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Abstract— Just like the well-established Euler angles rep-
resentation, fused angles are a convenient parameterisation
for rotations in three-dimensional Euclidean space. They were
developed in the context of balancing bodies, most specifically
walking bipedal robots, but have since found wider application
due to their useful properties. A comparative analysis between
fused angles and Euler angles is presented in this paper,
delineating the specific differences between the two represen-
tations that make fused angles more suitable for representing
orientations in balance-related scenarios. Aspects of compar-
ison include the locations of the singularities, the associated
parameter sensitivities, the level of mutual independence of the
parameters, and the axisymmetry of the parameters.

I. INTRODUCTION

The fused angles rotation parameterisation was recently
introduced in [1]. While it arose from the analysis and control
of balancing bodies in 3D and has been used extensively
as such [2], it has also since been used for various other
purposes, including for example attitude estimation [3] and
the modelling of foot orientations and ground contacts [4].
Libraries have also been released in C++ [5] and Matlab [6]
that implement a wide variety of conversions and operations
involving fused angles and all of the classic ways of repre-
senting rotations.

Fused angles aim to provide a robust and geometrically
intuitive way of quantifying the amount of rotation that a
body has within each of the three major planes, i.e. the
xy, yz and xz planes, as illustrated on the left in Fig. 1.
This can conceptually be thought of as requiring a notion
of how to concurrently quantify the ‘amount of rotation’ a
body has about the three principal axes. Furthermore, it is an
aim that the three quantified planar rotation values describe
the state of balance in an intuitive, problem-relevant and
symmetrical way, in particular with respect to the lateral,
sagittal and transverse planes. Clearly, quaternions do not
satisfy these stated aims as no three quaternion components
directly quantify planar angles of rotation. Note that due to
the balance-inspired nature of the task, the only required
axiom is that there is some clear notion of ‘up’. This
is generally the opposite direction to gravity, or along a
particular surface normal, and without loss of generality is
chosen to be represented by the global z-axis.

Euler angles, illustrated on the right in Fig. 1, may at
first seem to satisfy these requirements, being a commonly
accepted catch-all solution, but this is not entirely so. They
can often enough be the correct choice for a task, such as
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Fig. 1. Comparison of the fundamental principles of fused angles (left) and
Euler angles (right). Fused angles quantify the amount of rotation within the
three major planes, while Euler angles define three sequential axis rotations,
e.g. around the z-axis, y-axis and then the x-axis.

for example for the modelling of gimbals, or a colocated
series of joints, but too often they are chosen simply because
there does not seem to be a reasonable alternative. This paper
critically assesses Euler angles in direct comparison to fused
angles, to elucidate the differences that make fused angles
the more suitable candidate for quantifying the orientation
of a balancing body. This comparative analysis, in addition
to the presentation of some noteworthy properties of fused
angles, is the main contribution of this paper.

II. RELATED WORK

Based on the aims that were outlined in Section I, one
can quickly see why existing rotation representations such as
quaternions, rotation matrices, axis-angle pairs [7], rotation
vectors [8], and vectorial parameterisations [9] [10], are not
appropriate for the task. For example, neither rotation matri-
ces nor quaternions clearly identify components of rotation
within the three major planes. A thorough review of all of
these representations, and exactly why they are not suitable,
can be found in [1]. The only remaining possibly suitable
classical rotation representation is Euler angles, which at
least at first glance seems to satisfy the specified aims. It is
briefly explained in [1] why also this representation does not
suffice for the required application, but providing a complete
substantiation of this claim is the central topic of this paper.

III. REVIEW OF EULER ANGLES

Euler angles express a rotation as a sequence of three
elemental rotations about a predefined set of coordinate axes,
in a predefined order. The elemental rotations are either by
convention extrinsic about the fixed global x, y and z-axes,
or intrinsic about the local x, y and z-axes of the coordinate
frame being rotated. For each of these two types, the order of
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TABLE I
COMPLETE LIST OF EULER ANGLES AXIS CONVENTIONS

Type Order of axis rotations
Proper Euler angles XYX, XZX, YXY, YZY, ZXZ, ZYZ

Tait-Bryan angles XYZ, XZY, YXZ, YZX, ZXY, ZYX

axis rotations leads to six possible conventions where each
axis is used only once, referred to as Tait-Bryan angles, and a
further six possible conventions where the first and third axes
of rotation are the same, referred to as proper Euler angles.
All possible axis conventions are summarised in Table I.

