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Abstract— Finding the parameters of a vignetting function
for a camera currently involves the acquisition of several images
in a given scene under very controlled lighting conditions, a
cumbersome and error-prone task where the end result can only
be confirmed visually. Many computer vision algorithms assume
photoconsistency, constant intensity between scene points in
different images, and tend to perform poorly if this assumption
is violated. We present a real-time online vignetting and
response calibration with additional exposure estimation for
global-shutter color cameras. Our method does not require
uniformly illuminated surfaces, known texture or specific ge-
ometry. The only assumptions are that the camera is moving,
the illumination is static and reflections are Lambertian. Our
method estimates the camera view poses by sparse visual SLAM
and models the vignetting function by a small number of thin
plate splines (TPS) together with a sixth-order polynomial to
provide a dense estimation of attenuation from sparsely sampled
scene points. The camera response function (CRF) is jointly
modeled by a TPS and a Gamma curve. We evaluate our
approach on synthetic datasets and in real-world scenarios with
reference data from a Structure-from-Motion (SfM) system. We
show clear visual improvement on textured meshes without the
need for extensive meshing algorithms. A useful calibration
is obtained from a few keyframes which makes an on-the-fly
deployment conceivable.

I. INTRODUCTION

Vignetting, i.e., the difference in intensity for equally
bright scene points in different parts of the image, is an
undesirable property of most dioptric camera systems. It is
caused by a non-uniform exposure of different points on
the photoelectric chip as a fraction of the light that passed
through the lens is blocked by the aperture, or in some cases
by another set of lenses. The effect can differ substantially
between different lens systems or cameras and may—even
if clearly present—be neglected for many applications.

Auto exposure enables cameras to provide useful images
under changing lighting conditions. The sensor is exposed
over a longer or shorter period of time to prevent images
from becoming too dark or bright.

However, when it comes to quantitative image processing,
scene reconstruction, optical flow, or SLAM algorithms, one
important assumption of many methods is constant intensity
for the same scene points. In fact, most applications with
moving cameras—including most from the field of robot
vision—should be designed with this phenomenon in mind,
both to increase the reliability and reducing the algorithm
complexity due to normalized input data.
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Fig. 1: Calibration principle: Points from the scene (shown
in red, blue and green) are triangulated by minimizing the
backprojection error over several frames. Due to vignetting
V (u), the measured intensity of the corresponding image
points will vary depending on the position u within the
frame while the brightness of the entire image is affected by
different exposure times k and the camera response function
crf(L). The observed attenuations give rise to a camera
response and vignetting function.

To correct vignetting, in most cases, a static calibration
is computed beforehand, which requires recording an image
of a known texture, usually plain white, and measuring the
difference in intensity for different image points. The lighting
conditions have to be controlled very thoroughly: the texture
must be uniformly illuminated and no shadows, e.g., created
by the camera itself, must be present. One should also point
out that changing the aperture or focus of the camera lens
will also affect the vignetting, thus, after calibration these
characteristic must not be changed anymore.

The mapping between the radiance Lp of a scene point
p ∈ R3 and the measured intensity Iu of the corresponding
image point u ∈ R2 is often modeled as a two-part function

Iu = f (k · V (u) · Lp) . (1)

Here, V : R2 7→ [0; 1] is the position-dependent vignetting
function, k is the exposure time, and f is the camera
response function (CRF) that covers the mapping between
the amount of light reaching the chip and its corresponding
measurement. For simplicity, V is often considered radially
symmetric around the optical center of the image. We do
not restrict ourselves to this assumption. In this work, our
objective is to estimate all involved photometric parameters.

To this end, we make use of a robust visual SLAM proce-
dure and examine the recorded intensity of well-established
map points. Stable triangulation requires the points to be
recorded from several camera positions with sufficient par-
allax, thus, the corresponding image points are spread over
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some portion of the camera frames. The intensity of a map
point in different regions of the image yields samples for the
vignetting function V that is extrapolated with the help of a
thin plate spline and a sixth-order polynomial. This approach,
illustrated in Fig. 1, allows us to quickly obtain a reliable
estimate of V based on only a few map points. It does not
rely on any known illumination pattern or scene appearance
and can be performed by recording natural, albeit textured,
environments with static illumination. We demonstrate our
method on an image sequence taken with a micro aerial vehi-
cle (MAV) to reconstruct a chimney wall structure as well as
synthetic sequences with artificial photometric disturbances
and show that it significantly improves the results.

