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Abstract— Performing manipulation with robotic arms re-
quires a method for planning trajectories that takes multiple
factors into account: collisions, joint limits, orientation con-
straints, torques, and duration of a trajectory. We present an
approach to efficiently optimize arm trajectories with respect
to multiple criteria. Our work extends Stochastic Trajectory
Optimization for Motion Planning (STOMP). We optimize
trajectory duration by including velocity into the optimization.
We propose an efficient cost function with normalized compo-
nents, which allows prioritizing components depending on user-
specified requirements. Optimization is done in two stages: first
with a partial cost function and in the second stage with full
costs. We compare our method to state-of-the art methods. In
addition, we perform experiments on real robots: centaur-like
robot Momaro and an industrial manipulator.

I. INTRODUCTION

Autonomous robots are required to interact with unstruc-
tured environments. This introduces a need for manipulation
trajectory planning. A feasible trajectory is expected to
satisfy multiple criteria: being collision-free, being within
joint limits, and being smooth. In addition, minimization
of torques may allow to operate longer with limited power
supply and to operate heavy objects with more safety for the
motors. Minimized duration of a trajectory allows finishing
a task faster. In addition, orientation constraints are often
required when manipulating orientation-dependent objects.
Planning a trajectory considering all these factors is a chal-
lenging task.

In this paper, we address these challenges by extending
a popular optimization method: Stochastic Trajectory Opti-
mization for Motion Planning (STOMP) [1]. In the original
STOMP, the duration of the trajectory is predefined and fixed.
We propose a way to optimize duration as well. We further
introduce a novel cost computation policy that allows to take
full control over the computational effort, which lowers the
runtime. We propose a cost function with five components:
collisions, joint limits, orientation constraints, joint torque,
and duration minimization. Each cost component is normal-
ized to have values in the interval [0, 1]. By introducing
an importance weight for each component, it is possible to
set priorities, which allows obtaining qualitatively different
trajectories according to the user preferences. Optimization
is performed in two phases to reduce computations: with
simplified and full cost functions (Fig. 1).

We evaluate our approach by performing experiments of
different difficulty levels in simulation in comparison with
three state-of-the-art planning methods. We demonstrate the
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Fig. 1. Two-phased optimization utilized in our approach. Red: initial
trajectory, going through the obstacle; Blue: result of the first phase –
collision-free trajectory; Green: result of the second phase – trajectory
optimized with full costs. Points on trajectories correspond to collision
checks. We utilize adaptive collision checking density: closer to the obstacles
collision checking is performed with increased density.

effects of optimization of different cost components. Finally,
we perform experiments with real robots to demonstrate that
our approach can be applied to real-world problems.

II. RELATED WORK

Manipulation planning has been investigated by many
researchers, as it is essential for a vast range of autonomous
manipulation robots. Sampling-based methods [2], [3] are
popular for addressing planning problems. One example
are Rapidly-Exploring Random Trees (RRTs) [4]. James et
al. [5] utilize RRTs for planning feasible trajectories for a
robotic arm. This method produces non-smooth trajectories
which are far from being optimal. Thus, a postprocessing
step is needed.

RRTs find paths from a start configuration to any con-
figuration in the search space to find an optimal solution.
However, this approach introduces many unnecessary com-
putations. Gammell et al. [6] represent a set of perspective
solutions as a prolate hyperspheroid. Unnecessary exhaustive
search across the whole search space is avoided by this
technique.

Batch Informed Trees (BIT*) [7] combine incremental
graph search and sampling-based techniques. The initial
ellipsoid subset of samples is incrementally expanded with
new batches of configurations. This allows exploring a search
space and finding an optimal solution. BIT* utilizes a heuris-
tic in order to bias the search towards potential improvement
of the solution.

The Fast Marching Tree algorithm (FMT*) [8] is a proba-
bilistic sampling-based planning method. The approach is a
combination of single-query and multiple-query algorithms.
Lazy dynamic programming recursion is utilized in order to
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grow a tree of trajectories. This technique is aimed to reduce
the number of collision checks. The method was proven to
be asymptotically optimal.