It is easy to see that all extrinsic Euler angles conventions
are completely equivalent to the corresponding intrinsic Euler
angles conventions, just with the order of rotations reversed.
As such, for comparison with fused angles, without loss
of generality, intrinsic Euler angles are chosen. It is also
desired for the three elemental rotations to be about three
different axes, i.e. Tait-Bryan angles, so that the amount
of rotation within each of the three major planes can be
quantified. Furthermore, fused angles have an initial yaw
rotation component about the z-axis, as detailed later in
Section IV-B, so to facilitate a sensible comparison, only
the intrinsic ZYX and ZXY Euler angles conventions remain
as viable candidates. For completeness, both of these Euler
angles conventions are presented briefly in the following
sections, but unless explicitly otherwise stated, all further
references to ‘Euler angles’ will be referring to intrinsic ZYX
Euler angles. All arguments and properties that apply to the
ZYX representation can also equivalently be reformulated to
apply to the ZXY representation, so the choice is arbitrary.

A. Intrinsic ZYX Euler Angles

Let {G} denote a global reference frame, and {B} be
the frame of which the orientation is being expressed. The
intrinsic ZYX Euler angles representation consists of the
following three sequential rotations: first a rotation by the
Euler yaw ψE about the z-axis, then by the Euler pitch θE
about the new y-axis, and then by the Euler roll φE about the
newest x-axis, as illustrated in Fig. 2. The complete Euler
angles rotation from {G} to {B} is then denoted by

EGB = (ψE, θE, φE) ∈ (−π, π]×[−π2 ,
π
2 ]×(−π, π] ≡ E. (1)

The representation is unique, except at gimbal lock, which
is when θE = ±π2 . The rotation matrix R corresponding to
the Euler angles rotation E = (ψE, θE, φE) is given by

R = Rz(ψE)Ry(θE)Rx(φE) (2)

=

cψEcθE cψEsθEsφE−sψEcφE cψEsθEcφE+sψEsφE
sψEcθE sψEsθEsφE+cψEcφE sψEsθEcφE−cψEsφE
−sθE cθEsφE cθEcφE

,
where s∗ ≡ sin(∗) and c∗ ≡ cos(∗). The conversion from
Euler angles to quaternion form q = (w, x, y, z) is given by

q = (cφ̄Ecθ̄Ecψ̄E+ sφ̄Esθ̄Esψ̄E , sφ̄Ecθ̄Ecψ̄E− cφ̄Esθ̄Esψ̄E ,
cφ̄Esθ̄Ecψ̄E+ sφ̄Ecθ̄Esψ̄E , cφ̄Ecθ̄Esψ̄E− sφ̄Esθ̄Ecψ̄E ),

(3)

where for example sθ̄E = sin θ̄E = sin( 1
2θE).

Fig. 2. Diagram of the intrinsic ZYX and ZXY Euler angles parameters. A
rotation RGB is represented by three successive elemental rotations, of angles
(ψE , θE , φE) about the zG, y′, xB axes (left), and of angles (ψẼ , φẼ , θẼ)
about the zG, x′, yB axes (right), respectively.

B. Intrinsic ZXY Euler Angles

The intrinsic ZXY Euler angles representation consists of
the following three sequential rotations: first a rotation by the
ZXY Euler yaw ψẼ about the z-axis, then by the ZXY Euler
roll φẼ about the new x-axis, and then by the ZXY Euler
pitch θẼ about the newest y-axis, as illustrated in Fig. 2. The
complete ZXY Euler angles rotation is then denoted by

ẼGB = (ψẼ, φẼ, θẼ) ∈ (−π, π]×[−π2 ,
π
2 ]×(−π, π] ≡ Ẽ. (4)

Relations analogous to (2–3) also hold for ZXY Euler angles.
For instance, the quaternion q corresponding to Ẽ is

q = (cφ̄Ẽcθ̄Ẽcψ̄Ẽ−sφ̄Ẽsθ̄Ẽsψ̄Ẽ , sφ̄Ẽcθ̄Ẽcψ̄Ẽ−cφ̄Ẽsθ̄Ẽsψ̄Ẽ ,
cφ̄Ẽsθ̄Ẽcψ̄Ẽ+sφ̄Ẽcθ̄Ẽsψ̄Ẽ , cφ̄Ẽcθ̄Ẽsψ̄Ẽ+sφ̄Ẽsθ̄Ẽcψ̄Ẽ ).

(5)

IV. REVIEW OF FUSED ANGLES

We first briefly introduce the intermediate tilt angles
representation, and then show how the so-called tilt rotation
component is reparameterised to yield fused angles. More
details on both representations can be found in [1].