II. RELATED WORK

There are two main approaches for vignetting correction:
The correction can be estimated from a single image or
from a sequence of images at different view poses with
overlapping fields of view. The first approach has been
recently explored [1], [2]. We prefer the latter approach since
it reduces the number of necessary assumptions to obtain a
viable solution, is more robust, and enables us to obtain all
photometric parameters. Historically, this approach was first
used for image mosaicking and panoramic photography, in
which images are stitched together using visual features such
that no seam between images is visible. Simple vignetting
functions, like 6th degree polynomials, are often employed
[3], [4] or images are blended in overlapping regions [5].

More recent work from Waechter et al. [6] aims at adding
textures to a reconstructed mesh. The view that best observed
a mesh face with minimal seam towards neighboring faces is
selected using graph cuts. Afterwards, the color is adjusted
to reduce color differences between patches, first globally
and later locally, via Poisson Editing to remove remaining
visible seams close to the seam itself. A different approach
was taken by Zhou and Koltun [7]. Instead of selecting
best-view patches, they optimize the camera poses such
that mesh vertices observed in multiple cameras have the
same intensity. To deal with more complex distortions, this
optimization was augmented by a per-camera grid on the
image plane that non-rigidly deforms the image. The final
per-vertex color is then obtained using a weighted mean of
the observed colors. Yet, mesh faces are not colored, but an
improved resolution is obtained via subsampling the mesh to
generate more vertices.

The photometric or brightness constancy assumption [8]
is used by most direct Visual Odometry systems, e.g., Semi-
direct Visual Odometry (SVO) by Forster et al. [9] or Direct
Sparse Odometry (DSO) by Engel et al. [10]. Since vi-
gnetting and auto-exposure violate the constancy assumption,
incorporating photometric calibration improves the accuracy
of direct methods as reported by Zheng et al. [11].

Complementary to DSO, Engel et al. [12] created a
monocular camera benchmark, including photometric cali-
bration of an industry-grade camera. The CRF was calibrated
from a set of 1000 images taken by a statically placed camera
while manually changing the exposure time in-between.

Vignetting was disregarded at first, and calculated later on
from images of a bright colored planar wall with an attached
AR marker and approximately Lambertian reflectance. The
marker allows them to estimate the camera pose w.r.t. the
planar wall. The wall is divided into 1000 × 1000 points.
Given the camera pose, the points can be reprojected into
the images to obtain the corresponding intensities. The
vignetting is then calibrated together with the unknown
irradiance of the wall in an alternating fashion using a
Maximum-Likelihood Estimator.

A single white sheet of uniformly illuminated paper is
used by Alexandrov et al. [13] as a calibration target for
consumer RGB-D sensors. First, the CRF is estimated using
the OpenCV implementation of [14]. Then the paper is fixed
and the exposure is set to a constant value in order to obtain a
bright, yet not overexposed image. Automatic white balance
should be disabled before moving the camera around the ob-
ject to capture enough observations. Illumination is assumed
constant for the whole piece of paper, thus, intensity differ-
ences result purely from vignetting. The paper is detected via
floodfill segmentation and no projection is necessary. After
application of the inverse CRF, normalization and inversion
of each entry, dense correction factors are obtained. For
comparison, Alexandrov et al. [13] evaluated the sixth-order
polynomial used by Goldman and Chen [3] and showed the
superiority of dense factors.

For field applications, in which a tagged wall or a sheet
of paper on a planar table are not easily accessible, the
conditions often differ from laboratory settings and focus
or aperture have to be adjusted. Hence, tedious recalibration
using one of the previous methods is required.

In our previous work on vignetting calibration [15] we
used the projection of map points to estimate a sensor-
dependent deformation using a thin plate spline. The method
worked online and is complementary to further steps needed
during reconstruction or dense tracking. There we replaced
the known calibration target with an arbitrary, textured envi-
ronment without any geometric constraints.