Bidirectional Informed RRT* (BI2RRT*) [9] is an exten-
sion of Informed RRT*. Bi-directional search is utilized in
order to find an optimal solution faster. A greedy connect
heuristic is used in order to find an initial feasible solution
quickly. The method enables the use of task-specific con-
straints through first-order retraction [10].

Another work based on RRT∗ is Ball Tree + RRT∗

(BT+RRT∗) [11]. The approach combines the Ball Tree
algorithm with RRT∗. The Ball Tree algorithm maintains
a tree in similar to RRT manner. However, each vertex is
represented by a ball in the configuration space instead of a
point. This allows obtaining solutions using much sparser
trees. BT+RRT∗ utilizes a memoization technique, which
allows to reduce the amount of collision checks. The method
achieved lower runtime than RRT and RRT∗. However, these
methods only take into account a geometry of a robot. In [12]
a method for acceleration-limited planning, based on RRT is
presented. Non-iterative steering method is defined, which
allows to take into account velocities and accelerations and
find feasible solutions fast. The method is capable of solving
problems with non-zero initial and/or goal velocities.

Optimization-based methods are used in order to obtain
smooth trajectories which are optimized with respect to the
required criteria. In Covariant Hamiltonian Optimization for
Motion Planning (CHOMP) [13], a covariant gradient tech-
nique is used, which requires a gradient of the cost function.
The idea is similar to the elastic bands planning [14], where
the trajectory is pushed away from the obstacles by repelling
forces. CHOMP quickly converges to the locally optimal
trajectory. A signed distance field is used as an environment
representation, which allows obtaining gradients even for
non-collision-free parts of the trajectory. However, as many
gradient-based methods, CHOMP suffers from local minima.

T-CHOMP [15] is an extension of CHOMP. The config-
uration space is extended by one dimension for time. This
allows to optimize in space-time. The idea behind this work
is similar to ours, as we add one dimension representing
time as well. The authors mention that the implementation
is very sensitive to parameters and without fine tuning it may
output a “collision-free” solution where the robot slowly goes
through the obstacles. We avoid this effect by designing a
cost function which penalizes such situations.

STOMP [1] adopted the environment representation from
CHOMP. However, instead of using the gradient of the cost
function, it uses a sampling technique for cost minimization.
This allows to use non-differentiable cost functions and
decreases the risk of being stuck in a local minimum.

Local multiresolution for STOMP was proposed by Stef-
fens et al. [16]. The initial part of the trajectory is planned
with a high resolution and parts of the trajectory which
are located further away in time are planned with lower
resolution. This allows to decrease the runtime and allows
to apply the method in dynamic environments. However, the
duration of the trajectory is fixed as in the original method.

Fig. 2. Top: trajectory of original STOMP with a large number of
keyframes. Bottom: small number of keyframes in our modification; transi-
tions between them are evaluated.

III. METHOD

Our method is based on STOMP [1], which demonstrated
a good performance in optimizing high-dimensional trajec-
tories with respect to multiple criteria. In this section we
discuss our extension of this method.

A. Original STOMP

In STOMP [1], a planning task is considered as an opti-
mization problem. The objective is to find a trajectory which
has the minimal cost according to a given cost function.

The input of STOMP is an initial trajectory Θ which con-
sists of N keyframes θi ∈ RJ in a joint space with J joints.
The keyframes are equally spaced in time and discretize a
predefined fixed duration T . A naı̈ve initial trajectory that
is often used is the linear interpolation between the given
start and goal configurations θstart and θgoal. During the
optimization process, start and goal configurations remain
unchanged. STOMP outputs an optimized trajectory. The
optimization problem is formulated as:

min
Θ̃

E
[ N∑

i=1

q(θ̃i) +
1

2
Θ̃>RΘ̃

]
, (1)

where Θ̃ = N (Θ,Σ) is a noisy joint parameter vector, given
that Θ is the mean and Σ is the covariance. q(θ̃i) is a state
cost function which includes: obstacle costs, torque costs,
and constraint costs. Each state θ̃i of the trajectory Θ̃ is
evaluated using this cost function. The term Θ̃>RΘ̃ is the
sum of squared accelerations along the trajectory, which are
computed using a finite differencing matrix.

