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Abstract— Mobile manipulation tasks are one of the key
challenges in the field of search and rescue (SAR) robotics
requiring robots with flexible locomotion and manipulation
abilities. Since the tasks are mostly unknown in advance, the
robot has to adapt to a wide variety of terrains and workspaces
during a mission. The centaur-like robot Centauro has a
hybrid legged-wheeled base and an anthropomorphic upper
body to carry out complex tasks in environments too dangerous
for humans. Due to its high number of degrees of freedom,
controlling the robot with direct teleoperation approaches is
challenging and exhausting. Supervised autonomy approaches
are promising to increase quality and speed of control while
keeping the flexibility to solve unknown tasks. We developed
a set of operator assistance functionalities with different levels
of autonomy to control the robot for challenging locomotion
and manipulation tasks. The integrated system was evaluated in
disaster response scenarios and showed promising performance.

I. INTRODUCTION

In many SAR scenarios, humans cannot work due to risks

such as radiation or collapsing structures. Mobile manipu-

lation robots are promising to help solving tasks in these

cases. Respective environments, e.g., the damaged nuclear

plant in Fukushima, are mostly man-made but cluttered with

debris and unpredictable. Hence, a suitable platform needs

to provide a wide range of capabilities to solve occurring

tasks and address unforeseen difficulties.

The Centauro robot has been developed in the European

H2020 project CENTAURO1 for such scenarios (Fig. 1).

Its lower body consists of four articulated legs ending in

steerable wheels which allows for omnidirectional driving as

well as for stepping locomotion. The anthropomorphic upper

body possesses two 7 DoF arms ending in two hands with

different capabilities. One of them is an anthropomorphic

Schunk hand which allows for precise manipulation in man-

made workspaces. Additionally, several sensors such as a

3D laser scanner and cameras perceive the environment and

enable the operators to obtain situation awareness.

Teleoperation of such highly flexible robots is challeng-

ing, though. Common approaches, like the control in joint

space or Cartesian end-effector space, are only suitable for

simple tasks. For more complex tasks, the high number of

DoF and typical constraints of multi-legged robots, such as

stability and collision avoidance, put a high cognitive load

on the operator which may result in slow and dangerous
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Fig. 1. Centauro robot controlled by our proposed teleoperation system:
overcoming a step field (l.) and operating an off-the-shelf power drill (r.).

operations. One way to address this challenge is by means

of immersive exoskeletons, such as the recently introduced

Master Maneuvering System for the Toyota humanoid robot

T-HR32. These direct control interfaces are as complex as the

controlled robot and require a low-latency, high-bandwidth

data connection. Other teleoperation approaches utilize pre-

defined motion primitives. They reduce the operator’s cog-

nitive load but the generation of these primitives requires

knowledge about specific tasks in advance. Obviously, this

restricts the platform flexibility and applicability to unknown

tasks. Supervised autonomy is promising to provide fast and

reliable control while keeping a high flexibility.

We developed a set of teleoperation interfaces with dif-

ferent levels of autonomy for solving a wide variety of

locomotion and manipulation tasks with Centauro. For ex-

ample, we perform autonomous grasping of unknown tools

or semi-autonomous stepping over irregular terrain. Other

interfaces with less autonomy include wrist control via a 6D

input device. All interfaces provide a high degree of intuition

which leads to a limited cognitive load for the operator. This

results in less operator failures and extended operation times

before the operator needs to recover or must be exchanged.

The integrated functionalities were evaluated in exper-

iments which are typical for disaster-response missions.

Locomotion capabilities were evaluated in tasks like driving

up a ramp, overcoming a gap, and moving through an

irregular step field. Manipulation interfaces were evaluated

in experiments like grasping and using different power tools,

physically connecting and disconnecting objects such as

electrical plugs, or scanning surfaces, e.g., for radiation.

A combination of locomotion and manipulation capabilities

was required for opening and passing a door. Most of the

tasks were solved quickly and without previous training.