Recently, Bergmann et al. [16] optimized for the photo-
metric model as well as the radiance and exposure times in
an online calibration method. A KLT tracker was employed
to find corresponding patches between consecutive images.
The CRF is approximated with the EMoR-model and the
polynomial by Goldman and Chen is used for vignetting.
The authors separate the parameter estimation into fast expo-
sure estimation, photometric model estimation and radiance
estimation. The exposure estimation uses a window of ten
images compensated for CRF and vignetting. The radiance
within this window is approximated as the mean of the
corrected intensities. The model and the radiance estimates
are updated in parallel using a window of the last 200
images. The method showed a significant accuracy gain for
DSO. However, the authors rely on a completely independent
keypoint and motion tracking approach that does not directly
benefit the SLAM results but that instead corrects images as
input into a fully separate SLAM framework. Our approach,
on the other hand, optimizes all parameters jointly and
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Fig. 2: Method overview: Visual features are tracked from (Stereo-) RGB images in order to estimate the camera pose w.r.t.
the map points. Keyframes and triangulated map points are computed by the local mapping and stored in the map. The
photometric calibration (orange dashed box) estimates the exposure time for each frame given the current photometric model
(green) and the tracked map. The radiance estimate of the map is updated on keyframe creation. The photometric model
(CRF and vignetting), keyframe exposure times and mappoint radiance are refined given all matched keyframe observations
during global photometric optimization. Sparsely, distributed features are used to estimate a pixel-wise vignetting correction
based on a thin plate spline that can be used to correct future images and reconstruction results.

integrates the photometric calibration more straightforwardly
and, in particular, avoids two redundant pose estimation and
point tracking procedures.

In this work, we model vignetting by a sixth-order poly-
nomial in combination with a smooth thin plate spline to
acquire pixel-wise correction factors. The camera response
function is modeled as another thin plate spline with border
conditions. We reduce the necessary amount of data by esti-
mating the photometric model on a low number of keyframes
while estimating the exposure time of the current frame w.r.t.
the tracked map. In summary, the key features of our method
are:
• oriented patches around ORB-features from visual

SLAM are used,
• thin plate splines combined with a Gamma curve models

the camera response function,
• a sixth-order polynomial captures the basic shape of the

vignetting whilst local deformation is captured by a thin
plate spline,

• the thin plate spline allows for dense approximation of
the sparsely distributed correction factors,

• joint optimization of radiance, vignetting, and camera
response is performed on keyframes only,

• our algorithm can be used online in real-time on a
modern laptop CPU, and

• handling of natural and partially dynamic scenes with-
out uniform illumination.

III. METHOD

We use an ORB-feature-based Graph-SLAM system [17]
with keyframes to obtain the color camera trajectory and
triangulate a sparse feature map from visual features. We
prefer to use a synchronized stereo camera rig to perform
SLAM instead of a monocular camera since the absolute
scale is fixed and we avoid monocular scale drift.

We use established feature-to-map-point correspondences
for our photometric calibration and generate a larger set
of samples by extracting patches around the individual

features on their respective scale. Purely black and white
pixels are considered invalid and are discarded. Still, the
obtained correspondences are sparsely distributed on the
sensor. Hence, we model the vignetting function as a smooth
thin plate spline (TPS), which allows us to estimate the
dense attenuation factors for each pixel and color channel.
The vignetting TPS is enhanced with an even sixth-order
polynomial for higher accuracy. Another one-dimensional
TPS is used for the camera response function with border
conditions.

Subsequently, the exposure time of a frame is estimated
given the current map. This requires fast radiance updates.
Hence, we directly refine the radiance of updated map points
after keyframe creation while optimizing the photometric
model asynchronously on keyframes.

After introducing our notation, we motivate made assump-
tions and describe in detail the estimation of the attenuation
factors and the correction models using TPS.

A. Notation
We denote sets and matrices with capital letters and

vectors with bold lower case letters. Each map point pw =
(x, y, z)ᵀ ∈ R3 is defined in the world frame w, determined
by the initial color camera frame. All poses are represented
by a transform TF2F1

∈ SE (3), which maps a point pF1

from the frame F1 into the frame F2. For convenience of
notation, we identify TF2F1 with its 4 × 4 matrix operating
on homogeneous coordinates. The projection of a point pw
with pose TF and camera matrix KF into frame F yields
the image coordinates u = (ux, uy)ᵀF in the image domain
Ω ⊂ R2 via the mapping:

gF (pw) : pw → pF , (2)
(pF , 1)

ᵀ
= TFw · (pw, 1)

ᵀ
, (3)

πF (pF ) : pF → uF , (4)
(x, y, z)

ᵀ
F = KF · pF , (5)

uF = (x/z, y/z)
ᵀ
. (6)



B. Assumptions

We assume that we observe a static scene with Lamber-
tian reflectance such that the amount of reflected light is
independent of the viewing angle. The illumination within
the scene should not change over time but may differ locally
in the observed scene, i.e., we do not assume a uniformly lit
scene. Since we can only obtain the attenuation correction
factor for each pixel up to scale, we assume the values to be
within [0, 1]. We further assume similar attenuation between
neighboring pixels.