B. Proposed Cost Function

In contrast to the original STOMP, we propose to define
the state costs not for individual keyframes, but for tran-
sitions between them (Fig. 2). Given a trajectory Θ which
consists of N keyframes, the state costs are computed as:

q(Θ) =

N−1∑
i=0

q(θi,θi+1), (2)

where q(θi,θi+1) is a cost for the transition from the config-
uration θi to θi+1. This extended cost computation allows for
taking control over the number of cost computations. Given
a pair of keyframes, it is possible to determine the number
of intermediate configurations which have to be checked in
order to cover the transition from θi to θi+1 with a required



precision. This ensures that only necessary computations
are made. This model allows to plan trajectories with a
substantially smaller number of keyframes, e.g. 10-20. We
keep the second term of the original cost function (1) of
STOMP. The optimization problem now is defined as:

min
Θ̃

E
[N−1∑

i=0

q(θ̃i, θ̃i+1) + γΘ̃>RΘ̃

]
, (3)

where γ ∈ [0, 1] is the importance weight of the control
costs. We define the transition cost function:

q(θi,θi+1) =qo(θi,θi+1) + ql(θi,θi+1) + qc(θi,θi+1)

+qd(θi,θi+1) + qt(θi,θi+1),
(4)

where qo is an obstacle cost, which penalizes collisions
and being close to the obstacles, ql is a joint limit cost
which penalizes violations of joint limits, qc is a constraint
cost which penalizes violation of any custom constraints of
the end-effector position/orientation, qd is a duration cost,
which penalizes long durations and qt is a torque cost
which penalizes high torques. Each cost component function
qj(θi,θi+1) is designed so that:

qj(θi,θi+1) =

{
λj · qjv (θi,θi+1), if θi → θi+1 is valid
qjnv

(θi,θi+1), otherwise
,

(5)
where qjv (θi,θi+1) ∈ [0, 1] is a cost for a valid transition,
defined for the cost component qj . The term θi → θi+1

corresponds to a transition from the configuration θi to θi+1.
A transition from θi to θi+1 is considered to be valid with
respect to the cost component qj if there are no critical
violations of the constraints defined for qj . For example, a
collision with an obstacle is a critical violation with respect
to the obstacle cost function. The function qjnv (θi,θi+1)�
1 defines a cost for non-valid transitions. This is done in
order to prevent the algorithm from decreasing costs for the
valid transitions in order to compensate high costs of the
invalid transition. At the same time, when the transition is
valid, the cost component is scaled within the interval [0, 1],
which allows to utilize a system of weights λj ∈ [0, 1] in
order to set a relative importance of the cost components.
This allows for defining properties for optimizing cost com-
ponents, which may differ for each particular situation.

1) Obstacle costs: Obstacle costs penalize collisions with
the environment, self collisions and being close to the
obstacles. We adopt a signed Euclidean Distance Transform
(EDT) [17] representation for the environment as in the
original STOMP. This representation requires an assumption
that the environment is static during the optimization and
motion execution. We utilize this assumption, and divide the
robot body into static and dynamic parts. The static part is
not involved in the planned movement, e.g., the robot base.
It is represented with another instance of EDT, and must be
precomputed only once, while the EDT for the environment
must be precomputed before each new planning task. The
dynamic part is represented with a set of spheres, as in the
original STOMP. They are checked for collisions with both

Fig. 3. In order to evaluate a transition, a discretization precision p is
determined. Each of obtained intermediate configurations is evaluated with
a cost function. The maximum cost is chosen to be the cost for the transition.

distance fields and against each other. In order to eliminate
unnecessary checks between spheres, they are partitioned
into collision groups. Pairs of collision groups to be checked
are stored in an Allowed Collision Matrix (ACM).

