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Abstract— In this work, we propose a method to efficiently
compute smooth, time-optimal trajectories for micro aerial
vehicles (MAVs) evading a moving obstacle. Our approach
first computes an n-dimensional trajectory from the start-
to an arbitrary target state including position, velocity and
acceleration. It respects input- and state-constraints and is
thus dynamically feasible. The trajectory is then efficiently
checked for collisions, exploiting the piecewise polynomial
formulation. If collisions occur, viastates are inserted into the
trajectory to circumvent the obstacle and still maintain time-
optimality. These viastates are described by position, velocity,
and acceleration. The evaluation shows that the computational
demands of the proposed method are minimal such that obstacle
avoidance can begin within few milliseconds. Optimality of
generated trajectories, combined with the ability for frequent
online re-planning from non-hover initial conditions, make the
approach well suited for evasion of suddenly perceived obstacles
during fast flight.

I. INTRODUCTION

In recent years, multiple novel applications for flying
robots emerged, enabled by two main factors: i) manufactur-
ers developed affordable and capable micro aerial vehicles
(MAVs) for hobby, recreation, and professional usage that
do not require extensive flight training; ii) recent advances
in robotic research led to efficient methods for environment
perception and safe navigation, making various applications
that can only be performed autonomously possible. This
includes operations at high velocities and with multiple
MAVs. One driver for developing such systems was also the
DARPA-formulated goal of flying fast and autonomously in
their Fast Lightweight Autonomy (FLA) program [1].

In the field, applications often require fast flight in nearly
obstacle-free environments. For example, in a typical outdoor
inspection task, only the to-be-inspected object (windmill,
power line, . . . ) obstructs the otherwise free space. Also,
when executing an exploration mission with multiple MAVs,
often the only obstacles present are the other MAVs in mostly
free space.

A possible use case for our method emerged from the
Mohamed Bin Zayed International Robotics Challenges
(MBZIRC) 2017 [2] and 2020 [3]. At MBZIRC 2017,
multiple MAVs shared the same workspace while picking
and delivering small discs. For MBZIRC 2020, an MAV has
to avoid static balloons while interacting with a flying object.
Here, fast mission accomplishment is key for a high score.
Since the environment is mostly obstacle free, one can omit
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Fig. 1: The MAV on the bottom left flies towards the top right
target (red dot) with a velocity of 1.8m/s and an acceleration
of 0.5m/s2 when suddenly perceiving an obstacle. Our method
instantaneously detects the collision (red cross) of the original
semitransparent trajectory. Within 6ms, it computes a set of four
time-optimal avoidance trajectories from the current state to the
target state that steer through the gray viastates. These trajectories
evade the obstacle in varying dimensions (over the top, underneath,
left and right). The fastest collision-free trajectory (over the top of
the obstacle) is chosen and executed by the MAV. The detour only
takes 7.33 s vs. 7.31 s of the original trajectory.

global planning methods like A* [4]. Instead, direct flight to
the target, only avoiding small static no-fly zones around the
balloons and dynamic no-fly zones around the other MAVs
is a feasible approach.

Fig. 1 illustrates the proposed method. We first compute
an time-optimal trajectory from the start state to an arbitrary
target state that is efficiently checked for collisions. If
collisions occur, via states described by position, velocity,
and acceleration are inserted to circumvent the obstacle and
maintain time-optimality. In our obstacle avoidance algo-
rithm, we employ and extend methods based on our own
previous work [5]. Our main contributions are:

• generation of trajectories targeting only partially defined
target states (Sec. III),

• fast computation of optimal trajectories that avoid a
static or moving obstacle (Sec. IV),

• evaluation of our method in simulation including pro-
filing of computational requirements (Sec. V).

In this work, we employ our method to 3-dimensional
problems for ease of explanation. The method itself however
does not make any assumption about the dimensionality of
the planning problem.

The code used in this work is open source1.