Obviously, we will need some texture in the images to
extract visual features. Furthermore, we assume a given
rough factory calibration for the intrinsic camera matrices
Kc, lens distortion, and the extrinsic transform between the
stereo cameras.

C. Attenuation Factor Estimation

After a part of the scene has been explored and the camera
trajectory has been successfully tracked, a global bundle
adjustment refines the camera poses Tcw and triangulated
map point positions pw from undistorted feature observa-
tions. In a second optimization step, we include refinement
of lens distortion and intrinsic parameters given the original
feature observations while fixing the extrinsic transformation
between a stereo camera pair or keeping the first two poses
fixed. Thereby, we obtain a more accurate estimate from a
factory calibration, which allows us to establish further corre-
spondences between keyframes which have been previously
discarded due to high reprojection errors.

The basic idea to obtain pairs of expected and measured
intensity, as visualized in Fig. 1, is to either project map
points into the color image and compare the estimated
radiance using Eq. 1 against the measured intensity Iu or
directly use the matched keypoints to generate corresponding
intensities. We cannot rely on gathering a high number of
correspondences per pixel if we want to run our method
online. Having multiple pairs for one pixel rarely happens
for sparsely distributed map points. Hence, the TPS is a
convenient method to interpolate vignetting in-between.

D. Attenuation Model

We use TPS to model local attenuation factors w.r.t. the
normalized color image coordinates from [0, 1]

2. Due to the
excellent fill-in property and the minimal bending energy
of these splines, this works even with scattered, sparsely
distributed data—in our case the correction factors and cor-
responding image positions—while giving smooth function
approximations with a small number of coefficients. We
use the following two-dimensional thin plate polyharmonic
spline:

h(u) = p (u) +

N∑
i=1

ci · φ (‖u− di‖) (7)

with the radial basis function (RBF)

φ (r) = r2 · ln (r) , (8)

and the polynomial

p (u) = vᵀ ·
(

1
u

)
. (9)

Here, u is the data point—in our case a pixel coordinate—
and di ∈ Ω is a control point within the image. The
parameters c control the influence of the RBF while v
aids the approximation as a polynomial. One advantage of
the TPS is the lack of parameters that have to be tuned
since c,v are calculated from the given image positions
u and the desired function values, the correction factors
su. Furthermore, TPS is far more flexible compared to a
polynomial with the same number of coefficients.

In case of interpolation, one seeks to find the coefficients
[c,v]

ᵀ s.t. the following equations are satisfied:

si = h (ui) , 1 ≤ i ≤M. (10)

Since the interpolation would require as many RBFs (N) as
there are data points (M), this cannot be used efficiently
online. Instead, we approximate the underlying function
using a grid with a small fixed number of N = PH × PV
control points:

argmin
c,v

M∑
i

‖h (ui)− si‖2 . (11)

On each control point di, one RBF is placed statically. We
typically choose PH , PV ∈ {3, 4, 5, 6, 7}, but other choices
and different grids are possible as well. Often the following
conditions are added:∑N

i
ci = 0,

∑N

i
ci · di,x = 0,

∑N

i
ci · di,y = 0, (12)

which ensure that the polynomial p can be approximated.
In regard of the vignetting correction, we replace the

polynomial in Eq. 7 with a sixth-order even polynomial of
Goldman and Chen [3]:

p (r) = 1 +
∑3

i=1
vi · r2i, (13)

h (u) = p
(√

2 ‖u− dm‖
)

+

N∑
i=1

ci · φ (‖u− di‖) . (14)

The polynomial p matches the general form of the vignetting
function whilst higher-order and local deformations are cov-
ered by the RBFs. dm is the center position within the unit
square and the factor

√
2 normalizes the radius to [0, 1].