To estimate the obstacle cost qo(θi,θi+1) for the transi-
tion from configuration θi to θi+1, we determine a set of
equally spaced intermediate configurations Ω. To find |Ω|,
a link which moves for the longest Euclidean distance d is
determined using forward kinematics. In order to determine
the movement distance of the link, a specific point is assigned
for each link for which the distance is measured. We define
this point to be in the place where the successor link is
connected. Given a required precision p, |Ω| is computed
as |Ω| = d

p (Fig. 3).
In situations where the obstacles are far away, a low

precision is used, while in situations when the obstacles
are close, a high precision is used. In order to estimate
the precision p for a particular transition, we estimate
the distance dobst to the closest obstacle as: dobst =
min(dist(θi), dist(θmid), dist(θi+1)), where dist(θi) is a
function which estimates the minimum distance from the
robot dynamic part to the obstacles for a given configuration
θi and θmid is the middle configuration between θi and
θi+1. Given a finest allowed precision pmax, we compute
the precision p as:

p = max
(dobst

2
, pmax

)
. (6)

Given a set Ω which consists of |Ω| uniformly spaced
intermediate configurations obtained by linear interpolation
from θi to θi+1, the obstacle cost for the transition is:

qo(θi,θi+1) = max
(
qo(θj)|∀θj ∈ Ω, qo(θi+1)

)
, (7)

where qo(θi) is the obstacle cost which determines how
feasible a particular configuration θi is:

qo(θi) =


Co · |dmin − dobst|, if dobst ≤ dmin

0, if dobst ≥ dmax

λo ·
(
1− dobst−dmin

dmax−dmin

)
, otherwise

, (8)

where λo ∈ [0, 1] is the importance weight for the obstacle
costs, dmin is a minimum acceptable distance to the obstacles
and dmax is a maximum distance to the obstacles which the
algorithm should take into consideration. dobst is the distance
to the nearest obstacle. Co � 1 is a predefined constant
which ensures that unfeasible configurations have very high
costs. In case a configuration θi is feasible and the distance
to the nearest obstacle falls in the interval (dmin, dmax], the
cost function is scaled within the interval [0, 1].



2) Joint limit costs: These costs penalize violations of
joint limits. As any other cost component in our cost func-
tion, joint limit costs estimate the cost for a given transition
from a configuration θi to θi+1. The joint limit costs ql are
formulated as:

ql(θi,θi+1) = max
(
ql(θj)|∀θj ∈ Ω, ql(θi+1)

)
, (9)

where Ω is a set of intermediate configurations for the
transition from θi to θi+1. To define |Ω|, a constant precision
pl is used: |Ω| = d

pl
, where d is a distance determined in the

obstacle cost computation. Given upper and lower bounds on
joint positions θmax and θmin and a configuration θk, we
compute a maximum deviation ∆θk from the limits. If there
is a violation of a joint limit, ∆θk has a negative value, or is
zero. Otherwise, ∆θk has a positive value and represents the
smallest deviation within the limit. Joint limit cost is defined
as:

ql(θk) =


Cl · (|∆θk|+ 1) if ∆θk ≤ 0
1
ε2 ∆θ2

k − 2
ε∆θk + 1, if 0 < ∆θk < ε

0, otherwise
, (10)

where Cl � 1 is a predefined constant. The term ε is a
magnitude of a considered safety margin. We do not include
a corresponding importance weight λl, as this cost is of
significant importance in any situation. Positions which are
close to the actuator limits may cause harm to the actuators,
that is why we employ a smooth cost to penalize positions
which are close to the joint limits. This cost function is based
on a quadratic function, such that the largest considered
deviation of ε leads to the cost value close to 0, meanwhile
the deviation close to 0 leads to the cost value close to 1. In
our work we use the value ε = 0.1 rad.