A. Tilt Angles

Consider the rotation from a global frame {G} to the body-
fixed frame {B}, as shown in Fig. 3. We first construct an
intermediate frame {A} by rotating zB onto zG in the most
direct way possible within the plane that contains both these
vectors. The fused yaw ψ is then defined as the angle of the
z-rotation from {G} to {A}, and the tilt angle α is defined as
the angle of the so-called tilt rotation component from {A}
to {B}. The tilt axis angle γ defines the axis in the xGyG
plane about which the tilt rotation occurs, as shown in Fig. 3.
The complete tilt angles rotation is denoted by

TGB = (ψ, γ, α) ∈ (−π, π]×(−π, π]×[0, π] ≡ T. (6)

All rotations with zero fused yaw ψ are referred to as tilt
rotations, and are completely and uniquely defined by (γ, α).

B. Fused Angles

The fused angles representation also uses the fused yaw
ψ to represent the z-component of rotation, but reparame-
terises the tilt rotation component, as shown in Fig. 4. The
signed angles between zG and the yBzB and xBzB planes,
respectively, are defined as the fused pitch θ and fused roll



Fig. 3. Diagram of the tilt angles parameters (ψ, γ, α). A z-rotation by ψ
from {G} to {A} is followed by a rotation by α about v̂ from {A} to {B}.

φ. A binary hemisphere parameter h ∈ {−1, 1} determines
which of the two solutions for zB are taken. The complete
fused angles rotation from {G} to {B} is then denoted by

FGB = (ψ, θ, φ, h)

∈ (−π, π]×[−π2 ,
π
2 ]×[−π2 ,

π
2 ]×{−1, 1} ≡ F̂.

(7)

Note that F̂ is used because the true domain F of fused angles
is given by the restriction of F̂ by the sine sum criterion

sin2 θ + sin2 φ ≤ 1 ⇐⇒ |θ|+ |φ| ≤ π
2 . (8)

Note that ψ, θ and φ quantify the amount of rotation
within the xy, xz and yz major planes of {A}, respectively.
Mathematically, if q = (w, x, y, z) ∈ Q is the corresponding
quaternion, the fused angle parameters are given by

ψ = wrap
(
2 atan2(z, w)

)
, θ = asin

(
2(wy − xz)

)
,

h = sign(w2 + z2 − 1
2 ), φ = asin

(
2(wx+ yz)

)
,

(9)

where wrap(·) is a function that wraps an angle to (−π, π].
If R is the corresponding rotation matrix, and Rij denotes
the matrix entries, the fused pitch and roll are also given by

θ = asin(−R31), φ = asin(R32). (10)

The rotation matrix for T = (ψ, γ, α), F = (ψ, θ, φ, h) and
δ ≡ ψ + γ is given by

R =

cγcδ + cαsγsδ sγcδ − cαcγsδ sαsδ
cγsδ − cαsγcδ sγsδ + cαcγcδ −sαcδ

−sθ sφ cα

. (11)

V. FUNDAMENTAL PROPERTIES AND RESULTS

The following properties and results are required for the
comparative analysis between fused angles and Euler angles.

A. Mathematical Links Between Fused and Euler Angles

Even though the interpretations of the variables are quite
different, and the nature of the domains do not correspond,
purely mathematically it can be observed that

θE = θ, φẼ = φ. (12)

Fig. 4. Diagram of the fused angles parameters (θ, φ, h). The rotation by α
from {A} to {B} is reparameterised by the angles θ and φ, defined between
zG and the yBzB and xBzB planes, respectively. The hemisphere h is 1
if vh is parallel to zB , and −1 if it is antiparallel.

As such, fused angles can be seen to—with an adaptation of
the domains and geometric interpretation—unite the ZYX
Euler pitch and ZXY Euler roll with a novel and meaningful
concept of yaw, to form a useful representation for rotations.

The following equations relate the ZYX Euler angles,
fused angles and tilt angles parameters:

φE = atan2(sφ, cα), γ = atan2(sθE , cθEsφE ),

φ = asin(cθEsφE ), α = acos(cθEcφE ),
(13)

h = sign(cφE ) =

{
1, if |φE| ≤ π

2 ,
−1, otherwise,

(14)

s2
α = s2

θE + s2
φE − s

2
θEs

2
φE . (15)

Away from the fused yaw and Euler yaw singularities, the
relationship between the two yaws is given by

ψE = wrap(ψ + γ − atan2(cαsγ , cγ)), (16)
ψ = wrap(ψE − atan2(sθ, sφ) + atan2(sθcφE , sφE )

= wrap(ψE − atan2(sθE , cθEsφE) + atan2(sθEcφE , sφE).