1http://www.ais.uni-bonn.de/videos/IROS_2019_Beul
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II. RELATED WORK

In literature, several works address collision avoidance of
MAVs in dynamic environments. The approaches can be
mainly categorized into by considered dimension (2D vs.
3D), complexity of the environment, runtime, and the ability
to deal with non-static obstacles.
While planning in complex environments can be solved
with sample-based planners, grid-based planners, etc., these
approaches often either do not consider system-dynamics
or are not fast enough for real-time planning. Hence, most
obstacle avoidance techniques for MAV assume a simple
environment to be able to run with the control frequency of
at least 10Hz instead. Since they run as a lower layer in a
hierarchy of planners, the missing consideration of complex
environments can be compensated by higher layers.

Zhang et al. [6] use a set of precomputed alternative 3D
paths to quickly react to suddenly perceived obstacles. The
set is hierarchically organized in levels such that branches
from alternative paths can be efficiently stored. The method
works in 3D and is real-time capable (<50 µs) due to
the precomputation. However, the precomputation needs to
be performed whenever the target waypoint changes and
generated trajectories are not optimal. Depending on the
discretization, generated trajectories can be far from opti-
mal whilst always collision free. Also, the evaluation only
considers static obstacles.

Zhu and Alonso-Mora [7] propose a probabilistic collision
avoidance method for navigation among moving obstacles.
They explicitly consider the collision probability and solve
a chance constrained nonlinear model predictive control
problem (CCNMPC) to find valid trajectories. The method
is real-time capable (average of 14.3ms with peaks over
70ms) and can deal with constantly moving obstacles. The
method explicitly respects uncertainty in the obstacle state.
No information about the quality of the generated trajectories
(e.g., optimality) is given.

Gao and Shen [8], and Gao et al. [9] use an optimization-
based framework to generate collision free MAV trajectories.
The method models both static and moving obstacles. It
guarantees the trajectories to be optimal with respect to
control effort, but computation is slow (1.0 s).

Liu et al. [10], use safe flight corridors to plan 3D
trajectories that are dynamically feasible. They use quadratic
programming techniques to find trajectories in a subset of the
free space defined by convex polyhedra. Replanning takes
50-300ms and is thus limitedly real-time capable.

In [11], Liu et al. present a search-based motion planning
method that used LQR-techniques to find dynamically fea-
sible minimum-time trajectories in a discretized state-space.
The method can generate smooth second- and third-order
trajectories in 2D and 3D. The authors claim that the method
can be used for fast online re-planning of trajectories, but
the runtime for the 3D third-order system—equivalent to our
method—is high (avg. 2.98 s, max 9.5 s). Also the optimality
of the trajectories is governed by the discretization of the
state space. Our method does not suffer from discretization-

induced suboptimality. In [12], Liu et al. continue the work
on the search-based planning method. They now model the
MAV with an ellipsoid bounding box (instead of a sphere).
The characteristics of the method including its capabilities
and restrictions are similar to their previous work.

Lopez and How [13] use a 3D triple-integrator MAV-
model similar to ours. Like Liu, they sample the state space
to find collision-free trajectories, but dont’t give informa-
tion on the optimality of the solution. The authors report
computation times in the low milliseconds, but due to the
sampling-based nature of their method, it is unclear how the
method scales with varying complexity of the environment.

Szmuk et al. [14] use convex optimization to find 3-
dimensional paths in real-time. They show avoidance of up to
three moving obstacles. The optimization takes up to 81.4ms
and is thus fairly real-time capable. The authors use a double-
integrator model for the problem formulation. They justify
this decision by the assumption that the attitude dynamics
are significantly greater than the translational dynamics. This
may be true for small agile MAVs like the ones used by
the authors in the evaluation, but may introduce large errors
when executed on a slower MAV.

Similar to our method, Mellinger et al. [15] present a
method to calculate trajectories with free degrees of freedom
(DoF). Trajectories also pass through fixed positions with
optimal velocities. However, the solution is obtained by
solving a constrained gradient descent problem including the
numerical computation of the derivatives. In comparison to
our method, generated trajectories are minimum snap and
the trajectories are tracked by a separate controller instead
of directly using the trajectory generator as feedforward with
fast replanning.

