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Abstract— Modern consumer RGB-D cameras are affordable
and provide dense depth estimates at high frame rates. Hence,
they are popular for building dense environment representa-
tions. Yet, the sensors often do not provide accurate depth
estimates since the factory calibration exhibits a static defor-
mation. We present a novel approach to online depth calibration
that uses a visual SLAM system as reference for the measured
depth. A sparse map is generated and the visual information
is used to correct the static deformation of the measured depth
while missing data is extrapolated using a small number of thin
plate splines (TPS). The corrected depth can then be used to
improve the accuracy of the sparse RGB-D map and the 3D
environment reconstruction. As more data becomes available,
the depth calibration is updated on the fly. Our method does
not rely on a planar geometry like walls or a one-to-one-pixel
correspondence between color and depth camera. Our approach
is evaluated in real-world scenarios and against ground truth
data. Comparison against two popular self-calibration methods
is performed. Furthermore, we show clear visual improvement
on aggregated point clouds with our method.

I. INTRODUCTION

Modern consumer RGB-D cameras are affordable and
provide dense depth estimates at high frame rates. Hence,
these sensors are popular for building dense representa-
tions of indoor environment. Yet, the sensors often do not
provide accurate depth estimates since the generation of
depth estimates is mostly a black box which exhibits a
sensor-dependent deformation. This bias can decrease the
reconstruction quality and reduce the camera pose estima-
tion accuracy, especially when using dense reconstruction
frameworks like KinectFusion [1] or ElasticFusion [2], and
may ultimately lead to failure of the tracking process.

The deformation can be present for a number of reasons.
Wrong estimates on the calibration parameters for involved
cameras can degrade the depth quality especially further
away from the principal point. Different exposure and cap-
ture times of the cameras add an error depending on the
current sensor motion. Another discrepancy exists between
depth estimated from the moving RGB camera and IR-based
depth estimates. Quality problems during manufacturing like
a different housing, temperature changes, mechanical strain,
or strong disturbances on the sensor parts also change the
intrinsic parameters and depth estimates and may require a
recalibration. On the upside, the strength of this deformation
mostly depends on the position within the depth image and
the range, which allows us to mitigate the effects by a better
calibration. In contrast to existing approaches, we do not
rely on fitting planes into planar surfaces of dense depth
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Fig. 1: Calibration principle: The map points M (blue dots)
are estimated via triangulation from visual features (gray dot-
ted lines) from RGB images Ci. Valid depth measurements
(black dashed lines) are then compared against expected
distance. Depending on the position within the depth image
Di, the depth is over- (red) or underestimated (blue).

images [3], [4] in the recorded environment, or selecting
only close measurements as reference [5] which makes our
approach more versatile. For example, surface irregularities
or a curved wall differ from the estimated plane and may
bias the calibration. Furthermore, these dense approaches
generate high computational load, even for a small number of
used depth frames, and they disqualify for online calibration.

We propose to use well-triangulated sparse visual map
points as a reference to the measured depth from the depth
sensor. Already a small number of such points allows us
to calculate a very good estimate of the complete depth
deformation. Using triangulated points has the further advan-
tage that our method can be used in an arbitrary (textured)
environment without the necessity for a calibration pattern.
Additionally no manual parameter optimization has to be
done for plane fitting. Instead of assuming a one-to-one
relationship between color and depth pixels, we explicitly use
the transformation between color and depth camera, allowing
us to use an arbitrary sensor setup, like stereo and depth
camera, and not restricting the method to RGB-D cameras.
The only prerequisite for the applicability of our method is
to have the intrinsic and extrinsic calibration for all cameras,
obtained from an existing factory calibration or e.g. using a
calibration toolbox like Kalibr [6]. Obviously, few points lead
to a sparse coverage of the sensor, which makes interpolation
necessary. For this, we assume that deformations of the depth
map are locally similar and approximately smooth. This
allows us to use methods of scattered data approximation
like thin plate splines (TPS). For TPS parameter estimation
we employ robust optimization.

behnke
Schreibmaschine
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada, September 2017.



(a) (b) (c)

Fig. 2: Depth distortion. (a) measured distance zm vs. ground truth distance zgt for the Intel RealSense SR300 camera
used in our experiments. The colour encodes the distance of the corresponding pixel from the depth image center. (b) depth
deformation on a planar floor, color-coded by distance to camera (increasing z direction). (c) estimated scaling in depth
image coordinates.

