margin. Standard ray casting, however, leads to the same

problems. Only the bunny model benefits from it, because
of its round shape and lack of thin, sharp edges.

The runtime of the algorithm can be split into two main
components: data integration and meshing. Tab. IV shows
the total update time and proportion used for meshing on the
Asian Dragon dataset. As expected, the amount of time spent
on meshing increases with smaller voxel sizes. The data in-
tegration, however, remains fast even for higher resolutions:
Fig. 10 breaks down the integration step for SOTA and our
proposed method. Preprocessing and allocating blocks and
voxel arrays make up a significant constant factor. Fusion and
recycling times are affected by the number of blocks in the
view frustum. The ray casting has an additional (constant)
proportion determined by the number of depth pixels, but
also increases with the number of voxels due to the update
accumulation step (c.f. Sec. V).

TABLE IV: Mean total update time (in ms) and percentage
that is used for meshing for dataset Asian Dragon.

Voxel Size [mm]
mode 5 10 20 30 40 50

total
time

SOTA 112.4 30.9 10.7 7.5 6.4 5.2
Proposed 199.0 74.0 31.7 19.9 15.1 13.0

total
time

SOTA 96.8 90.3 73.5 61.5 48.0 45.5
Proposed 96.8 92.8 84.5 75.9 68.8 63.5

Dong et al. [6] provide an accurate memory analysis for



Fig. 10: Mean data integration time for dataset Asian Dragon
and different voxel resolutions. The left bars show the SOTA,
the right side corresponds to DTSDF.

their MeshHashing implementation. The memory require-
ments for our algorithm differ from the original algorithm
only by the number of voxel arrays allocated per block.
Fig. 11 shows the mean number of voxel arrays per block
for different voxel resolutions and models. With smaller
voxels the number of allocations decreases, as the number
of integrations from opposite directions decreases within
individual blocks. For the same reason the bunny, which is
round and thicker in volume, requires fewer voxel arrays.

Fig. 11: Mean number of voxel arrays per block for different
datasets and voxel resolutions.

VII. CONCLUSIONS

The proposed Directional TSDF representation and the
matching modified marching cubes algorithm overcome lim-
itations of the state-of-the-art method at the price of mem-
ory consumption and computation time. Less resolution is
required for dealing with corners and thin objects which
makes our method interesting for large-scale applications.
Its robustness against different observation angles makes
DTSDF also attractive for frame-to-model registration.

REFERENCES

[1] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon,
“KinectFusion: Real-time dense surface mapping and tracking,” in
Proceeding of the IEEE and ACM International Symposium on Mixed
and Augmented Reality (ISMAR), 2011, pp. 127–136.

[2] J. Stückler and S. Behnke, “Multi-resolution surfel maps for efficient
dense 3D modeling and tracking,” Journal of Visual Communication
and Image Representation, vol. 25, no. 1, pp. 137–147, 2014.

[3] T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J. Davison, and
S. Leutenegger, “ElasticFusion: Real-time dense SLAM and light
source estimation,” The International Journal of Robotics Research,
vol. 35, no. 14, pp. 1697–1716, 2016.

[4] W. N. Greene and N. Roy, “FLaME: Fast lightweight mesh estimation
using variational smoothing on delaunay graphs,” in Proceedings of
the IEEE International Conference on Computer Vision (ICCV), 2017,
pp. 4696–4704.

[5] E. Piazza, A. Romanoni, and M. Matteucci, “Real-time cpu-based
large-scale 3D mesh reconstruction,” 2018.

[6] W. Dong, J. Shi, W. Tang, X. Wang, and H. Zha, “An efficient
volumetric mesh representation for real-time scene reconstruction
using spatial hashing,” 2018.

[7] S. C. G. Laboratory, “The Stanford 3D scanning repository,”
http://graphics.stanford.edu/data/3Dscanrep/, accessed Feb 25, 2019.

[8] M. Zollhöfer, P. Stotko, A. Görlitz, C. Theobalt, M. Nießner, R. Klein,
and A. Kolb, “State of the art on 3D reconstruction with RGB-D
cameras,” Computer Graphics Forum (Eurographics State of the Art
Reports), vol. 37, pp. 625–652, 2018.

[9] T. Schöps, T. Sattler, and M. Pollefeys, “SurfelMeshing: Online surfel-
based mesh reconstruction,” 2018.

[10] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger, “Real-time
3D reconstruction at scale using voxel hashing,” ACM Transactions
on Graphics (ToG), vol. 32, no. 6, p. 169, 2013.

[11] M. Klingensmith, I. Dryanovski, S. Srinivasa, and J. Xiao, “Chisel:
Real time large scale 3D reconstruction onboard a mobile device using
spatially hashed signed distance fields.” in Proceedings of Robotics:
Science and Systems (RSS), vol. 4, 2015.

[12] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto,
“Voxblox: Incremental 3D euclidean signed distance fields for on-
board MAV planning,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Sep. 2017, pp.
1366–1373.

[13] F. Steinbrücker, J. Sturm, and D. Cremers, “Volumetric 3D mapping
in real-time on a cpu,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2014, pp. 2021–
2028.

[14] P. Henry, D. Fox, A. Bhowmik, and R. Mongia, “Patch volumes:
Multiple fusion volumes for consistent rgb-d modeling,” in RSS
workshop on RGB-D: Advanced reasoning with depth cameras, Berlin,
Germany, 2013.

[15] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” in Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques. ACM,
1996, pp. 303–312.

[16] P. Stotko and T. Golla, “Improved 3D reconstruction using combined
weighting strategies,” in Proceedings of the Central European Seminar
on Computer Graphics (CESCG), 2015, pp. 135–142.

[17] E. Bylow, J. Sturm, C. Kerl, F. Kahl, and D. Cremers, “Real-
time camera tracking and 3D reconstruction using signed distance
functions.” in Proceedings of Robotics: Science and Systems (RSS),
vol. 2, 2013.

[18] J.-D. Fossel, K. Tuyls, and J. Sturm, “2D-SDF-SLAM: A signed
distance function based SLAM frontend for laser scanners,” in Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2015, pp. 1949–1955.

[19] J. Amanatides, A. Woo et al., “A fast voxel traversal algorithm for ray
tracing,” in Eurographics, vol. 87, no. 3, 1987, pp. 3–10.

[20] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolu-
tion 3D surface construction algorithm,” in ACM siggraph computer
graphics, vol. 21, no. 4, 1987, pp. 163–169.

[21] Q.-Y. Zhou and V. Koltun, “Dense scene reconstruction with points
of interest,” ACM Transactions on Graphics, vol. 32, no. 4, p. 112,
2013.