2https://newsroom.toyota.co.jp/en/download/

20110424
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II. RELATED WORK

Several mobile manipulation robots have been developed

for SAR missions. Those robots vary in their locomotion

strategy as well as their manipulation setup. Pure wheeled,

tracked or legged robots can either overcome long, suffi-

ciently even distances quickly or can navigate in challenging

terrain with isolated footholds, but a combination of both

capabilities is only available for hybrid driving-stepping

locomotion platforms. Manipulation capabilities depend on

the number and design of arms and especially the end-

effectors. However, independent from robot design details,

key to the applicability in a wide range of scenarios are

teleoperation interfaces which ideally enable teleoperators to

use all robot capabilities while keeping the cognitive load

low and the applicability to unknown tasks high. In 2015, the

DARPA Robotics Challenge (DRC) pushed research teams to

develop robots that are capable of performing several mobile

manipulation tasks which indirectly put the focus on the

development of suitable teleoperation interfaces.

RoboSimian [1] is a quadrupedal robot with four gen-

eralized limbs, developed for the DRC. Each limb ends

in an under-actuated hand which allows for solving both

stepping locomotion and manipulation tasks. Furthermore,

RoboSimian has two active wheels at its trunk and two caster

wheels at its limbs which allow for driving on even terrain.

The operator interface is a standard laptop from which the

operator can design, parametrize, and sequence predefined

behaviors. The DRC winner robot DRC-HUBO [2] and the

third placed platform CHIMP [3] both have roughly anthro-

pomorphic bodies. Both are capable of walking and driving

via additional wheels/tracks on their body. Both robots have

two arms which end in hands with three fingers. Operation

of DRC-HUBO is apportioned among three operators with

different tasks which control the robot by selecting and

adapting predefined poses while CHIMP is operated through

task-specific motions which are configured through wizards

by the operator before their execution.

Our centaur-shaped robot Momaro [4] came in 4th in

the DRC using multiple teleoperation interfaces and showed

autonomy solving known tasks at the DLR SpaceBot Cup [5].

Similar to Centauro, it has four legs ending in steerable

wheels and an anthropomorphic upper body. In contrast to

Centauro, it lacks hip yaw joints for the legs which restricts

stepping capabilities. Moreover, its two arms end in 4-finger

grippers which cannot provide the grasping capabilities of

a human hand. Driving locomotion can be controlled by a

joystick; leg motions are predesigned or can be controlled

during mission in joint space or Cartesian end-effector space.

Furthermore, a semi-autonomous stepping controller was

presented which relies on perceived terrain heights [6]. For

telemanipulation, the operator used two hand-held controllers

with magnetic trackers whose movements were projected

to the robot arms. Although this approach appears to be

intuitive, the operator experienced a high cognitive load

due to imprecision in the motion mapping and the lack

of feedback. Grasping was controlled by predefined gripper
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Fig. 2. The Centauro robot.

configurations.

Momaro can be seen as the predecessor of Centauro. Key

design features, such as the general lower and upper body

kinematics and the sensor setup, were transferred. Weak

points, such as chosen actuators, missing hip yaw joints or

restricted end-effectors, were improved.

Regarding the operator interface, we enrich Momaro’s

teleoperation interfaces by adding more intuitive control

devices. Additionally, we focus on solving unknown tasks by

incorporating flexible autonomous capabilities. An overview

over robot control approaches with different levels of auton-

omy is given by Kiu et al. [7]. As shown recently by Marturi

et al. [8] and earlier by Leeper et al. [9], the task efficiency

and accuracy are improved by incorporating further inter-

faced and autonomous functionalities. Muelling et al. [10],

for example, developed an integrated system of computer

vision with manipulation capabilities, in which known ob-

jects with simple geometries are recognized, localized and

grasped using depth images. Peer et al. [11] and Salvietti

et al. [12] present telemanipulation approaches by mapping

operator hand configurations to the robot hand and provide

force feedback. Although such interfaces seem intuitive, they

generally require a large amount of operator training to

provide a satisfying grasp quality. Havoutis et al. [13] learn

manipulation tasks online for semi-autonomous teleoperation

applications where large communication latency make direct

teleoperation unfeasible. In our current system, we use both

perception and learning approaches to enrich our teleopera-

tion capabilities.