II. RELATED WORK

RGB-D camera calibration has been addressed by multiple
research groups before. A typical approach consists in using
an artificial calibration object like a checker board, which
has good visual structure and planarity. This allows the
end user to easily estimate the pose of the camera relative
to the checker board or to fit a plane in the measured
depth data. The Kalibr toolbox by Furgale et al. [6] can
be used for the intrinsic and extrinsic calibration of multiple
cameras with overlapping field of view using an artificial
target. Unfortunately, this does not include depth cameras.
A similar approach was taken by Herrera et al. [7], who
calibrate two color cameras and a Kinect depth camera
simultaneously with a checker board. They corrected depth
using a spatially varying offset with exponentially decreasing
weight for increasing range. Smisek et al. [8] calibrated the
intrinsics of a Kinect camera and compared the results with a
stereo rig. A depth-correction image was generated using the
mean error from multiple planar measurements at different
distances. The image was then subtracted from the measured
depth image. Nguyen et al. [9] created a more accurate sensor
model for a Kinect by explicitly modelling noise in terms of
axial and lateral direction. They used a planar target which
can be rotated w.r.t. the sensor.

There has also been work on improving the depth es-
timates of time-of-flight (ToF) cameras. Fuchs et al. [10],
for example, use the monochrome and depth images in
conjunction with a robotic arm for accurate positioning of
the ToF sensor. The hand-eye-calibration between arm and
camera is also included in their method, which optimizes all
camera parameters in a non-linear fashion. Ferstl et al. [11]
aim at calibrating color and depth simultaneously with a
second color camera and a random regression forest for depth
compensation. Again, a planar target with known size is used.

Depth calibration without artificial targets was done by
Clarkson et al. [12], Teichman et al. [5] and di Cicco et
al. [3]. Clarkson et al. [12] used a movable planar target
to acquire calibration scans. A plane is fitted into these
scans using PCA. The error between measurement and
plane is estimated by a 2-degree polynomial for each pixel.
Evaluation of the polynomial then yields the offset to correct
the measurement.

Teichman et al. [5] showed that range-dependent depth
multiplier images are an intuitive and effective method to cor-
rect the measured depth. The generation of these multipliers
relies on a SLAM frontend, for trajectory and map estima-
tion. A point cloud is created from only reliable close depth
measurements given the trajectory. The desired map range
for a specific pixel is averaged from nearby points within
the point cloud. A maximum likelihood estimator (MLE)
is then employed to generate each multiplier independently
such that it minimizes the difference between map range
scaled by a multiplier and the measured range. Calibration
and SLAM could then be alternated for further improvement.
Although the iteration was not found to be necessary for
Kinect cameras. In contrast to our approach, the authors
use binning of size 8 × 6 pixels in the image and create
multiple depth multipliers for different ranges, resulting in
104 parameters. The actual factor for a depth measurement
is then generated by linear interpolation between the depth
multipliers at different ranges. Teichman et al. reported
their algorithm to run for multiple minutes, which is too
slow for online calculation, while the application of their
correction takes only milliseconds for a depth image in VGA
resolution. Basso et al. [4] use a calibrated color camera and
an uncalibrated depth sensor. The extrinsic transformation
between both is estimated using plane-to-plane constraints
together with an undistortion map for the depth data based
on a fitted plane. The whole optimization is reported to take
approx. one hour for 400 frames at half Kinect resolution.
Di Cicco et al. [3] use a similar undistortion model, as the
scalar depth multiplier depends only on the pixel position
and the measured range. In contrast to our approach or
the approach by Teichman et al., no SLAM is used. In-
stead, the deformation is estimated from planar surfaces like
walls under the assumption that the miscalibration produces
smaller errors in the center of the depth image than close
to the border. A plane is fitted into the central region. Inlier
measurements from the whole frame are generated based on
small difference between measured and plane distance along
the viewing ray and a small normal angle. The approximated
function is assumed to be smooth and continuous, but is
coarsely discretized into a 3D matrix to get a more robust
estimate while being easier to compute. The 3D matrix



Fig. 3: Method overview: Visual features are tracked from RGB-D images in order to estimate the camera pose w.r.t. the
map points. Keyframes and triangulated map points are computed by the local mapping and stored in the map. The depth
calibration (orange dashed box) first performs a global bundle adjustment to optimize the keyframe poses and map point
positions based on visual information only. Sparsely distributed pixel-wise depth correction factors are then estimated from
projecting the map points into the depth images. A thin plate spline is fitted to obtain a dense depth correction model (green)
that can be used to correct the map and to rescale measurements in depth images during tracking.

corresponds to multiple depth multiplier images at different
ranges. To obtain such a 3D-matrix, the authors proposed
a k-nearest-neighbour-based approach for offline scenarios.
Missing data is filled in by averaging over the k closest
data points. For online use cases, di Cicco et al. trained
an artificial neural network using sparsely distributed depth
measurements.