As shown above, multiple approaches exist that gener-
ate smooth collision-free trajectories in environments with
varying complexity and runtime requirements. Unfortunately,
no standard benchmark exists to compare the methods,
specifically for use on MAVs that require replanning times
in the order of milliseconds, strict constraints on state and
input variables, smoothness and satisfaction of optimality
conditions like control effort or total trajectory time.

In the work of Kröger [16], third-order polynomial trajec-
tories are generated that are similar to our work. The method
lacks any kind of obstacle avoidance, though. Nevertheless,
applications that utilize this method and need obstacle avoid-
ance can be easily transferred to our proposed approach.

To our knowledge, no method exists that can generate
smooth, optimal obstacle-avoiding 3D trajectories for MAVs
that can be computed within typical control-loop frequencies.
The method proposed in this work replaces our reactive
low-level obstacle avoidance mechanism [17] that is not
applicable to generating aggressive high-speed trajectories.

III. PARTIALLY DEFINED TARGET STATES

Our method extends our previously published work [5] in
which we generate time-optimal second- and third-order tra-
jectories from arbitrary fully defined start states to arbitrary
target states with piecewise constant jerk output.



Fig. 2: Trajectories from state x = (0.0, 0.0, 0.0)ᵀ to x = (2.0,NaN, 0.5)ᵀ. Yellow: The undefined DoF (velocity) is chosen such that
the trajectory is time-optimal. This results in a target velocity of 1.9m/s. Blue, Orange: Trajectories that exactly last 5.0 s. The undefined
DoF is maximized (blue) or minimized (orange). One can see how the trajectories build up momentum by first accelerating in the opposing
direction to maximize the time of acceleration (1.5-5.0 s for blue and 2.1-5.0 s for red trajectory.)

A. Previous Method for Trajectory Generation

Trajectories generated with our previous method respect
per-axis constraints on minimum and maximum velocity,
acceleration and jerk. Any number of individual axes can be
coupled by synchronizing the total time of each trajectory.
Since the method is very fast (� 1ms per axis per trajec-
tory), it can be used in closed loop even for fast systems.
With the ability to predict the target state, trajectories end
in an optimal interception state when the target state is non-
stationary. The method has been successfully used as model
predictive controller on different micro aerial vehicles, in
different research projects and robotic competitions. Like
most works, our previous method requires fully defined
target state inputs. Furthermore, it does not feature obstacle
avoidance.

B. Solving Partially Defined Target States

In certain situations, the targeted state cannot be defined
completely, e.g., when the MAV is supposed to pass through
a narrow gap in a wall. Here, the 3-dimensional position and
the pitch angle of the MAV is fixed such that it fits through
the gap. Also the lateral velocity is fixed to zero such that
the MAV passes the gap on the shortest path. However, the
velocity orthogonal to the wall can be chosen freely. Also,
our obstacle avoidance method described in Sec. IV builds
upon the ability to find trajectories for partially defined target
states.

Since our pipeline assumes a 3-dimensional state for each

TABLE I: Combinations of possible target state variables.

Position 3 3 3 3 8 8 8
Velocity 3 3 8 8 3 3 8
Acceleration 3 8 3 8 3 8 3

3: the value is defined, 8: the value can be chosen freely

axis of the start- and target states, the permutations stated in
Tab. I for the definition of target-states can occur. The first
instance is the nominal condition with all derivatives defined.
In the following, we describe how we treat the remaining six
permutations.