III. HARDWARE

Centauro (Fig. 2) was designed by the Istituto Italiano

di Tecnologia (IIT), bringing together Momaro’s kinematic

concept and Walk-Man’s compliant actuation [14]. Cen-

tauro’s kinematic designs aims to provide a wide range

of locomotion and manipulation capabilities to solve any

occurring disaster response task while the robot size is

suitable for man-made environments and workspaces [15].

Centauro’s lower body features four articulated 5-DoF legs

which end in 360° steerable, directly driven wheels. This

design allows for both omnidirectional driving and stepping

locomotion. In addition, Centauro can perform locomotion
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Fig. 3. Environment and robot state visualization for the operators.

actions which are not possible for driving or legged plat-

forms, such as shifting individual feet while keeping ground

contact.

The anthropomorphic upper body consists of a torso yaw

joint and two 7-DoF arms ending in end-effectors with

different capabilities. The right end-effector is a 9-DoF

anthropomorphic Schunk hand which allows for dexterous,

human-like manipulation [16]. The left end-effector is a

flexible 1-DoF SoftHand which can be used for robust

manipulation [17]. The overall upper body design results in

a workspace equal to an adult-sized human.

Centauro’s head comprises a Microsoft Kinect V2 RGB-D

sensor [18], an array of three PointGrey BlackFly BFLY-U3-

23S6C wide-angle color cameras, and a rotating Velodyne

Puck VLP-16 3D laser scanner with a spherical field-of-

view. A VectorNav VN-100 IMU is mounted in the torso.

Two further RGB cameras were mounted under the robot

base to obtain a view on the feet. Furthermore, the robot

base incorporates three computing units as well as the

communication routers and the robot battery.

IV. TELEOPERATION ARCHITECTURE

Although the considered disaster environments are too

dangerous for a human to work in, the human capabilities of

situation assessment, mission planning, and his experience

are key to a successful SAR mission. The teleoperation

interface enables the operators to transfer these capabilities

into the scene by providing them an awareness of the

situation and enabling them to control the robot. Both require

a communication infrastructure, since a direct line of sight

is not available.

A. Communication

For data transmission between the operator station and

the robot, we use Ethernet connection or a standard IEEE

802.11ac 5 GHz WiFi link. All communication takes place

using ROS, which is either directly accessed using ROS

network transparency, or encoded with FEC for robustness

using the nimbro network developed for Momaro [4].

For extending the reach, a WiFi repeater can be carried by

the Centauro robot and dropped at an appropriate location.

B. Situation Awareness

We developed several visualizations of the environment

and the robot state to provide good situation awareness for

the operators. RGB camera images from the three cameras in

the robot head are arranged to show a panoramic view from

the robot head perspective which is helpful for a general

scene understanding. In addition, images from the two RGB

cameras under the robot base are arranged to give a detailed

assessment for the terrain under the robot base which was

key to a safe stepping locomotion operation. We rotated the

image of the camera showing the two rear feet by 180° for

intuitive visualization (Fig. 3). Moreover, laser scanner mea-

surements are processed to registered point clouds which are

visualized in RVIZ (Sec. V-B). This visualization is helpful

for both locomotion and manipulation tasks. Finally, colored

RGB-D point clouds are displayed to support manipulation.

Those are enriched by semantics from the object detection

(Sec. V-C).

The robot state is visualized by applying measured joint

angles and IMU data to a 3D robot model in RVIZ. Further

information, such as foot ground contact detection and the

robot center of mass (CoM) are also displayed. We developed

multiple robot control GUIs for different task classes. All

visualization elements were arranged on three monitors as

shown in Fig. 3.

C. Control Interfaces

We propose multiple locomotion and manipulation control

interfaces which are suitable for different task classes. The

whole set of control interfaces aims at enabling the operator

to solve as many—previously known and unknown—typical

disaster response tasks as possible. Hence, a key requirement

is to address the whole range of kinematic capabilities of

the robot while keeping the control itself intuitive. Different

levels of autonomy are utilized to fulfill these requirements.