In the case of the PrimeSense sensors, the assumption
of close depth measurements being reliable seems to be
appropriate, but for the general case, it is not always correct
as can be seen in Fig. 2 for an Intel RealSense SR300. The
distribution shows a linear relationship between ground truth
and measured distance while the color-coding indicates a
strong deformation that is influenced by the pixel position
within the image. The previous approaches assumed a static
deformation, but it can change over time and even between
consecutive usages due to external strain or under strong
disturbances. The previously described methods are designed
for offline processing, making recalibration a costly, time-
consuming process while our method can be applied online.
We propose an approximation strategy using smooth thin
plate splines to acquire pixel-wise correction factors instead
of interpolating between multiple pixel bins. Similar to the
multi camera calibration case, we use projection to minimize
the overall error, but we replace the known calibration target
with an arbitrary textured environment without any geometric
constraints.
In summary, the key contributions of our paper are:

• depth scaling factors are generated by projection of
sparse map points from visual SLAM into depth images,

• the thin plate spline allows for dense approximation of
the sparsely distributed correction factors,

• our algorithm can be used online and corrects a
RGB-D map in real-time on a modern laptop CPU,

• no one-to-one pixel correspondence is needed, allowing
us to use a color camera for calibration,

• evaluation and comparison is done using real world data
with and without ground truth.

III. METHOD

We use an RGB-D extension of the ORB-feature-based
SLAM system [13] with keyframes to obtain the depth and
color camera trajectory and triangulate a sparse feature map
from visual features and corresponding depth measurements.
We provide the depth as additional information to the visual
SLAM system, but only use visual information for depth
calibration. Even though the depth estimate is biased, we
prefer to use RGB-D SLAM instead of monocular SLAM
since the absolute scale can be fixed and the risk of monoc-
ular scale drift is avoided. The correspondence between
depth and visual features is established via projection of the
measured depth point into the color image with a fixed rigid
transformation between color and depth camera. Hence, with
a corrected depth estimate the correspondence may change.
In case of multiple depth estimates projecting to the same
color pixel, we use the one with the shortest range.

The depth calibration is performed asynchronously to
the normal tracking and mapping of the system. Since
biased depth images may skew the trajectory and map point
estimates, we first run a global bundle adjustment (GBA)
optimizing the color trajectory and map point positions
without the depth measurements. After GBA, the absolute
scale may have changed. Hence, we rescale the whole map
s.t. the mean ratio of the triangulated and the corresponding
measured distance are equal to one. This would obviously
not be necessary for a synchronously captured stereo +
depth camera as in this case a reliable measure for scale
is permanently available.

Subsequently, we estimate the depth correction factors by
projecting the sparse triangulated RGB map points into the
depth images and compare the measured depth with the tri-
angulated distance relative to the depth camera pose. This is



shown in Fig. 1 where the difference between overestimated
measurements (black dashed line) and triangulated distance
(gray dotted line) is shown in red. Blue lines denote the
inverse case of too near measurements. By also using features
without corresponding depth information, we generate a
larger sample of scaling factors. Still, the coverage of the
scaling factors on the depth sensor is sparse. Hence, we
model the depth correction using thin plate splines (TPS)
and obtain a smooth correction function from which we
generate the pixel-wise depth multipliers. The resulting depth
multipliers are then used to rescale the depth images for all
depth keyframes. It should be noted that the proposed method
is also applicable to a (semi-)dense SLAM system [14], [15],
since the visual (inverse-) depth estimate can be easily pro-
jected into the depth images. After introducing our notation,
we will motivate made assumptions and describe in detail
the estimation of the correction factors and the correction
model using TPS.