In order to generate trajectories without fully defined target
states, we first define the trajectory for each axis as a system
of 21 differential equations:

pn = pn−1 +

∫ tn

tn−1

vn dt, (1)

vn = vn−1 +

∫ tn

tn−1

an dt, n = {1; . . . ; 7} (2)

an = an−1 +

∫ tn

tn−1

jn dt, (3)

with p0, v0, a0 being the current state and p7, v7, a7, the (pos-
sibly not fully defined) target state. Generated trajectories
consist of up to n = 7 phases of constant jerk input, resulting
in bang-singular-bang trajectories.
Depending on:

• whether the trajectory shall be time-optimal or with
defined total duration,

• which DoF is defined (undefined DoF are indicated as
NaN),

• which state limits are enforced (unlimited states are
represented by setting the corresponding limit to Inf),

• whether the trajectory starts with state limits already
violated,

we define sets of 21 second-order conditions to make the
system of differential equations solvable. For example, when
only acceleration and position is defined, like in Fig. 2,
acceleration and velocity limits are not Inf, and the trajectory
start is feasible, 20 different second-order condition combi-
nations are possible. The optimal yellow trajectory in Fig. 2,



for example, features only three constant jerk times. Thus,
t4, ..., t7 := 0. Furthermore, a2 := amax, j1 := jmax, j2 :=
0, and j3 := jmin. In contrast, the red trajectory features
five jerk inputs. It is defined by the second-order conditions
t4 ∧ t5 := 0, a2 := amax, a6 := amin, j1 ∧ j7 := jmax,
j2 ∧ j6 := 0, j3 := jmin, and t1 + ... + t7 := T . After
defining the set of possible second-order conditions, we solve
the equations. For t1 and t3 of the yellow example trajectory,
this yields

t1 =
−ainit + amax

jmax
, (4)

t3 =
−amax + atarget

jmin
. (5)

The solution for t2 is more complex and consists of ≈ 200
computational operations.

All equations that solve t1, ..., t7 for a particular trajectory
shape are calculated only once and stored in a database to be
evaluated quickly during operation. We make no assumption
on the value of any variable during solution so that all
solutions are persistent. Since they neither change before nor
during runtime, no precomputation is needed.

Trajectories do not only respect constraints during the tra-
jectory time interval, but the target state also is defined such
that future state constraints are not infringed. For example,
when acceleration is an undefined DoF and the target ve-
locity is close to the maximum allowed velocity, the chosen
acceleration is not allowed to be positive. Although velocity
as well as acceleration are inside the allowed bounds, a
future trajectory would overshoot the maximum velocity
during the deceleration phase. The maximum allowed target
state velocity vtarget with a given acceleration is computed
according to (6) and the corresponding acceleration atarget
at a given velocity according to (7):

vtarget =
a2max

2 · jmax
+ vmin, (6)

atarget =
√

2 · jmax · (vmax − vmin). (7)

As previously stated, trajectories can be time-optimal or have
a fixed duration. If the duration is fixed, our method can
be configured to maximize or minimize any undefined DoF.
In Fig. 2, one can see that in comparison to the yellow
trajectory, the additional time of 2.5 s is used to gain/loose
velocity. This results in a target velocity of 2.3m/s, respec-
tive −0.17m/s, in comparison to 1.9m/s. This behavior
does not only work for the depicted example with undefined
velocity, but also for all other combinations from Tab. I.

IV. OBSTACLE AVOIDANCE

A collision with an obstacle in n-dimensional space hap-
pens exactly when at one time all positions of all axes
of the trajectory are simultaneously inside a section of a
corresponding n-dimensional obstacle. We assume the axes
of the obstacles to be independent and axis-aligned. For two
dimensions, this leads to rectangular obstacles. For three
dimensions, this generates cuboid obstacles, and for higher
dimensions hyperrectangles. Not only the position of the
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Fig. 3: Structure of the obstacle avoidance approach.

obstacle is defined in n-dimensions, but also its velocity,
acceleration, etc.