The individual control interfaces are presented in Sec. VI and

Sec. VII. Some of them require processed sensor input which

is described in the following.

V. ADVANCED ENVIRONMENT PERCEPTION

The chosen sensor setup produces data of several types.

While some sensor measurements, such as foot camera

images, can be directly shown to the operators, other data is

processed. The results serve as more intuitive visualizations

or as input for some of the autonomous control functions.



Fig. 4. Centauro robot traversing a step field. Left: photo of the scene,
right: laser-based 3D map (colored points) and current scan (white points).

A. Ground Contact Detection

To understand the robot positioning in challenging terrain

and to enable semi-autonomous stepping, it is helpful to

detect, if a foot has ground contact. By measuring the joint

torques of the respective leg and by applying a forward

dynamics approach, we compute the 6D force vector which is

applied to the foot. The vertical force component is extracted

and compensated for gravity. If the resulting force exceeds

a given threshold, ground contact is detected.

B. Laser-based 3D Mapping and Localization

Laser range measurements from the 3D rotating laser

scanner are aggregated to a dense 3D map of the environment

using our local multiresolution surfel grid approach [19]. The

laser provides ~300,000 range measurements per second with

a maximum range of 100 m and is rotated at 0.1 rotations

per second, resulting in a dense omnidirectional 3D scan

per halve rotation. We acquire one full 3D scan every five

seconds and compensate for sensor motion during acquisition

by incorporating IMU measurements.

Consecutive scans are registered to a dense egocentric

map. The resulting egocentric maps from different view

poses form nodes in a pose graph to allow for allocentric

mapping of the environment. They are connected by edges

representing spatial constraints, which result from aligning

these maps with each other. The global registration error is

minimized using graph optimization. The resulting 3D map

allows for localizing the robot in an allocentric frame. A

resulting 3D map is shown in Fig. 4.

C. Object Segmentation

We apply our object segmentation approach to RGB

images from the Kinect V2 [20]. This approach is able to

produce pixel- (or point-)wise segmentation directly. It uses

the RefineNet [21] architecture, which addresses the problem

of low spatial resolution in later stages of the CNNs by

subsequently upsampling and merging higher-level feature

maps with lower-level features of higher spatial resolution—

creating a representation of the input image with both highly

semantic information and high spatial resolution, which is

well suited for semantic segmentation.

We address the lack of large amounts of training data by

generating new training scenes using data captured from a

turntable setup. Automatically extracted object segments are

inserted into precaptured scenes (Fig. 5).

Fig. 5. Scene synthesis. Synthetic training scene generated by inserting new
objects into the scene. The right image shows the resulting color image, the
left one shows synthetic ground truth for training the segmentation model.

Fig. 6. Pose estimation network architecture.

D. Pose Estimation

For predicting poses efficiently, we augment the semantic

segmentation pipeline with an additional CNN to estimate the

object 5D pose (rotational, and X and Y of the translational

components) from RGB-D crops of the objects from the

scene. Those crops are extracted from the bounding boxes of

detected contours. To encode the segmentation results, pixels

classified as non-object are pushed towards red (Fig. 6). This

representation allows the network to focus on the specific

object for which the pose should be estimated. The pretrained

RefineNet network from the semantic segmentation is used

to extract features. To generate the ground truth poses for

training the network, the data acquisition pipeline described

in [20] was extended to record turntable poses automatically

and fuse captures with different object poses or different

objects with minimal user intervention.

VI. LOCOMOTION CONTROL

Centauro’s lower body design allows for omnidirectional

driving as well as stepping locomotion and, hence, provides

a wide range of locomotion capabilities which have to

be addressed by the respective control interface. Driving

locomotion allows for fast, energy efficient and stable naviga-

tion on sufficiently even terrain while stepping locomotion

increases the platform’s capabilities to terrains where only

isolated footholds are available. Besides the listed control

interfaces, we developed a hybrid driving-stepping locomo-

tion planner [22], [23] which lifts the level of autonomy even

higher but has not been evaluated on the real platform, yet.