3) Custom constraint costs: This cost component is sim-
ilar to the joint limit costs and preserves any custom con-
straints on the end-effector position/orientation. We apply
the same procedure for the constraint costs qc, as for joint
limit costs: Given a set of intermediate configurations Ω,
we compute the cost qc for each of them, and choose the
maximum cost. We record the magnitude of the largest
deviation from constraints ∆θk as described for the joint
costs. Custom constraint costs are defined as follows:

qc(θk) =

{
Cc · (|∆θk|+ 1) if ∆θk ≤ 0

0, otherwise
, (11)

where Cc � 1 is a predefined constant which penalizes
any violations of custom constraints. We do not include a
corresponding importance weight λc, as this cost has either
a very large value, which penalizes violations, or is 0.

4) Duration costs: Duration costs penalize long durations
and, hence, allow to minimize a duration of a trajectory.
In order to have a mechanism to influence the duration,
the velocity of the joint with longest path is added to the
configuration space. We make the assumption that a duration
necessary to execute a trajectory is bounded by the duration
necessary to execute the trajectory of the joint with the
longest path. So, before evaluating a trajectory, the joint with

the longest path is determined, and the duration estimation
is performed with respect to this joint. By restricting the
velocity information to a single joint, we avoid doubling the
dimensionality of the optimization problem. The extended
configuration now consists of a joint vector and a value v
for the velocity: θ̂i = 〈θi, v〉.

We prevent the velocity from exceeding the limits 0 <
v < vmax when generating noisy trajectories by clipping
it to the limit. Given the desired velocity for the transition
from θ̂i to θ̂i+1, it is possible to estimate the duration t
for this transition. Before the optimization process is started,
we estimate a maximum acceptable duration tmax for one
transition in order to scale the duration costs from 0 to 1.
We define tmax as: tmax = ttotal

N−1 , where N is the number of
keyframes and ttotal is the duration of the initial trajectory
executed with low velocity.

In order to provide an additional level of safety for
optimized trajectories, we introduce an additional constraint
on the velocity which depends on distance to the obstacles.
The closer the robot is to an obstacle, the lower is the allowed
velocity. This constraint is represented as a set V of tuples
of a form 〈v, d〉, where v is the maximum allowed velocity
when the distance to the nearest obstacle is less than d. We
determine the duration costs qd(θ̂i, θ̂i+1) as:

qd =


Cv, if ∃〈v, d〉 ∈ V : v < vθ̂i

∧ d > dθ̂i

λd · t
tmax

, if t ≤ tmax

Cd · (t+ 1), otherwise
,

(12)
where λd ∈ [0, 1] is the importance weight for the duration
costs, Cd � 1 and Cv � 1 are predefined constants, which
penalize exceeding of the duration limit and obstacle-velocity
constraints. The terms vθ̂i

and dθ̂i
are the velocity and the

distance to the closest obstacle, respectively, measured for a
set of intermediate configurations Ω between θ̂i and θ̂i+1,
which were defined in the obstacle cost computation.

5) Torque costs: The purpose of this cost component
is to penalize high torques and ensure that torque limits
are not exceeded. In order to evaluate torque costs of the
transition from θ̂i to θ̂i+1, we find a set Ω̂ of intermediate
configurations which are uniformly distributed along the
transition with given constant precision p. We define the
torque costs for the transition as:

qt(θ̂i, θ̂i+1) = max
(
qt(θ̂j)|∀θ̂j ∈ Ω̂, qt(θ̂i+1)

)
. (13)

The torques τ affecting motors are expressed as a function
of joint positions and their derivatives: τ = f(θ, θ̇, θ̈). As we
have the velocity, it is possible to estimate the acceleration
as well. We use the RBDL library [18] to compute torques.
The torque costs of the configuration θ̂i are:

qt(θ̂i) =


Ct · (max

j∈J
(τj − τmax) + 1), if τj > τmax

λt ·
∑

J τj
J · τmax

, otherwise
,

(14)
where λt ∈ [0, 1] is the importance weight of the torque
cost, τmax is a maximum allowed torque for a single motor,



and Ct � 1 is a predefined constant. In the first row of
the equation above, we penalize any exceeding of the torque
limit by large cost � 1. In the second row, we produce a
cost ∈ [0, 1] which penalizes high torques.