B. Effect of Pure Z-Rotations on the Fused Yaw

Unlike for Euler yaw, the composition of any rotation
with a pure z-rotation is additive in terms of fused yaw,
irrespective of whether the z-rotation is local or global, i.e.
applied by post-multiplication or pre-multiplication. If Ψ(·)
is the generic operator that returns the fused yaw of a rotation
in any representation, then up to angle wrapping

Ψ
(
RRz(ψz)

)
= Ψ

(
Rz(ψz)R

)
= Ψ(R) + ψz, (17)

where Rz(ψz) is the rotation matrix corresponding to a
pure z-rotation by ψz . For global z-rotations, the tilt rotation
component also remains unchanged. That is,

Tz(ψz) ◦ T (ψ, γ, α) = T (ψ + ψz, γ, α),

Fz(ψz) ◦ F (ψ, θ, φ, h) = F (ψ + ψz, θ, φ, h),
(18)

where T (·), F (·) is notation that clarifies that the enclosed
parameters are tilt angles or fused angles, respectively, and
Tz(ψz), Fz(ψz) correspond to pure z-rotations by ψz .



C. Format of Rotation Inverses

The inverses of quaternion rotations and rotation matrices
are simply given by:

q−1 = q∗, R−1 = RT, (19)

where q∗ is the quaternion conjugate. For Euler angles, the
situation is more complicated. For E = (ψE, θE, φE),

E−1 = (ψEinv, θEinv, φEinv),

ψEinv = atan2(cψEsθEsφE − sψEcφE , cψEcθE ),

θEinv = − asin(cψEsθEcφE + sψEsφE ),

φEinv = atan2(sψEsθEcφE − cψEsφE , cθEcφE ).

(20)

For tilt and fused angles, the rotation inverses are given by

T−1 = (−ψ,wrap(ψ + γ − π), α),

F−1 = (−ψ, θinv, φinv, h),

θinv = − asin(sαsψ+γ) = − asin(cψsθ + sψsφ),

φinv = − asin(sαcψ+γ) = asin(sψsθ − cψsφ).

(21)

It is quite remarkable to note from (21) that

Ψ
(
R−1

)
= −Ψ

(
R
)
. (22)

This property of fused yaw is referred to as negation through
rotation inversion, and is clearly not satisfied by any variant
of Euler yaw. Furthermore, for the case of pure tilt rotations,
i.e. zero fused yaw, the fused pitch and roll also satisfy the
negation through rotation inversion property:

ψ = 0 ⇐⇒ F−1 = (0,−θ,−φ, h). (23)

For zero Euler yaw ψE , the expression for the inverse rotation
does not simplify as significantly:

ψE = 0 ⇐⇒
E−1 =

(
atan2(sθEsφE , cθE ),

asin(−sθEcφE ),

atan2(−sφE , cθEcφE )
)
.

(24)

VI. COMPARATIVE ANALYSIS

The fused and Euler angles representations are critically
compared in this section. In particular, the many differences
between the two representations that make fused angles
superior to Euler angles for representing orientations are
delineated. The main drawbacks of Euler angles are:
A) The proximity of the gimbal lock singularity to normal

working ranges, leading to unwanted artefacts due to
increased local parameter sensitivities in a widened
neighbourhood of the singularity,

B) The interdependence of the Euler parameters, leading to
an unclear attribution of which parameter encapsulates
which major plane of rotation,

C) The asymmetry introduced by the use of a definition of
yaw that depends on projection, leading to unintuitive
non-axisymmetric behaviour of the yaw angle, and

D) The fundamental requirement of an order of elemental
rotations, leading to non-axisymmetric definitions of
pitch and roll that do not correspond in behaviour.

A. Singularities and Local Parameter Sensitivities

It was shown by Stuelpnagel [11] that it is topologically
impossible to have a global three-dimensional parameterisa-
tion of the rotation group without any singular points. That
is, every three-dimensional parameterisation of the rotation
space, including both Euler angles and fused angles, must
have at least one of the following:

(i) A rotation that does not have a unique set of parameters,
(ii) A parameter set that does not specify a unique rotation,

(iii) A rotation in the neighbourhood of which the sensitivity
of the map from rotations to parameters is unbounded.