A. Notation

We denote sets and matrices with capital letters and
vectors with bold lower case letters. Each map point pw =
(x, y, z)ᵀ ∈ R3 is defined in the world frame w, determined
by the initial color camera frame. All poses are represented
by a transform TF2F1

∈ SE (3), which transforms a point
pF1

from the frame F1 into the frame F2. For convenience
of notation, we identify TF2F1

with its 4-by-4 matrix. The
projection of a point pw with pose TF and camera matrix
KF into frame F gives the image coordinates u = (ux, uy)ᵀF
in the image domain Ω ⊂ R2 by the mapping:

gF (pw) : pw → pF , (1)
(pF , 1)

ᵀ
= TFw · (pw, 1)

ᵀ
, (2)

πF (pF ) : pF → uF , (3)
(x, y, z)

ᵀ
F = KF · pF , (4)

uF = (x/z, y/z)
ᵀ
. (5)

In the following, we will use the index c for an RGB camera
and d for a depth camera, respectively.

B. Assumptions

We assume that we can obtain the correct depth value
by multiplying the measured depth with a scalar factor. This
factor may be different for each pixel. Another assumption is
local similarity between the correction factors for neighbour-
ing pixels. Teichman et al. previously reported that the range
relationship for the Kinect is sublinear and used binning for
neighbouring pixels while utilizing multiple scalar factors
for the range. Yet, Fig. 2 indicates a pixel depending scalar
relationship between ground truth and measured range for
a SR300 camera. In case of an RGB-D SLAM system, we
further assume the mean of the multiplicative factors to be
equal to one, to resolve the scale ambiguity of monocular
visual SLAM.

There is a fixed rigid transform Tcd ∈ SE(3) that trans-
forms a point pd ∈ R3 from the local coordinate frame of the
depth camera into the coordinate frame of the color camera.

Hence, we do not need a one-to-one pixel correspondence
between depth and RGB image making it possible to obtain
a calibration using sensors with different resolutions.

To simplify our approach, we assume corresponding depth
and RGB images to be captured synchronously. Even though
the assumption of a fixed Tcd is in reality often violated due
to camera movement during asynchronous capture, incorpo-
rating a rigid time-varying transform is straightforward in
our approach. Obviously, we will need some texture in the
images to extract visual features. Ideally, no part of the scene
is occluded, since occluded RGB map points can introduce
large depth multipliers and need to be filtered out.

Furthermore, we assume that the intrinsic camera matrices
Kc,Kd have been calibrated for the color and depth camera
and image distortion is removed beforehand.

C. Depth Correction Factor Estimation

After performing SLAM, a global bundle adjustment re-
fines the color camera poses Tcw and triangulated map point
positions pw based on visual information only. If we would
incorporate depth measurements, the error induced by the
deformation will be distributed between map, poses and
depth calibration. We assume the map to have absolute scale,
which is true for stereo cameras, but not for a monocular
camera. Hence, we scale the refined pw and the translation of
Tcw such that the mean factor between all measured distances
and all triangulated distances is equal to one.

The basic idea to obtain pairs of expected and measured
depth, as visualized in Fig. 1, is simply to project map points
into the depth image and compare the triangulated distance
zt: (x, y, zt)

ᵀ
d = pd = gd (pw) with Tdw = Tdc · Tcw, (6)

with the measured depth zm in the depth image at πd (pd).
This allows us to calculate a scaling factor su = zt

zm
which

is one in the ideal case. A factor greater than one means the
depth is measured too short; smaller than one means too far.
Yet, both variables are affected by noise which has to be
taken into account. Assuming Gaussian white noise, we can
rewrite the scaling as follows [16]:

zt = su · zm with zm ∼ N
(
suµ, σ

2
m

)
, zt ∼ N

(
µ, σ2

t

)
.
(7)

The maximum likelihood (ML) estimator to this scaling
problem was shown by Engel et al. [16] to have a unique
solution. Since we are not interested in µ, we only estimate
the scale parameter. We cannot rely on gathering a high
number of scale estimates per pixel if we want to run our
method online. Having multiple factors for one pixel rarely
happens for sparsely distributed map points. Hence, the thin
plate spline is a convenient method to interpolate between
correction factors.