E. Camera Response Function

We employ a one-dimensional thin plate spline with a
linear function (9) for the camera response. The P control
points are equidistantly distributed between zero and one.
Since the CRF f needs to interpolate from zero to one, we
add constraints that enforce f(0) = 0 and f(1) = 1. This
corresponds to a PDE with Laplace Equation and Dirichlet
boundary conditions. Solving a PDE using thin plate splines
can be performed by solving a linear system of equations.

The fitting accuracy of thin plate splines can be further
improved by using a problem specific function for p instead
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Fig. 3: Results of the proposed CRF-models. Top row from left to right: the polynomial degrees are 0, 1 and 5. Dashed
curves showing runtime according to right-hand axis label. Bottom row: the RMSE and runtime for varying number of
additional parameters.

of the polynomial (9). Hence, we employ the Generalized
Gamma Curve Model (GGCM) [18]:

pf (x) =
∑n

i=0
vi · xi, (15)

fGGCM (L) = Lpf (L), (16)

gGGCM (I) = I1/pf (I). (17)

We propose two new CRF model functions based on the
GGCM. Firstly, we use the model f and add a number of
polyharmonic thin plate splines (this corresponds to replacing
p in (7) with fGGCM . We call this model GGCM + TPS.
Secondly, we use the GGCM model with a more variable thin
plate spline instead of the polynomial in (15). We name this
model GGCMTPS . We do not choose the function gGGCM
due to the inversion of the polynomial. The reader may note
that it is not the correct inverse of fGGCM , except for a
pure gamma curve (n = 0). Yet, given an estimate of the
polynomial it is easy to calculate a corresponding gGGCM .
Once an updated CRF model is available, we sample the
CRF equidistantly and optimize for the parameters of the
inverse model f−1 using gGGCM . So far, we have not
seen the necessity to explicitly enforce monotonicity as the
results were monotone with P ∈ [5, 20] control points. An
alternative method for monotone TPS is given in [19].

F. Image Correction

Given the solution to Eq. 11, we obtain the fitted TPS
by evaluating Eq. 14 for each pixel. In order to remove the
vignetting, the inverse camera response function needs to be
applied to the pixel intensity, followed by multiplication with
the inverse attenuation factor and exposure time:

Ic,u = f−1 (Iu) / [V (u) · k] . (18)

Here, Ic,u denotes the corrected pixel intensity. A look-up-
table (LUT) for f−1 ∈ [0, 255] can be easily obtained due
to the strict monotonicity of the CRF whereas the inverse
attenuation factors require pixelwise evaluation of the TPS
only once.

G. Keyframe-based Photometric Calibration

A photometric calibration is obtained and incrementally
refined from a number of keyframes. We optimize the full
parameter set similar to [16]. The difference between the
measured image intensity Iu and the righthand side of Eq. 1
is jointly minimized for all involved parameters, given an
initial guess for the radiance Lp, the vignetting V (u), the
exposure time k and the camera response function f :

argmin
c,v,k,Lp

N,M,O∑
i,j,o=1

ρh

(∥∥wj [Iuj − f (kiV (uj)Lpo)
]∥∥2) .

(19)

Here, N denotes the number of keyframes, M the number
of observations, and O the number of map points. The Huber
robust loss function ρh with α = 0.2/255 is employed for
robustness against outliers. An additional weighting term
wj = η

η+‖∇Iuj‖
2 with η = 1 downweighs high gradient

pixels. We follow the suggestion to use a patch centered at
the feature location. The feature orientation is used to extract
an unrotated patch of size 5×5 at the corresponding keypoint
scale. Saturated (255) and blank pixels (0) are removed
before scaling the intensities to unit range.

The exposure time evaluation of individual frames is done
using the current radiance estimation of the tracked map
points:

argmin
k

N∑
i=1

ρh

(∥∥∥∥wi · [f−1 (Iui
)

V (ui)
− k · Lpi

]∥∥∥∥2
)
. (20)

This requires an always up-to-date estimate for the radiance
of each map point. As full optimization is infeasible under
real-time constraints, we refine the exposure time k of a
keyframe and the radiance of all its tracked and newly created
map points Lp on its creation. The full optimization (19) runs
asynchronously after a constant number of keyframes were
created.



TABLE I: Mean RMSE of vignetting, exposure and mean
improvement of consistent feature matches on Monte
Carlo sampled synthetically deteriorated sequence of ICL-
NUIM [20] without loop closure.