The Euler angles representation is singular at gimbal lock,
i.e. θE = ±π2 . For λ ∈ R, the following equivalences hold:

(ψE,
π
2 , φE) ≡ (ψE − λ, π2 , φE − λ),

(ψE,−π2 , φE) ≡ (ψE − λ,−π2 , φE + λ).
(25)

It can be seen that ψE , φE both have essential discontinuities
at gimbal lock, and each correspond to type (i) and (iii)
singularities. Fused angles only possess a single singularity:

Singular ψ ⇐⇒ α = π ⇐⇒ w = z = 0

⇐⇒ θ = φ = 0 and h = −1

⇐⇒ R33 ≡ zG Bz ≡ zB Gz = −1.

(26)

The so-called fused yaw singularity is also an essential
discontinuity, and is of type (i) and (iii), when considering the
geometric definition of the parameters, like for Euler angles.

The local state of balance of a body is a function of
pitch and roll, but not yaw, as this just determines the
heading. Thus, it is critical to compare that fused angles
have a single singularity in a single parameter, namely the
fused yaw, while Euler angles have two singularities in two
parameters, including, very importantly, one that is not yaw.
Hence, fused angles can represent local states of balance
completely without singularities, while this is not the case for
Euler angles. The fused yaw singularity is also ‘maximally
far’ from the identity rotation, at 180◦, while the two Euler
singularities are only 90◦ away, which is close to, if not
in, normal working ranges. In fact, the increased parameter
sensitivity of the Euler yaw and roll near gimbal lock has
noticeable effects even for tilt rotations of only 65◦, as can
be seen in Fig. 5. Sudden sensitive changes in Euler yaw
and roll occur even when the tilt rotation is actually only a
few degrees from being pure pitch—something that is highly
problematic. Consequently, the Euler yaw component of a
rotation cannot in general be meaningfully removed, as for
even moderate tilts this can lead to large z-rotations occurring
in the rotation that remains, which should actually only be
the contribution of pitch and roll.

B. Mutual Independence of Rotation Parameters

To fulfil the parameterisation aims that were set out in
Section I, one necessary condition is that the individual
parameters should be as mutually independent as possible,
and correspond intuitively to the x, y and z-components of
rotation. This is not the case for Euler angles, as is shown
by comparison to fused angles in the following subsections.
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Fig. 5. Plots of the fused and Euler angles parameters when an upright
body is rotated about every axis in the xy plane. These are pure tilt rotations
as no component of rotation is about the z-axis. The parameters of a rotation
by α about the axis (cγ , sγ , 0) are plotted at (x, y) = (αcγ , αsγ). The
fused yaw plot is omitted because it is simply perfectly zero everywhere.
It can clearly be seen that fused pitch and roll correspond to each other
in behaviour, while Euler pitch and roll do not, and that Euler yaw is not
axisymmetric, while the fused yaw trivially is, as it is zero everywhere.

Interdependence of Yaw and Roll: After the Euler yaw
elemental rotation has been applied, the axis y′ of the
following Euler pitch rotation (see Fig. 2) always lies in the
xy plane. For the Euler roll rotation however, the axis xB

in general has a non-zero z-component, and thus applies a
contribution to ‘yaw’ in the intuitive sense. This effect can
be seen most clearly at gimbal lock, where Euler yaw and
roll become completely interchangeable, as given by (25).
Conceptually, part of the total ‘yaw’ of a rotation is always
quantified by the φE parameter instead of ψE , meaning
that neither parameter cleanly represents the component of
rotation that it ideally should. This can also be observed in
Fig. 5. Fused angles do not have this kind of interdependence.

Interdependence of Pitch and Roll: As the Euler pitch
elemental rotation precedes the Euler roll one, the axis of
rotation xB of the latter is a function of θE . This creates a
dependency of φE on θE , which results in φE not completely
capturing the intuitive sense of ‘roll’ independently by itself.
This can be seen in the bottom row of (2), which is a heading-
independent measure of the global up direction, i.e. just like
an accelerometer would measure gravity. While the R31 entry
is a pure function of θE , the R32 entry is not a function purely
of φE , as would naturally be desired. It can be seen from (11)
however, that both these properties hold for fused angles.

Purity of the Axis of Rotation: Euler’s rotation theorem
[12] states that every rotation can be expressed as a single

rotation about some vector e. By definition, this vector must
lie on the line defined by the (x, y, z) quaternion parameters.
Thus, the relative ratios of these quaternion parameters gives
insight into the proportions of the rotation that are about each
of the corresponding axes. It is known from (9) that

ψ = 0 ⇐⇒ z = 0. (27)

This can be interpreted as saying that the fused yaw is zero
exactly when there is no component of rotation about the
z-axis. This is quite logical, but not the case for Euler yaw.