D. Depth Correction Model

We use thin plate splines (TPS) to model the correction
factors w.r.t. the depth image coordinates. Due to the excel-
lent fill-in property and the minimal bending energy of these
splines, this works in general even with scattered, sparsely



distributed data — in our case the correction factors and cor-
responding image position — while giving smooth function
approximations with a small number of coefficients. Here, we
use the following two-dimensional thin plate polyharmonic
spline:

f(u) =

N∑
i=1

ci · φ (|u− di|) + vᵀ ·
(

1
u

)
, (8)

with the radial basis function (RBF):
φ (r) = r2 · ln (r) . (9)

Here, u is the data point, in our case a pixel coordinate, and
di ∈ Ω is a control point within the image. The parameters
c control the influence of the RBF, while v is a polynomial
which aids the approximation. One advantage of the TPS is
the lack of parameters that have to be tuned, since c,v are
calculated from the given image positions u and the desired
function values, the correction factors su. Furthermore, TPS
is far more flexible compared to a polynomial with the same
number of coefficients.

In case of interpolation, one seeks to find the coefficients
[c,v]

ᵀ s.t. the following equations are satisfied:

si = f (ui) , 1 ≤ i ≤M. (10)

Since the interpolation would require as many RBFs (N) as
there are data points (M), this cannot be used efficiently
online. Instead, we approximate the underlying function
using a grid with a small fixed number of N = L×L control
points:

arg min
c,v

M∑
i

‖f (ui)− si‖2 . (11)

On each control point di, one RBF will be statically placed.
We typically choose L ∈ {3, 4, 5}, but other choices and
different grids are possible as well.

Since we have N + 3 unknown variables for [c,v]ᵀ, often
the following three additional conditions are added:

N∑
i

ci = 0,

N∑
i

ci,x · di,x = 0,

N∑
i

ci,y · di,y = 0, (12)

which ensure that a polynomial of maximal degree two can
be correctly approximated. Higher-order and local deforma-
tions are caught by the RBFs.

To minimize the least squares error function Eq. (11) such
that Eq. (12) is satisfied, we have to solve the augmented
system of equations, stated in matrix form as:(

A X
D 0

)(
c
v

)
=

(
s
0

)
, (13)

A =

 φ (|u1 − d1|) . . . φ (|u1 − dN |)
...

. . .
...

φ (|uM − d1|) . . . φ (|uM − dN |)

 ,
X =

1 u1

...
...

1 uM

 , D =

(
1 . . . 1
d1 . . . dN

)
.

Since we have M � N , this can be solved like any
over-determined system. We decided to employ conjugate

gradient (CG), since CG allows to use an initial solution,
whereas a QR-decomposition does not. Hence, we can speed
up the calculation in an online fashion using the previous
estimate. This further enables us to use iterative reweighted
least squares (IRLS) [17] for outlier rejection, if we have
sufficient data points.

E. Range Dependent Extension

An extension of the approach to range dependent scaling
factors could be to estimate multiple TPS for different
depth range intervals, similar to [5]. A more straightforward
extension is to include the measured depth zm into f (u) by
augmenting u with zm as ua = (ux, uy, zm)

ᵀ ∈ Ω×R and
using control points da ∈ Ω×R. This can be seen as placing
multiple RBFs on a pixel at different depths. Hence, N
increases, e.g., to L×L×L. The range-dependent formulation
is again minimized using (13) and similarly evaluated with
(11), both using the augmented ua and da instead of u
and d. Unfortunately, the evaluation of f (ua) cannot as
effectively be precomputed as in the two-dimensional case,
since it needs to be computed for every depth measurement.

IV. IMPLEMENTATION

Due to the properties of the projection, the aforementioned
association between depth measurements and visual features
may change after rescaling the depth images. Hence, iter-
ation of the calibration process is needed. In our case, we
asynchronously run the calibration after keyframe creation.

The most time-consuming operation is the application of
the calibration by rescaling the depth image and reprojection
into the color image to obtain the association between visual
features and depth measurement. Therefore, we use vector-
ization and Eigen library expressions [18] as often as possible
and minimize the intermediate evaluation calls. Instead of
calculating Eq. (6) for each point separately, we first calculate
the projection matrix from πcw and then multiply it with
the column-wise stacked 3 × M matrix containing all M
map points. Similarly, if we assume synchronized capture
between depth and RGB camera, we can precompute the
concatenated backprojection π−1

d and projection πc for each
pixel as underlined:

πcd(u) = Kc ·Rcd ·K−1
d · (u, 1)

ᵀ · zm +Kc · tcd. (14)

Hence, at runtime we only need to evaluate a scalar-vector-
product and a vector-vector-addition per pixel, reducing the
overall computation time.