A. 4D Joystick

Omnidirectional driving can be controlled by a Logitech

Extreme 3D Pro joystick with four axis (Fig. 7). Robot

base velocity components vx, vy and vθ are mapped to

the three corresponding joystick axis. Foot-specific velocities

and orientations are derived from this robot base velocity and

the individual foot positions. The joystick throttle controller

jointly scales all three velocity components.



Fig. 7. Operator input devices. Left: Logitech Extreme 3D Pro for
omnidirectional driving control, center and right: 3DConnexion SpacePilot

Pro and respective operator GUI for dexterous manipulation.

B. Keyframe Editor

A keyframe editor generates robot motions by interpolat-

ing between given keyframes [5]. Keyframes for joint groups

(e.g., the front left leg) can either be specified in joint space

or in Cartesian end-effector space. Longer motion sequences

can be designed by queuing keyframes. The operators can

either predefine keyframes, modify them during the mission

and send them to the robot, or modify the robot configuration

live. The RVIZ-based GUI (Fig. 8) allows for keyframe

definition by either graphically moving joint group markers

with the mouse or by entering numerical values for desired

joint angles or end-effector positions.

C. Semi-autonomous Stepping Locomotion

Stepping locomotion can be controlled by a semi-

autonomous controller. It provides a set of motions which can

be triggered by the operator. Available motions are: step with

a chosen foot, drive a chosen foot forward, and shift the robot

base forward. For stepping motions, the controller balances

the robot by shifting the robot base longitudinally and

laterally, and by rolling it around its longitudinal axis. If a

stable pose is established, the stepping foot is lifted, extended

by a given length and lowered. The lowering motion stops

when ground contact is detected. Hence, the robot adapts

to the terrain automatically. The proposed controller triggers

queues of keyframes, as described in Sec. VI-B.

We developed an intuitive GUI which provides buttons

to trigger the described motions (Fig. 8). It also contains

buttons to manually move individual feet in Cartesian space.

Moreover, the GUI displays detected terrain heights under

the four feet and a history of the recently triggered motions

which is helpful to execute repetitive motion sequences.

D. Motion Execution

The Centauro robot uses a keyframe interpolation method

developed for Momaro to generate joint space trajecto-

ries [4]. Keyframes consist of joint space or 6D Euclidean

space poses for each of the robot’s limbs. The interpolation

system produces jerk-free joint-space trajectories obeying

velocity and acceleration constraints set per keyframe.

VII. MANIPULATION CONTROL

Regarding the robot’s manipulation capabilities, the Cen-

tauro system possesses several levels of autonomy: starting at

low-level direct joint control; over inverse kinematics control

with end-effector poses coming from either an 6D input

Fig. 8. Left: Keyframe editor, right: semi-autonomous stepping GUI.

device, or 6D markers on the screen; keyframe motions with

collision avoidance; and finally, autonomous pick-and-place

actions triggered by the operator. For manipulation, we also

use the same interface as described in Sec. VI-B. Thus, we

will only describe in this section the novel 6D input interface

and the autonomous grasping capabilities.

A. Dexterous Wrist Manipulation

We developed a user interface for dexterous manipulation

using a 3DConnexion SpacePilot Pro which is a 6D input

device with additional buttons (Fig. 7). The interface estab-

lishes the connection between the device and a motion player,

which interpolates between the desired and current poses and

executes the motion.

The following control parameters can be easily adjusted

by the GUI (Fig. 7) or by the device buttons: the controlled

end-effector (e.g., a wrist for arm control or an ankle for

leg control), the reference frame (e.g., robot base frame,

end-effector frame, or a custom frame), the translational and

rotational axes in which the end-effector is allowed to move,

and the maximum end-effector speed.

This teleoperation interface is well suited for manipula-

tion tasks where very precise arm movement along certain

directions is required (e.g., moving the arm along a plane

surface or turning an object around a specified axis).

B. Autonomous Grasping

To achieve autonomous manipulation, several components

need to be developed and integrated. We propose a pipeline

composed of: semantic segmentation (Sec. V-C), pose es-

timation (Sec. V-D), and grasp planning that generates a

feasible motion (set of keyframes), which later is combined

with a trajectory optimization that produces the final joint

trajectory given a collision map generated by the laser SLAM

(Sec. V-B) perception module (Fig. 9).