The yaw components ψ and ψE simply rotate the axis of
rotation e around the z-axis by half their value. As such,
we can inspect the purity of the x and y-axis components
by examining just rotations with zero yaw. For fused angles
with zero ψ, it can be deduced from (9) that e is on the line
(sφ, sθ, 0). From (3), for Euler angles with zero ψE , e is on
the line (sφ̄Ecθ̄E , cφ̄Esθ̄E ,−sφ̄Esθ̄E ). While for fused angles
it can be seen that there is no component of rotation about the
x and y-axes exactly when φ and θ are zero respectively, for
Euler angles, ey is also zero when φE = π. This comes about
because the ex and ey components are mixed expressions of
Euler pitch and roll, instead of clean independent expressions
like for fused angles, where direct one-to-one associations
can be made between ex ↔ φ and ey ↔ θ. It is also
evident from the ez = −sφ̄Esθ̄E term that Euler pitch and
roll together contribute a component of rotation about the
z-axis, which is unintuitive. In fact, from (5), the ZXY Euler
angles expression for e is (sφ̄Ẽcθ̄Ẽ , cφ̄Ẽsθ̄Ẽ , sφ̄Ẽsθ̄Ẽ ), which
has the exact opposite contribution to ez . As such, as ez = 0,
fused angles can conceptually be thought of as being exactly
inbetween ZYX and ZXY Euler angles in terms of how the
x and y contributions are combined—concurrent and neutral,
instead of asymmetrical due to a discrete order of rotations.

Rotation Inverses: The fused yaw satisfies the remark-
able negation through rotation inversion property, (22). This
property is quite logical, as the component of rotation about
the z-axis is negated for the inverse rotation, as can be
seen from the inverse quaternion in (19). As a corollary, the
inverse of a zero fused yaw rotation also has zero fused yaw.
Despite being very natural, neither of these two properties
hold for Euler yaw. The inverse equation (20) for Euler yaw
actually depends on both Euler pitch and roll, demonstrating
that these parameters are interdependent. Even for rotations
with zero Euler yaw, (24) shows that all inverse terms are
mixed combinations of pitch and roll, including notably the
non-zero inverse Euler yaw. By comparison, it can be seen
from (23) that for rotations with zero fused yaw, the inverse
fused angles rotation resolves trivially into negation through
rotation inversion for both fused pitch and roll.

C. Axisymmetry of Yaw

When using the fused angles representation in balance-
related applications, by design the z-axis is chosen to point
in the direction opposite to gravity. This ensures that the
concepts of roll, pitch, and in particular yaw, line up with
what one would intuitively expect. The choice of z-axis
however still leaves one degree of rotational freedom open



Fig. 6. Definition of frames for the investigation of axisymmetry, where
the left side in each row is before rotation, and the right side is after. The
same physical rotation is applied in each row. Prior to rotation, {U} =
{A} and {G} = {B}, but {U} and {G} are fixed to the environment, while
{A} and {B} rotate with the robot. Thus, RUA and RGB represent the exact
same physical rotation, but with respect to different reference frames, and
so are not numerically equal. The axisymmetry of fused yaw asserts that
irrespective of the choice of {G}, the fused yaws of RUA and RGB are equal.

for the choice of global x and y-axis. In the context of
this paper, the concept of axisymmetry refers to the property
that one or more rotation parameters are either invariant to
this freedom of choice in the axes, or vary in an intuitive
rotational manner proportional to the choice. In other words,
axisymmetry refers to the notion that the rotation parameters,
in order to be self-consistent, should be symmetrical about
the unambiguously defined z-axis. This is a relatively natural
property to desire, as, for example, the amount of yaw a
rotation has should clearly transcend any arbitrary choice of
which reference frame to use.

The fused yaw is axisymmetric in the sense that it is
invariant to the choice of global x and y-axis. Consider a
robot that is upright, and thereby considered mathematically
to have an identity orientation I3 relative to its environment.
If the robot undergoes any rotation, the above statement of
fused yaw axisymmetry asserts that the fused yaw of this
rotation is the same no matter what choice of global x and y-
axis was made. This is an important and reassuring property
of the fused yaw as, given that the z-axis is unambiguously
defined, any concept of yaw about the z-axis should clearly
be a property of the actual physical rotation, not a property
of some arbitrary choice of virtual reference frame made
solely for the purpose of mathematical analysis. It can easily
be demonstrated, with virtually any non-degenerate example,
that Euler yaw is not axisymmetric, and for different choices
of axes can readily produce deviations up to 180◦.