To further increase the accuracy of the SLAM system,
we continuously search additional correspondences between
keyframes that belong to the same local map. This process
is similar to the local loop closures in ElasticFusion [2].
The reasoning behind this is that pose error induced by
miscalibrated depth estimates or small tracking errors may
discard correct correspondences between keyframes and
hence, degrade the overall performance and integrity of the
RGB-D map. After calibration, these correspondences can
be re-established.



Images typically underlie distortions that have to be taken
into account for reconstruction. To address this, we undistort
the depth image using OpenCV with the radial and tan-
gential distortion parameters from either factory calibration
or Kalibr, and solely work on the undistorted depth. After
projecting map points into the depth camera, we apply the
distortion and calculate the depth correction factors at the
distorted image positions. In order to generate the pixel-
wise depth correction factors for the undistorted depth image,
we evaluate the TPS at the distorted image positions that
correspond to the undistorted pixels.

Furthermore, it should be noted that due to the conver-
gence of the calibration solution, rescaling for a keyframe
is done only sporadically, e.g. after ten calibration runs if
pixel-wise depth correction factors between two consecutive
calibrations do not change too much.

V. EVALUATION

We wanted to compare our calibration method against
the methods by di Cicco et al. (EDC) and Teichman et
al. (CLAMS) with focus on the SR300, but also for the
popular Kinect, Xtion and PrimeSense RGB-D sensors.
Unfortunately, an evaluation of our approach on the dataset
by di Cicco et al. [3] for Kinect and Xtion was not possible
due to missing color images. Instead, we tested the algo-
rithms for the Xtion on the widely used TUM dataset [19]
using ’freiburg3 long office household’. We further captured
a trajectory within a hallway using a PrimeSense Carmine.

Additional experiments were undertaken for the SR300.
We captured data for three different scenarios: aprilgrid,
boxes and walls. For the aprilgrid dataset, an planar grid of
AprilTags [20] is placed on a table. The grid allows to esti-
mate the sensor movement, while the geometry simplifies the
comparison between corrected and expected measurements.
For the boxes dataset, three large boxes were placed parallel
to each other. The outer boxes were tilted inwards and all are
filled with various objects to generate a non-planar and more
challenging environment with occlusions. Ground truth depth
was acquired by a Photoneo PhoXi 3D Scanner XL with
millimeter accuracy. For the walls dataset, the SR300 covered
several non-planar stonework surfaces in rapid motion. We
found the same basic distortion pattern on multiple tested
SR300, hence we used the same SR300 for all our datasets.
Each image stream is captured at 30 fps with 640 × 480,
except for color which has resolution 1920 × 1080. Since
the camera is moved quickly, the exposure time for color is
fixed to 8 ms to reduce motion blur, which was severe using
auto exposure even in well illuminated scenes.

For all datasets we use the factory calibration reported
by each device for the intrinsics, if not otherwise stated.
All experiments are run at least five times. The respective
errors are than averaged over all tries. All calculations were
performed on an Intel Core i7-6700 HQ with 32GB RAM.

We start depth calibration after ten keyframes have been
created and placed the control points on a 5× 7 regular grid
to incorporate the aspect ratio. IRLS is iterated up to 100
times or until the difference between consecutive iterations
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Fig. 4: Convergence behaviour of our method for increasing
proportions of data on the Aprilgrid dataset.

is below 0.001. The weights are obtained using the absolute
deviation between estimated and measured correction factor
with regularization at 0.0001 to avoid division by zero. Due
to realtime constraints, we do not use the 3D extension from
Sec. III-E, since the evaluation for the whole image is too
computationally involved.

A. Xtion and PrimeSense Carmine

No ground truth map data is provided in the TUM dataset,
only camera ground truth poses from a motion capture
system are available. Hence, we evaluate the Absolute Tra-
jectory Error (ATE) [19] with and without depth calibration.
The results are summarized in Table I. EDC was not eval-
uated, since no dataset provided sufficient planar surfaces
to estimate a good calibration.Even though the smoothness
assumption might not hold for this type of sensor, due to
the flexibility of the TPS the results do not degrade. Yet, the
small reduction of the ATE from 3.3 cm down to 2.3 cm is not
necessarily due to the depth calibration, but may stem from
the frequent application of GBA. For our hallway dataset
we use the mean map entropy (MME) [21] to assess the
reconstruction quality, since a smaller MME corresponds to
a visually sharper point cloud.