Model Radial
polynomial

TPS TPS + radial
polynomial

Vignetting RMSE 0.05267 0.04728 0.04617
Exposure RMSE 0.04188 0.03473 0.03345

Improvement [%] 11.6 13.25 11.98
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Fig. 4: Cumulative histogram of the pairwise Manhattan
distances between fused points after dense reconstruction
using COLMAP [21] on the ICL-NUIM dataset. A higher
curve is better.

IV. EVALUATION

We test our approach in different synthetic and real
scenarios. RGB-D sequences from the synthetic dataset of
ICL-NIUM [20] are modified to exhibit vignetting and sinu-
soidally varying exposure times. The real-world sequences
are captured with a stereo rig attached to a micro aerial ve-
hicle. The rig consists of two synchronized FLIR Blackfly S
BFS-U3-51S5 color cameras with a resolution of 2448×2048
pixel. The cameras were calibrated using Kalibr [22]. We
activated auto exposure without gain during our experiments
and recorded the images at 22 Hz as well as the exposure
time for comparison.

Our estimates will be compared on real-world sequences
against the methods by Engel et al. [12], Alexandrov et
al. [13], and Bergmann et al. [16]. These sequences were
recorded in a hallway with stonework and in a lab. All
calculations were performed on an Intel Core i7-6700 HQ
with 32 GB RAM running Ubuntu 16.04. We start vignetting
and CRF calibration after ten keyframes have been created
and placed the control points on a 4 × 5 regular grid to
incorporate the aspect ratio.

Camera Response Function: We evaluate our TPS-CRF
on the 201 response curves of real-world cameras within the
DoRF-Dataset [23]. We perform a least squares fit for each
camera and evaluate the Root Mean Squared Error (RMSE).
Minimization is implemented using Ceres-Solver [24].We
limit the number of tested TPS parameters to 20 and the
polynomial order to 15 and evaluate three different CRFs:
TPS with polynomial p as well as with the GGCM (16),
denoted as TPS+GGCM, and GGCM in which the poly-
nomial is replaced with a TPS, denoted as GGCMTPS .
We report the RMSE and the running time in Fig. 3 for
some configurations. The functions were always initialized
to linear interpolate between zero and one.

We showed that all the presented models can successfully
fit real-world camera response functions—even though the
total number of parameters increases with additional thin
plate splines. We have found that there exists a trade-off
between the time it takes to fit a higher-order polynomial
model and the number of TPS parameters. Hence, we can
lower the polynomial degree by adding a number of TPS and
obtain a better RMSE while using less time to fit the model.

We obtained the best results for the combination of
TPS+GGCM followed by GGCMTPS while the classical
TPS performed worst and took longest to optimize. The
fastest results were obtained using GGCMTPS . We attribute
the accuracy of TPS+GGCM compared to only GGCM to the
additional flexibility from the thin plate splines. The deficit
of the original TPS stems from the polynomial, which is not
an appropriate model for Gamma-like curves. Still, it reaches
the same error as GGCM (n = 15) with 60 control points
while taking three times as long.

Vignetting Correction: We perform multiple experiments
with different vignetting masks. The first vignetting mask
is the ideal case with a pure sixth-order polynomial (13)
that originates from the center of the image. The second
vignetting mask has a randomly shifted origin while the
third mask is slightly deformed by locally consistent noise.
We compare the obtained results using a pure polynomial
against using only TPS [15] and our combination (14).1 We
employ the multi-view stereo pipeline of COLMAP [21]
to create a dense reconstruction given only the keyframes
selected before. The reconstruction is run with the original,
the modified and the corrected images. The modified images
are the altered images exhibiting vignetting and synthetic
sinusoidal exposure changes as described above. We applied
our estimated correction on the modified images to obtain
the corrected images. The difference in mean Manhattan
distance between fused points is visualized in Fig. 4. A
smaller distance is preferable since fused points are more
similar. The reconstruction from corrected images follows the
original graph closely for small differences (< 10) whereas
the modified sequence exhibits larger differences.