Let {U} be a global coordinate frame such that zU points
in the direction opposite to gravity, as required, and suppose
that the rotation that is undergone by the robot is given by
RUA . This is a fixed physical rotation of the robot relative

to its environment, so it should have a unique well-defined
fused yaw according to axisymmetry. As the z-axis is fixed,
every valid global coordinate system {G} that can be used
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(32) for the definitions of θβ , φβ , θ0 and φ0. The triangle demonstrates
the decomposition of sinα into the quadrature sinusoid components sin θ
and sinφ, and shows how β can be seen as a negative offset to γ.

as a reference frame to quantify RUA , including {U} itself,
is a pure z-rotation of {U}. That is, for some angle β,

RUG = Rz(β). (28)

Given any choice of {G}, a frame {B} is attached to the
robot in such a way that it coincides with {G} when the robot
is initially upright, and rotates with the robot, as shown in
Fig. 6. As such, RUA and RGB are simply two different ways
of quantifying the exact same rotation, just with a different
frame of reference. The rotation RUA maps {G} onto {B}, so

RUA = RUG RGB RGU . (29)

Taking the fused yaw of both sides, twice applying (17) as
RUG and RGU are both pure z-rotations, and using (22), gives

Ψ
(
RUA
)

= Ψ
(
RUG RGB RGU

)
= Ψ

(
RUG
)

+ Ψ
(
RGB
)

+ Ψ
(
RUG
T
)

= Ψ
(
RUG
)

+ Ψ
(
RGB
)
−Ψ

(
RUG
)

= Ψ
(
RGB
)
.

We note that Ψ
(
RUA
)

is clearly independent of the choice
of {G}, so Ψ

(
RGB
)

must also be. This demonstrates that
the fused yaw of the rotation is invariant to the choice of
reference x and y-axis, i.e. choice of β, as required.

To show that Euler yaw violates axisymmetry, consider

RUA = Rx( 3π
4 ), β = π

2 .

The Euler yaw of RUA is clearly zero, but from (28–29),

RGB = RGU RUA RUG (30)
= Rz(−π2 )Rx( 3π

4 )Rz(
π
2 )

= ER(π,−π4 , π),

where ER(·) denotes the rotation matrix corresponding to the
given Euler angles parameters. Thus, the Euler yaw of RGB is



Fig. 8. Level sets of constant sinα—the sine of the magnitude of the tilt
rotation component of a rotation—in the fused pitch ratio sin θ vs. fused
roll ratio sinφ Cartesian space. The shaded region is the valid domain of
(sinφ, sin θ) for the fused angles representation. The purely circular nature
of the plot visually illustrates the axisymmetry of fused pitch and roll.

π, which is totally different to that of RUA . This proves that
the Euler yaw cannot be axisymmetric. The non-axisymmetry
of Euler yaw is visualised in Fig. 11.

D. Axisymmetry of Pitch and Roll

The fused pitch and roll are axisymmetric in the sense that
their sine ratios sin θ, sinφ circumscribe a uniform circle as
a function of the choice of x and y-axis. That is, the locus
of (sinφ, sin θ) over all possible choices of axes is a circle,
and this circle is traversed uniformly as the choice varies.
As demonstrated later, this is not the case for Euler angles.

The fused pitch θ and fused roll φ come together with
the hemisphere h to define the tilt rotation component of a
rotation. The magnitude of this tilt rotation is given by the
tilt angle α, and the relative direction of this tilt rotation is
given by the tilt axis angle γ. The angles φ and θ can be
thought of as a way of ‘splitting up’ the action of α into its
orthogonal components. More precisely, the sine ratios sinφ
and sin θ are in fact a decomposition of sinα into quadrature
sinusoid components, as illustrated in Fig. 7 and Fig. 11, and
as embodied by

sinα =

√
sin2 φ+ sin2 θ,

γ = atan2
(
sin θ, sinφ

)
.

(31)

The property of axisymmetry in fused pitch and roll is equiv-
alent to stating that the choice of global x and y-axis simply
results in a fixed phase shift to the quadrature components.
This suggests that the nature of fused pitch and roll in
expressing a rotation is a property of the actual physical
rotation, not whatever arbitrary reference frame is chosen to
numerically quantify it. It can easily be demonstrated that
Euler pitch and roll are not axisymmetric.