C. Optimization Process

In the previous subsections, the multicriteria cost function
was discussed. However, this complex function leads to a
complex solution space with many disjoint local minima. In
this subsection, we describe how extended STOMP is applied
to find feasible trajectories more effectively.

One of the most severe barriers on the way to a feasi-
ble trajectory are obstacles. Often, the initial trajectory is
going through obstacle regions. Thus, finding a collision-
free trajectory is the first problem which must be solved.
However, our cost function consists of five components,
two of which are not relevant for this phase: duration and
torque costs. While the algorithm attempts to leave the region
of collisions, these costs are not important, as the current
solution is not feasible anyway. Using them could slow
down convergence, as the components may pull the trajectory
in different directions. Moreover, these components would
introduce additional computations.

In order to address this issue, the optimization process
is split into two consecutive phases. In the first phase, we
use a simplified cost function. It consists of: obstacle costs,
joint limit costs, and constraint costs. Optimization with the
simplified cost function continues until a valid trajectory is
found. After this, the configuration space is extended with
velocity, and the second phase of the optimization starts,
where the full cost function with five components is used.
This phase continues until a termination criterion is met.

In certain situations, the algorithm can get stuck in a
local minimum. In order to prevent failures or unnecessary
exhaustive runs in these cases, we apply the algorithm in an
iterative manner. If the algorithm cannot improve the solution
during a given number of iterations, and the current best
solution is not valid, the optimization starts from scratch.
In this case, the best solution from the previous iteration is
used as initialization. Initial noise standard deviation tends to
explore previously unseen areas and leads to discovery of a
valid solution. The maximum number of replanning attempts
M is predefined and we use the value M = 5.

This restarting approach shows better results than attempts
to solve the problem in one exhaustive run of the algorithm.
The separation of the optimization process into two parts
with simplified and full cost functions allows to decrease
the time of the optimization.

IV. EXPERIMENTS

In order to evaluate our method, we performed experi-
ments in simulation and on real robots. Our centaur-like robot
Momaro [19] was used in almost all experiments. Momaro
has two 7 DOF arms and a torso yaw joint, which allows
to enlarge the workspace. In all experiments with Momaro,
the planning is performed for 8 DOF: one 7 DOF arm and
the torso yaw. The volume of the workspace covered by the

Fig. 4. Environment for the shelf experiment. Momaro stands in front of
the shelf with three cells.

signed distance field is 2.0× 1.5× 1.5 m. The distance field
has a resolution of 1.5 cm. All start and goal configurations
used in the experiments were defined manually. A linear in-
terpolation in joint space between start and goal configuration
was used as an initial trajectory.

A. Simulation Experiments

We performed the experiments in simulation on a desktop
computer with Quad-core 4.00 GHz Intel Core i7-4790K
CPU, 32 GB of RAM, 64 bit Kubuntu 14.04 with 4.2.0-42
kernel using ROS Indigo Igloo. All evaluated algorithms ran
on a single core.

1) Shelf experiment: The purpose of this experiment is to
model an every-day task. We constructed a shelf with three
35×35×35 cm cells. The thickness of a shelf border is 3 cm.
The robot stands in front of the shelf with an arm in a neutral
position (Fig. 4). In addition to the neutral configuration,
there are three more configurations, where the hand is located
inside the first, the second and the third cell, respectively.

The experiment consists of 12 tasks which are formed
by all possible transitions between the four configurations.
Each task is performed 100 times to average out noise from
obtained measurements. In the shelf scenario, two more
series of tasks of higher difficulty were designed. The initial
set of configurations is referred to as “Easy”. The gripper was
immersed 11 cm deeper into the cells, which made the task
harder as the gripper had to travel more in the tight space
of the cells. We refer to this experiment as “Hard”. Finally,
an orientation constraint for the gripper was introduced. We
kept “Hard” configurations, but now the gripper had pitch
and roll constrained to deviate no more than ±0.2 rad from
the initial orientation. We refer to this as “Hard constrained”
task.