1) Grasp Planning: Our grasp planning method is based

on the observation that objects within a category exhibit

several similarities in their extrinsic geometry. We transfer
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Fig. 9. Overview of autonomous manipulation: integrated sensors (red),
perception modules (purple), and manipulation planning (yellow).
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grasp poses from a known instance—called the canonical

model—to novel instances of the same category.

This transfer happens as the result of a non-rigid regis-

tration method based on a learned latent shape space. For

building this latent shape space, we define a single canonical

model for the category, and calculate the deformation fields

relating the canonical model to all other instances by using

Coherent Point Drift (CPD) [24]. This provides a single

matrix whose number of elements equals the number of

points in the canonical model for each instance. A design

matrix containing all deformation fields is consequently

assembled as column vectors. Finally, we apply Principle

Component Analysis Expectation Maximization (PCA-EM)

on the design matrix to find a lower-dimensional manifold

of deformation fields, i.e., the latent shape space (Fig. 10).

We add a global rigid transformation for each instance

to reduce the impact of minor misalignments in the pose

between the canonical shape and the observed shape. For

registering a new instance, we use gradient descent to simul-

taneously optimize for pose and shape. In general, we aim

for an aligned dense deformation field that matches best the

canonical model toward the observed instance. Associated

grasping control poses of the canonical model are also

transformed to the observed instance and used for the final

grasping motion. We orthonormalize the transformed poses

since the warping process can violate the orthogonality of

the orientation.

Fig. 11 illustrates how the canonical model and associated

grasping control poses of a Drill category are warped to fit to

the observed point cloud. A complete analysis and discussion

of this method is available in [25] and [26].

2) Trajectory Optimization: We use arm trajectory op-

timization to generate collision free and fast arm trajec-

tories with low actuator load. Our approach [27] is based

on Stochastic Trajectory Optimization for Motion Planning

(STOMP) [28]. The method receives a point cloud describing

the environment and an initial trajectory as input. It outputs

a trajectory, that is optimized with respect to a cost function.

The initial trajectory may be very naı̈ve, for example a

straight interpolation between the start and the goal configu-

ration. The trajectories are represented as sets of keyframes

in joint space. The optimization is performed in an iterative

manner in order to gradually minimize the costs. In contrast

to the original STOMP, our cost function is defined as a sum

a.) b.) c.)

d.) e.) f.)

Fig. 11. Transferring grasping knowledge to the presented novel drill.
a) novel view; b)-e) grasping control poses of the canonical model are
transformed; f) inferred shape. .

of costs of transitions between the consequent keyframes

instead of the keyframes themselves. The cost function in-

cludes trajectory duration, collision avoidance, and required

joint torques. Since cost components are normalized, they

can be weighted to introduce a prioritized optimization.

For collision avoidance, we assume the robot base and

the environment to be static and describe both with signed

Euclidean Distance Transforms (EDT) which allow for fast

collision checking against the moving robot parts, repre-

sented as spheres. An example is shown in Fig. 12.

VIII. EVALUATION

We evaluated the Centauro system with task-level tests

at facilities of the Kerntechnische Hilfsdienst GmbH in

Karlsruhe, Germany, which is a provider of systems and

knowledge for disaster response in nuclear power plants. All

tasks were performed without direct visual contact such that

the operators had to rely on information provided by our

interfaces. There were no training runs for any of the tasks. A

video with footage from the experiments is available online3.

The results are summarized in Table I.

A. Locomotion Tasks

The tested locomotion tasks mainly focused on proving

that the robot can effectively navigate different complex

terrain types. In the simplest task, the robot was required to

drive up a ramp with 20
◦ incline, which was accomplished

using joystick teleoperation. In the door experiment (Fig. 13),

the robot had to open a door and drive through it. The

Fig. 12. Two qualitatively different trajectories generated by our trajec-
tory optimization: priority on obstacle avoidance (green) and priority on
trajectory duration (blue). The point cloud visualizes the environment.