B. Intel Realsense SR300

The correction model for EDC was created by moving
the SR300 facing the floor from 2 m slowly towards 0.5 m
height. While the method worked well on all SR300 datasets,
the estimated correction by CLAMS was increasing the
deformation and hence immediately diverged. This happened
likely due to the strong deformation of the map, as visualized
in Fig. 5 for the wall dataset, and since the actual measured
data violates the assumption of being approximately correct
at 1 m. Their underlying SLAM system strongly relies on the
measured depth. The result did not improve when only rgb
was used for updating the poses during tracking. Hence, we
will not report results for CLAMS on the SR300 datasets.

In order to evaluate the performance of [3] and our method
on the aprilgrid dataset, we compute the RMSE between
ground truth distance zgt and scaled depth measurement su ·
zm as



Fig. 5: Point cloud from the boxes dataset, color coded from
close (red) to far (blue). The top ellipse shows the matching
edges of the box. The left and right side have the same height.
EDC does not correct enough. CLAMS pulls the box apart.

RMSE =

√√√√ 1

N

N∑
i=1

(zgt − su · zm)
2
. (15)

The convergence of the RMSE can be seen in Fig. 4b. To
obtain a lower bound on the RMSE, we also fitted the splines
on increasing portions randomly taken from the whole image
sequence. To show the convergence of the proposed method
we compute the maximum difference

max
u∈Ω
|st−1,u − st,u| (16)

in the multiplier map st between subsequent calibration runs
at time t and t − 1, respectively. As can be seen in Fig.
4b, the RMSE of our method after using one percent of the
data is already lower than that of EDC (dashed black line)
and our method converges very quickly. The range-dependent
3D-TPS extension (cfg. Sec. III-E) can further reduce the
RMSE (red dashed line) while it takes longer to converge.
This convergence can also be seen in Fig. 4a for the pixel-
wise correction factors as the maximum difference between
subsequent calibrations decreases. Hence, we could start the
calibration process online and stop after convergence while
continuing SLAM.

For the boxes dataset we manually preregister the cali-
brated point clouds against the ground truth cloud, apply
ICP, and visually verify the result. To estimate how well
the cloud matches, we calculate the mean distance to the
nearest neighbor (NNE). Fig. 6 shows the color coded
error w.r.t. ground truth. Red areas with larger error stem
especially from regions without any depth measurements due
to occlusion as can be seen on the upper block or on the
sides of the boxes. Fig. 7 shows for the wall dataset the
estimated aggregated point cloud of our SLAM system and
the corresponding scaling over time1. The error reduction on
the straight wall is clearly visible as the bending is reduced
quickly. The depth correction factors swiftly become stable.

1An accompanying video is available at
https://www.ais.uni-bonn.de/videos/IROS_2017_depth_
calibration.

Fig. 6: Distance to ground truth for the box dataset using
our calibration. Coloring encodes distance from low (blue)
to high (red).

TABLE I: Error comparison for the tested datasets
Error Dataset none CLAMS [5] EDC [3] ours

ATE [cm] fr3office 3.350 4.460 - 2.339
MME hallway -2.548 -1.585 -2.501 -2.639

boxes -7.817 -7.542 -7.884 -7.996
walls -5.658 - -6.068 -6.326

NNE [cm] boxes 0.391 0.590 0.276 0.263

C. Runtime
The precomputed and optimized projection is faster by

a factor of 5.17 than the non optimized projection (85 ms).
The additional correspondence search found on average 51
correspondences, while taking approx. 10.14 ms. The regular
number of matched map points is in the scope of 300.

The overall calibration time took on average less than
0.5 s, but increases with the number of keyframes and map
points. The vast majority of time is spent on solving Eq.
(13) with IRLS for outlier rejection. Hence, fewer iterations
could reduce computation time, but we have seen in our
experiments that using the Least Squares Solution can skew
the calibration especially at the beginning and may result in
tracking failure.

VI. CONCLUSIONS

We presented a fast and simple depth calibration method
using a visual SLAM system running online without requir-
ing planar surfaces, calibration targets, or known map ge-
ometry. We employ thin plate splines for approximating the
depth correction factors w.r.t. the image position to deal with
sparsely distributed correction estimates. The experimental
results substantiate that the calibration converges quickly and
effectively corrects depth deformations.
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