A. Collision Detection

We assume the current state and the target state to be
in free space. In order to efficiently detect collisions of
the trajectory between both, we make use of the piecewise
polynomial formulation of our trajectories. For every axis,
the trajectory consists of a concatenation of up to seven poly-
nomials with rank≤ 3. Assuming that the obstacle motion
can also be described with a concatenation of polynomials
with rank≤ 3, we can determine the time of the collision by
calculation of zero crossings of the combined function. We
then decide for every timestamp if the trajectory enters or
leaves an obstacle. Given we found all entering and leaving
times for all axes, we now merge the timestamps to search for
times when all axes are simultaneously inside an obstacle.
These timestamps indicate the entering and leaving of the
n-dimensional trajectory into/out of the obstacle. Including
the directional information stated above, we can detect the
first entering which is the point of collision. Evaluating the
polynomials at this timestamp gives the state-vector at the
collision including velocity and acceleration. When we find
a collision, we insert viastates into the trajectory such that
the trajectory bypasses the obstacle. Finding the full viastate
such that the trajectory is still time-optimal is not trivial and
will be described in the following sections.

B. Bound and Free Axes

As stated above, a collision occurs only when all axes
are simultaneously inside an obstacle. We insert a viastate
into the trajectory to temporally disconnect this simultaneity.
For this, we choose two axes that we want to temporally
disconnect. We call these two axes “bound axes”. We call
all other axes (if there are more than two axes in total) “free
axes”. First, we describe how to derive the state vector for
the two bound axes in Sec. IV-B.1. After this, we describe
the derivation of the state vector of the free axes in Sec. IV-
B.4. The generated trajectory consist of a concatenation of
up to 14 polynomials with rank≤ 3 per axis.

1) State Vector for Bound Axes: We first define the
viastate position of the bound axes to be at one of the four
corners of the obstacle and project the MAV radius + an
additional margin outwards. This determination is intuitive,
since in order to find the fastest trajectory, one has to cut the
corner as narrow as possible.

We now define the acceleration in these viastates to be
zero. Setting the acceleration to the maximum/minimum in
the viastates could gain a small amount of velocity, but if
the state estimation of either the MAV or the obstacle is only
slightly erroneous, the MAV is in a configuration that is close



Fig. 4: Typical plot of the time needed for the first segment
(middle), the second segment (bottom, shifted by 10s for better
visibility) and the combined total trajectory (top). The time is
shown in dependence of the velocity vector of the bound axes in
the viastate. Local optima are marked with cyan dots. The global
optimum is marked with a green dot and a vertical line. It can be
seen that the global optimum lies at the intersection of one groove
(marked blue and orange) of the individual segments. In Sec. IV-
B.3, we detail our elaborated method to efficiently calculate these
grooves and their intersection.

to the obstacle and possibly further accelerating towards the
obstacle. By fixing the acceleration to zero, the MAV can
react to these inaccuracies. So, a nonzero acceleration could
be slightly faster (with massively increased collision risk),
but under the assumption of zero acceleration, the generated
evading trajectories are optimal.

Following this, we calculate the optimal viastate velocity
of the two bound axes. Fig. 4 shows a sampled map of the
time needed to complete the first segment from start to the
viastate (middle), the second segment from the viastate to
the target state (bottom, shifted by 10s for better visibility)
and the combined total time for a typical trajectory (top). Al-
though trajectory sampling with our method is fast (≈ 519 µs
per trajectory), sampling the 20,000 trajectories (100 × 100
sampling grid for each segment) took 10.38 s which makes
it impossible to run at the control-frequency of the MAV.
Besides the disadvantage of computational demands, this
sampling-based method is comparatively inaccurate due to
discretization. Although not viable for real-time calculation
of the optimal velocity, the sampled map gives insight into
the dependence of the timing from the two velocities and
can be used to verify our real-time approach. We exploit
the characteristics of the shown surface plots to develop
a more sophisticated method and speed up the process by
multiple orders of magnitude. Among others, we make use
of the methods for partially defined target states we described
in Sec. III. The process works as follows:

First, we use our method described in Sec. III to find time-
optimal trajectories from the current state to the position of
the viastate of the bound axes with undefined velocity. As
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and total trajectory time (yellow) in dependence of a single velocity
vector element. The other vector elements do not affect trajectory
time. The optimum velocity for the individual segments is marked
with a dashed line. The global optimum is marked with a black dot.
The optimum is located at the optimal individual segment velocity
that is closer to zero. This plot corresponds to the trajectory that
goes over the obstacle in Fig. 1.