3https://www.ais.uni-bonn.de/videos/IROS_2018_

Centauro



TABLE I

EVALUATED TASKS.

Locomotion Manipulation

Task Success/Tries Task Success/Tries

Door 3/3 Surface detection 2/2
Ramp 3/3 Plug 2/3
Gap 3/4 Screw driver 3/3
Step field 2/2 Autonomous

grasping
7/14

Stairs 0/1

manipulation part was accomplished using the 6D mouse

control without any problem.

More complex locomotion capabilities were tested in the

gap and step field tests. The gap test required the robot

to overcome a 30 cm gap, which was accomplished using

predesigned stepping motion primitives, which where inter-

leaved with joystick driving commands (see Fig. 14).

A more challenging test was performed by climbing a set

of stairs (see Fig. 15). For this purpose, motion primitives

were designed offline before the test, and executed under

supervision of the operators, who could take corrective

actions using the joystick input. Due to hardware problems,

it was only possible to make one serious attempt at climbing

the stairs, which had to be stopped after an actuator shutdown

halfway up—with the robot at least completely on the stairs.

Another task was to traverse a step field consisting of

20×20×10 cm blocks which were placed on the ground (see

Fig. 16). The operators issued stepping commands via the

semi-automatic stepping GUI described in Sec. VI-C. The

task was solved two out of two attempts.

Overall, the locomotion capabilities were demonstrated

successfully during the Karlsruhe evaluation. The more com-

plex tasks would have been impossible to finish in acceptable

time without autonomy functions.

B. Telemanipulation Tasks

The first task required the robot to sweep a planar sur-

face with a (dummy) radiation sensor without touching the

surface. This task was successfully performed using the 6D

mouse for wrist control and locomotion via joystick.

An electrical plug had to be inserted by the robot (Fig. 17),

which was performed using the 6D mouse. After two suc-

cessful attempts, a plastic part in the robot wrist broke due to

excessive force during the third attempt—the operators had

misjudged the situation slightly.

The most complex telemanipulation task required the

robot to drive a screw into a wooden block (Fig. 18). The

Fig. 13. Opening the door and driving through it.

Fig. 14. Overcoming a gap with the Centauro robot.

robot used a cordless screw driver for this task, starting

with the tool in hand. The wooden block was approached

using joystick locomotion, mainly guided by camera images

and the 3D laser scanner point cloud. Next, the tip of

the screw driver was aligned with the screw using 6D

mouse control, guided by camera images. For gaining an

additional perspective, a small webcam was mounted on the

other hand, providing a controllable-viewpoint perspective to

the operators. After alignment was visually confirmed, the

cordless screwdriver was activated using the index finger of

the robot. During the screwing process, the operators had to

ensure that the tool tip was in constant contact with the screw

head, which was facilitated using the single-axis mode of the

6D mouse interface. Overall, three out of three attempts were

successful.

C. Autonomous Manipulation

The objective of this test was to detect, segment, and

estimate the pose of a previously unknown cordless driller in

front of the robot (Fig. 19). After pose estimation, a grasping

pose was to be transferred from a known model to the new

instance and the driller was to be grasped.

We performed this experiment many times, since it had a

higher failure rate due to the complexity and the number of

involved components. While the system performed well on

the operator side, failures cases on the system side include

imprecise segmentation or misregistration, both resulting in

missed grasps, and hardware failures. Overall, the success

rate improved during testing.

Fig. 15. Climbing stairs.

Fig. 16. Traversing a step field with the Centauro robot.



Fig. 17. Inserting an electrical plug.

Fig. 18. Driving a screw into plywood. Left: Robot arm in front of the
screw. Center/right: Detail on fine alignment and screwing.

IX. CONCLUSION

On the example of the Centauro robot, we successfully

demonstrated several useful autonomous functions that as-

sist the operators on different levels of autonomy. Their

efficiency was especially demonstrated considering that all

experiments were performed without any previous training.

Operation time was often shortened or task fulfillment was

enabled. We are convinced that such strong autonomy func-

tions are needed for disaster response robots to make rapid

deployment in unknown scenarios possible.
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