We performed this experiment with four algorithms: Lazy
Bi-directional KPIECE (LBKPIECE)1, which uses a dis-
cretized representation of projected state space in order to
find a solution and is a combination of [20] and [21], RRT-
Connect [5] from OMPL [22], STOMP-Industrial2, which
is a newer implementation of the original STOMP, and our
method, which is referred to as STOMP-New. We set the time

1http://ompl.kavrakilab.org/classompl_1_
1geometric_1_1LBKPIECE1.html

2https://github.com/ros-industrial/industrial_
moveit



TABLE I
COMPARISON OF SUCCESS RATE AND AVERAGE RUNTIME.

Difficulty level

Easy Hard Hard
constrained

Algorithm Success rate
runtime [s]

Success rate
runtime [s]

Success rate
runtime [s]

LBKPIECE 0.94
2.47 ± 1.08

0.93
2.46 ± 0.85

-
-

STOMP-Industrial 0.87
0.87 ± 0.86

0.76
1.47 ± 1.01

-
-

RRT-Connect 0.97
0.29 ± 0.18

0.96
0.85 ± 0.58

0.97
1.22 ± 1.04

STOMP-New 1.0
0.09 ± 0.02

1.0
0.18 ± 0.11

0.99
0.28 ± 0.21

TABLE II
COMPARISON OF AVERAGE RUNTIME FOR SIMPLIFIED AND FULL COST.

Difficulty level

Easy Hard Hard
constrained

Simplified costs 0.09 ± 0.02 0.18 ± 0.11 0.28 ± 0.21
Full costs 0.12 ± 0.04 0.23 ± 0.19 0.48 ± 0.32

Runtime growth 33% 28% 71%

limit for LBKPIECE and RRTConnect to be 5 seconds. We
set the maximum iteration number for STOMP-Industrial and
STOMP-New to be 100. At each iteration, ten trajectories
are sampled. Trajectories of STOMP-New consist of ten
keyframes and 50 keyframes for STOMP-Industrial. We
made efforts to tune the planners, so that they demonstrate
their best performance. In this experiment, we used the
simplified cost function in STOMP-New, as the compared
methods do not optimize the duration or motor torques. The
obtained average success rates and runtimes are shown in
Table I. There are no results for LBKPIECE and STOMP-
Industrial for “Hard constrained” test, as the orientation
constraints were not realized in these implementations.

One can observe that all algorithms except STOMP-
Industrial achieved a success rate close to 1.0. However,
the average runtime differs significantly. The slowest method
is LBKPIECE. The second slowest algorithm is STOMP-
Industrial, which has a noticeable improvement in runtime
in comparison with LBKPIECE. STOMP-New and RRTCon-
nect have shown the best performance, having high success
rates and low runtimes. Our method achieved three to four
times lower runtime than RRTConnect. The average time
for computation of EDT in STOMP-New was 0.033 s. The
improvement in runtime in comparison to STOMP-Industrial
was achieved by the proposed cost function, which reduces
the computations. In addition, smaller keyframe numbers
which are available for our method, contribute to the speed
up. On average 33 collision checks per trajectory were
performed by our method during this experiment.

In order to estimate a runtime growth as well as possible
success rate degradation when using full costs instead of
simplified costs, we performed the shelf experiment one more
time using full costs. During this experiment, we set all cost
importance weights to a neutral 0.5 value.

Fig. 5. Trajectories obtained with different obstacle cost importance
weights. Red: 0.0; Blue: 0.5; Green: 1.0. The larger the weight is, the larger
distance to the obstacles is kept by the robot. Black: start pose; Yellow: goal
pose.

The comparison of the obtained runtimes is shown in
Table II. The success rate remained the same, thus we do
not show it. For both “Easy” and “Hard” unconstrained
tests, the runtime grew by approximately 30%. For the test
with orientation constraints, the runtime growth reached 71%
which is explained by many disjoint local minima caused by
the constraints, which is harder to overcome. However, the
full cost function allowed to obtain trajectories with lower
durations and torques. We demonstrate the effects of these
components in the next subsections. Overall, the runtime
growth is not critical. Our method may be used in a frequent-
replanning manner for acting in dynamic environments.