stated above, the velocity is chosen such that the trajectory
is as fast as possible. We do the same backwards from the
target state to the viastate position. This gives four velocities
that would lead to optimal trajectories for both axes for the
first and the second segment, respectively. We now compare
which axis dominates the first and second segment. Fig. 3
shows the structure of the now following procedure. If a
single axis dominates both segments, we continue as stated
in Sec. IV-B.2 (left in Fig. 3). Otherwise, we continue as
stated in Sec. IV-B.3 (right in Fig. 3).

2) Single Velocity Influence: If only a single velocity
component impacts the total trajectory time, again multiple
cases can occur. If the signs of the velocities are different,
we choose the velocity to be zero. While a positive velocity
would speed up one segment of the trajectory, it would slow
down the other segment even more. In this case, none of the
individual segments is optimal, but the combination of both
shows optimality.

If the sign of the velocities is equally positive, we use the
minimum optimal velocity. This means that the segment with
the smaller velocity is optimal resulting in the combination
of both segments being optimal. See Fig. 5 for clarification.
Analogously, we choose the maximum optimal velocity if
both signs are equally negative.

Since optimality is only depending on the velocity com-
ponent we derived above, the other bound component can
be chosen such that the total time of the trajectory does
not change. To calculate the region of velocities that does
not impact total trajectory time, we employ the approach
we described in Sec. III. We first determine the time the
trajectory needs for the first and second segment with the
computed optimal velocity individually. We then find the
maximum and minimum velocity that is possible in this time
for the second bound axis. We superimpose the intervals
and get an interval from that we can freely choose the
velocity without compromising optimality. While we could,
e.g., choose the midpoint of the interval, we choose the
end of the interval that maximizes the curvature from the
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p2-9-6 and p4-10-8 correspond to the blue and orange grooves in
Fig. 4. We then calculate the intersection (black dot). This point
represents the globally optimal velocity vector that is needed to
generate time-optimal trajectories. This plot corresponds to the
trajectory that goes left around the obstacle in Fig. 1.

trajectory away from the obstacle.
3) Multiple Velocity Influence: If both velocity compo-

nents of the bound axes influence the total trajectory time, we
employ the method illustrated in Fig. 6. First we calculate the
optimum velocities for both bound axes for both segments.
We now determine which axis dominates the total time. The
optimal velocity of the dominant axes are shown in Fig. 6.
We now determine the maximum and minimum velocities
that are achievable in the time it takes to gain the optimal
velocity (p1, p2, p3, p4) for both segments. Afterwards, we
decide which point lies closer to the optimal counterpart of
the other segment (p2 respective p4). This gives the direction
of the limit.

After that, we determine p5 and p6, and p7 and p8
respectively. We do this by calculating the required time
for Segment 1 to reach p4 speed (1.51m/s) and again
the possible maximum and minimum velocity component.
The velocity vector is the x-component from p4 and the y-
component of p5 and p6. The same is conducted for p7 and
p8 with the y-component of p2. Subsequently four cases can
occur:
1) p2 lies between p7 and p8 in x-direction and p4 lies
between p5 and p6 in y-direction. Both segments are optimal
and the optimum velocity of both segments can be used.
2) p2 lies between p7 and p8 in x-direction, but p4 does
not lie between p5 and p6 in y-direction. The first segment
dominates the trajectory. The optimum lies at p2 for both
axes.

Fig. 7: Trajectory stack with bound x- and y-axis and free z-
axis. The transition between trajectories with dominating bound
(bottom 6) and free (top 4) axes can be seen. The total trajectory
duration does not change for the bottom 6 trajectories since the
free z-axis is faster than both bound axes. The z-viastate adapts
in position, velocity and acceleration. The free z-axis dominates
the top 4 trajectories so that the viastate in the bound axes in turn
adapts to the free axis.