We further deteriorated the vignetting by moving the
vignetting origin away from the image center and added low
spatial-frequency noise. We jointly optimized the vignetting
and the exposure time on the same keyframes and computed
the RMSE. We repeated this procedure one hundred times for
the sixth-order radial polynomial (13), the original TPS (7)
and our radial TPS (14). The results are reported in Tab. I. As
expected our radial TPS reported the best results, followed
by the original TPS and the radial polynomial. An improved
vignetting estimate simultaneously reduces the difference
between estimated and correct exposure time, but increasing
the number of thin plate splines reduced the RMSE at
the expense of increased optimization and run time. After
optimization, we corrected all keyframes and recomputed
matching features. We checked the consistency of all matches

1An accompanying video is available at
https://www.ais.uni-bonn.de/videos/IROS_2018_
photometric_calibration.



TABLE II: RMSE of all optimized parameters on synthetically deteriorated sequence of ICL-NUIM [20] w/o loop closure.

Model
CRF GGCMTPS [16]
Vignetting Radial

polynomial
TPS TPS + radial

polynomial
Radial

polynomial

RMSE
Exposure 0.0748510 0.0331069 0.0292366 0.1760950
Vignetting 0.0558832 0.0380453 0.0366498 0.1029400
CRF 0.0309349 0.0267781 0.0209797 0.1468000

RMSE10 Exposure 0.0186301 0.0126985 0.0140462 0.0567196

(a) Modified

-0.1

0

0.1

(b) Corrected (our) (c) Corrected ([16])

Fig. 5: Difference between original and corrected image for image 858 from ICL-NUIM living room 2 [20]. Vignetting is
evident in the modified image (left). Our correction (middle) successfully reduces vignetting, exposure change, and removes
the response function. The estimated exposure is too high using the method of [16] (right).

using the ground truth poses. Surprisingly, the number of
correct correspondences increased after correction by around
12 % and thereby improves the overall system accuracy.

Synthetic Datasets: A drawback of the previously men-
tioned TPS-CRF is its missing closed-form invertibility.
Hence, we choose to use the GGCMTPS as our CRF
model for the integrated tests on the synthetic and real-
world datasets, which is also quite fast to optimize. The TPS
uses five control points and a second-degree polynomial. We
evaluate all three vignetting models and use a grid size of
4×5 for the TPS. The RMSE for the exposure ratio, CRF and
vignetting is reported in Tab. II. Additionally, we evaluated
the approach of Bergmann et al. [16] with default parameters
and number of active frames set to the sequence length.
We observed a strong drift in the exposure estimate. This
is evident in Fig. 5 (right), where the difference between the
original and the corrected estimates is visualized. Hence, we
also report the RMSE10 over a smaller window of ten frames.
We attribute the improved results of our method to the joint
optimization, in contrast to alternating between radiance and
photometric parameters, as well as more robust keypoints.

Real-World Datasets: We followed the prescribed cali-
bration procedures for the methods by Engel et al. [12]
and Alexandrov et al. [13]. During our tests, we found the
white-paper method to be sensible to lighting conditions, e.g.,
mixtures of artificial and natural light while the method by
Engel et al. may produce non-monotonic camera response
functions. The corresponding inverse CRF curves are visu-
alized in Fig. 7. Fig. 6 shows the reported exposure ratio on
the lab sequence for the first camera in our stereo rig and
our estimated exposure times for keyframes (green dots) and
for the approach by Bergmann et al. [16]. Similar results
are obtained for the second camera. The data is aligned as
proposed by Bergmann et al. [16]. The sample texture in
Fig. 8 extracted from the wall sequence shows clear visual

improvements. The seams disappear and the colors become
more uniform.

V. CONCLUSIONS

We presented a fast and easy-to-use photometric calibra-
tion method that is based on a visual SLAM system running
online without the need for white or evenly illuminated
surfaces, calibration targets, or known scene geometry. We
employ thin plate splines with a sixth-order polynomial
for approximating the attenuation factors w.r.t. the image
position to deal with sparsely distributed scaling estimates,
and to obtain pixel-wise vignetting correction factors. The
experimental results substantiate that the calibration con-
verges quickly and effectively corrects vignetting and like-
wise estimates the camera response function, exposure times,
and scene radiance. The fitting approach works well with
different models of varying complexity and, thus, allows us
to cover non-standard camera configurations as well. Due
to the straightforward implementation and fast convergence,
our contribution can serve as a general initialization stage for
robot vision algorithms on mobile platforms that can then
quickly adapt to the current camera setup.
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