To demonstrate the fused pitch and roll axisymmetry math-
ematically, consider a robot undergoing the same rotation as

Fig. 9. Level sets of constant sinα in the Euler pitch ratio sin θE vs.
Euler roll ratio sinφE Cartesian space.

in Fig. 6. Once again, β embodies the freedom of choice of
the x and y-axis. We introduce the notation

RUA = TR(ψ0, γ0, α0) = FR(ψ0, θ0, φ0, h0),

RGB = TR(ψβ , γβ , αβ) = FR(ψβ , θβ , φβ , hβ),
(32)

for the tilt and fused angles representations of RUA and
RGB respectively, where TR(·) and FR(·) is notation for

the rotation matrices corresponding to the enclosed tilt and
fused angles parameters, respectively. Using this notation,
the previously established axisymmetry of fused yaw is
equivalent to the statement

ψβ = ψ0. (33)

Substituting (28) into (30), and applying (11) to RUA gives

RGB = Rz(−β) RUA Rz(β)

=

 · · ·
· · ·

sβsφ0 − cβsθ0 cβsφ0 + sβsθ0 cα0

, (34)

where the ‘·’ entries are omitted for brevity. Using (11) to
expand RGB , and comparing matrix entries to (34), gives

−sθβ = sβsφ0 − cβsθ0 ,
sφβ = cβsφ0 + sβsθ0 ,

cαβ = cα0
. (35)

This demonstrates the axisymmetry of the tilt angle α,

αβ = α0, (36)

and as h = sign(cα), also the axisymmetry of h,

hβ = h0. (37)

(35) also leads to the matrix equation[
sinφβ
sin θβ

]
=

[
cβ sβ
−sβ cβ

][
sinφ0

sin θ0

]
. (38)

By identifying the middle matrix as a 2D rotation matrix that
rotates clockwise by β, this equation can be seen to be the
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Fig. 10. Loci of the sine ratios (sinφβ , sin θβ) as β varies, i.e. for all
possible choices of x and y-axis, once (inner curve) for fused pitch θ and roll
φ, and once (outer curve) for Euler pitch θE and roll φE . The base rotation
RUA used for both loci is FR(−1.2, 0.2,−1.3,−1). The non-circularity of

the Euler locus, as well as the non-uniformity of the associated keypoints,
demonstrate the violation of axisymmetry for Euler pitch and roll.

mathematical expression that epitomises the axisymmetry of
fused pitch and roll, in the sense that they vary in a rotational
manner proportional to the choice of β. The effect of varying
β, and how this leads to a uniform circular locus of sine ratios
(sinφβ , sin θβ), is illustrated in Fig. 7. From (38), the phase
shift to the quadrature sinusoid components can be seen to
be −β. In consideration of (31), this yields the relation

γβ = γ0 − β. (39)

This is an expression of the axisymmetry of the tilt axis
angle γ, equivalent to that for fused pitch and roll. As (γ, α)
completely parameterises the tilt rotation space (θ, φ, h), it
can be seen from (36) and (39) that all possible loci of
sine ratios (sinφβ , sin θβ) as β varies can be plotted by
examining the contours of constant α while γ varies. This
is equivalent to generating the level sets of constant sinα in
the fused pitch ratio vs. fused roll ratio plane, the result of
which is shown in Fig. 8. The axisymmetry of fused pitch
and roll can be clearly visually identified in the figure. An
analogous plot for Euler angles is provided in Fig. 9. The
non-axisymmetry of the Euler pitch and roll is clearly visible.

The non-axisymmetry of all three Euler angles parame-
ters is further visualised in Fig. 10 and Fig. 11. The two
figures also illustrate the corresponding axisymmetry of the
fused angles parameters for the same base rotation RUA .
Conceptually, the problem of Euler pitch and roll is the
fundamental requirement of a defined order of rotations. As
can be identified in Fig. 5, this leads to definitions of pitch
and roll that do not correspond to each other in behaviour,
as one then implicitly depends on the value of the other.

VII. CONCLUSION

As has been shown in detail, fused angles possess many
important properties that Euler angles do not. These proper-
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Fig. 11. Plots of yaw, and the pitch and roll sine ratios, against β for both
fused angles (top) and Euler angles (bottom). The base rotation RUA used
for both plots is FR(−1.2, 0.2,−1.3,−1), as in Fig. 10. The invariance of
the fused yaw, as well as the exact quadrature nature of the fused pitch and
roll can be clearly identified. The non-axisymmetry of Euler pitch and roll,
and in particular the irregularity of Euler yaw, can also be seen.

ties relate to the nature of the singularities, the axisymmetry
of the parameters, and the absence of any parameter inter-
dependencies. As a result, fused angles not only intuitively
quantify the amount of rotation within the three major
planes, as was the core objective, but also fulfil natural and
intuitive expectations about how a rotation representation
should behave, especially for the application of representing
the orientation of a balancing body [2].
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