3) p4 lies between p5 and p6 in y-direction, but p2 does not
lie between p7 and p8 in x-direction. The second segment
dominates the trajectory. The optimum lies at p4 for both
axes.
4) Neither does p2 lie between p7 and p8 in x-direction,
nor does p4 lie between p5 and p6 in y-direction. Here,
a tradeoff between the calculated velocities determines the
optimum. This case is depicted in Fig. 6. The tradeoff is
calculated by first determining p9 and p10. The x-coordinate
of p9 lies in the middle of p2 and p6. The y-direction is again
calculated by first determining the time needed to achieve p9
speed. Afterwards, the maximum/minimum (depending on
the direction of the limit) achievable velocity in this time is
calculated. This gives the y-coordinate of p9. Analogously,
p10 is derived. We now approximate the optimal tradeoff
for both bound axes separately by fitting a second order
polynomial ((8) and (9)) through points p2, p9, and p6,
respectively p4, p10, and p8 (thin lines). Subsequently, we
now find the intersection of both polynomials by inserting
(9) into (8):

y = a1 · x2 + b1 · x+ c1, (8)

x = a2 · y2 + b2 · y + c2, (9)

0 = t4 · a21 · a2 (10)

+ t3 · (2 · a1 · b1 · a2)
+ t2 · (2 · a1 · c1 · a2 + b21 · a2 + a1 · b2)
+ t · (2 · b1 · c1 · a2 + b1 · b2 − 1)

+ c21 · a2 + c1 · b2 + c2.

This results in the fourth-order polynomial in (10). We do not
simply equalize both equations since in the frame of the first
axis the second axis is a transposed polynomial. By finding



the root of (10) that lies in the interval shown, we find the
optimal tradeoff velocity vector marked with a black dot in
Fig. 6.

4) State Vector for Free Axes: After both 3-dimensional
viastates of the two bound axes are calculated, we calculate
the corresponding state for the remaining free axes.

For this, we first compute optimal trajectories for all free
axes. We then compare the maximum free trajectory time
with the bound trajectory time and choose the viastate of the
free axes, depending on which one is larger.

If the bound axes dominate the total trajectory (bottom
six trajectories in Fig. 7), we synchronize all free axes to
the total trajectory time of the bound axes by the methods
presented in [5]. The derivatives in the viastate of the free
axes are simply the states of the free axes at the time the
bound axes pass the viastate. If the free axes dominate the
total trajectory, however, (top four trajectories in Fig. 7) the
free axis determines the viastate and we discard the viastate
calculated in Sec. IV-B.1. Instead, the viastate for the bound
axes is the state when it passes the obstacle edge. Since the
viastate for the bound axes is uncritical to guarantee time-
optimality, it can vary as long as the free axis still dominates
the total trajectory time. We choose the bound axis viastate
such that the viastate is passed at a time that scales the
trajectory segments.

Fig. 7 illustrates multiple trajectories with bound x/y axes
and a varying free z-axis. It shows that the total trajectory
time is constant as long as the bound axes dominate the
trajectory. Only the top four trajectories are dominated by
the free axis.

V. EVALUATION

We evaluate our method in simulation with arbitrarily
placed obstacles. The dynamics of the MAV and the obstacle
are simulated with MATLAB utilizing a realistic parameter
set. A video showing avoidance of static and non-static
obstacles can be found on our website1. Here, we also
publish recorded datasets, tools, and parts of our pipeline.

We first evaluate our approach to partially defined target
states. Based on this, we evaluate our obstacle avoidance
pipeline. Since we conducted extensive flight tests with the
predecessor of our software published in e.g., [2], [17], and
[18], the practical applicability of the method to real MAVs
ranging from 3.0 kg to 11.2 kg has already been shown.

A. Partially Defined Target States

First, we evaluate the reliability of our method by fuzz
testing our approach. Therefore, random data including NaN
for the target state and Inf for the state limits are generated.
Our method successfully found solutions for over 10,000,000
consecutive trajectories.

B. Obstacle Avoidance

In order to test the soundness of our approach, obstacle
avoidance was tested in over 100 different scenarios with
changing obstacle configurations.

We measure the time, our obstacle avoidance method re-
quires on a single core of a Intel Core i7-4710MQ processor
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Fig. 8: Results of the timing experiment for the three-dimensional
trajectories shown in Fig. 1. The total computation time of 5.98ms
is mostly needed for generating the individual evading trajectories.
Collision checking (CC) only takes a quarter of the time.

for the scenario shown in Fig. 1. In Fig. 8, we show the
results of our profiling for the experiment. It can be seen
that our whole pipeline computes in less than 6ms, including
collision checking. Since the four individual trajectories
are independent of each other, this process can be easily
parallelized.

We further extend our evaluation to a constantly moving
obstacle depicted in Fig. 9. We observe that the movement
has no measurable impact on the computation time. We also
examine the dependence of the runtime to the dimensionality
of the planning problem. Since our method always tem-
porally disconnects two axes per instance, the number of
possible evading trajectories p regarding n axes scales with

p =
n!

(n− 2)!
. (11)

Experiments with four axes (x, y, z, yaw) also confirm
this. Here, obstacles are 4-dimensional and problems like
“Do not look in direction X while being in the volume Y.”
can be represented. Depending on the configuration of the
start- and target conditions, one can further omit several
bound axis combinations. Thus, our experiments only show
four trajectories instead of six. In Fig. 1, the collision of the
original trajectory happens in the y/z plane. Thus, the bound
axis-combinations are x/y (left/right) and x/z (top/bottom).
A y/z combination makes no sense since the main axis of
movement is in x-direction.

Before executing the fastest trajectory of the set, it is
checked for collisions with all obstacles (green bar in Fig. 8).
If it collides with an obstacle, the next bests trajectory is
chosen. This process is repeated until the fastest trajectory
without collision is found. So, if for example another obstacle
was standing on top of the obstacle in Fig. 1, the next best
trajectory below the obstacle would be selected.

Please note that our method does not explicitly consider
uncertainty in state estimation of MAV and obstacle and
assumes a constant motion of the obstacle. However, due to
the fast computation time, this can be compensated by a high
replanning rate. The high replanning rate also promotes the
performance when obstacles are not known in advance but
are perceived abruptly and with uncertain velocity estimates.
Regarding uncertainty, the position margin of the obstacle
can be adjusted depending on the used sensor. Also due
to the obstacle representation by two independent borders,
obstacles can also grow or shrink over time representing
growing uncertainty over time.



(a) (b)

(c) (d)

Fig. 9: Avoiding a moving obstacle. (a) Our method detects a future collision at the position marked with the red cross of the original
trajectory and the moving obstacle trajectory (marked with the gray dotted line). With a static obstacle no collision would occur, but
since our pipeline explicitly considers the movement, the collision is reliably detected. (b) It now generates an optimal viastate (gray)
including an optimal velocity vector that guides the MAV around the obstacle incorporating the movement of the object. (c) The trajectory
is executed. (d) The MAV successfully avoided the obstacle. The trajectory only took 9.52 s vs. the original 9.45 s.

VI. CONCLUSION

In this paper, we propose a novel method to plan smooth,
time-optimal obstacle avoiding trajectories which is realized
through viastate insertion. Additional viastates are inserted
into the trajectory and guide the trajectory around the ob-
stacle. Finding the optimal position derivatives such that the
trajectory is still time-optimal is accomplished by a method
that requires only minimal computational effort.

Our evaluation shows that due to the fast runtime of our
method, the approach can be used in real-time to avoid
suddenly perceived obstacles in the flight path of the MAV.
Our approach works with an arbitrary number of dimensions
and with constantly moving obstacles.

We demonstrated the method in simulation and fuzz-tested
components of the system several million times to show the
robustness of the approach.
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