2) Obstacle costs: In this experiment, we demonstrate
how different obstacle cost component importance weights
influence the obtained solutions. We took a task from the
shelf experiment and obtained solutions with three different
obstacle importance weights, shown in Fig. 5. While the
trajectory with the value of obstacle cost weight 1.0 is the
safest, as it moves the arm very far from the obstacles,
this trajectory is the longest and has the longest duration.
The trajectory with lowest obstacle weight is the fastest to
execute, but includes movements close to the obstacles.

3) Torque optimization: In order to demonstrate how
torque optimization influences the resulting trajectory, we
performed an additional experiment. The initial configuration
is a default position of the robot with bent elbow. The goal
configuration has fully extended arm and the torso is rotated.
The weight of the end-effector is being increased by 5 kg
representing a heavy object in the hand. The optimization is
performed two times: with and without torque minimization.
The obtained trajectories are depicted in Fig. 6. Without
torque minimization, all joints move uniformly towards the
goal. With torque minimization turned on, the trajectory is
different. The arm in the extended state experiences high
torques due to gravity. The optimizer avoids this effect by
keeping the arm bent and rotating the torso first. Only when
this movement is finished, the arm is extended, which results
in lower total torque.

4) Duration optimization: In this experiment, we demon-
strate the behaviour of our duration cost component. We
took a task from the shelf experiment and adjusted the goal
configuration in a way that it is located very close to the
cell border, so that in the end the robot must move close



(a) (b)

Fig. 6. Comparison of trajectories obtained with/without torque optimiza-
tion. The robot is assumed to hold 5 kg. Red: without torque optimization;
Green: with torque optimization. (a) Trajectories of the end-effector. Black:
start pose; Yellow: goal pose. With torque optimization the robot first
rotates the torso and only then extends the arm, which results in lower
torque. (b) Magnitude of the total torque. Without optimization (upper line)
the torque grows faster and reaches unnecessary high values. While with
optimization (lower line) total torque grows slower.

(a) (b)

Fig. 7. Duration optimization. In order to make the movement safer, the
optimizer maintains lower velocities in region near the obstacles. This makes
an earlier deceleration necessary, which results in a trajectory with longer
duration, but with a higher safety level. (a) The grey-scale line represents
the trajectory of the end-effector. The brighter the segment is, the larger
is the velocity during that segment. Black: start pose; Yellow: goal pose.
(b) Velocity vs time.

to the obstacle. The obtained solution is shown in Fig. 7
As the movement starts and ends in a static state, both
initial and goal velocities were set to 0 rad/s. One can see
that the algorithm attempts to reach the maximum allowed
velocity (1.0 rad/s) during the first part of the trajectory and
then maintains this velocity. However, as further movement
is done close to the obstacle, the deceleration is started in
advance and the movement is continued towards the goal
with low velocity, which makes the motion safer.

To demonstrate replanning capabilities of our method,
we performed an additional experiment. The optimization
is done two times: in the first case start and goal velocities
are 0 rad/s. In the second case, the initial velocity is 0.7 rad/s
and the goal velocity is 0 rad/s. The experiment shows that
our method can be used for replanning when the robot is
already moving. Resulting trajectories are shown in Fig. 8.
One can observe that in both cases the velocity smoothly
grows towards its maximum allowed value (1.0 rad/s). It
stays on this level and then decreases until the goal value is
reached. The trajectory which starts with 0.7 rad/s velocity
has smaller duration (2.78 s) than the trajectory which starts
with 0 rad/s (3.81 s), which is an expected result.

(a) Trajectory with both start and
goal velocities 0 rad/s.

(b) Velocity vs time for (a).

(c) Trajectory with start velocity
0.7 rad/s and goal velocity 0 rad/s.

(d) Velocity vs time for (c).

Fig. 8. Example of a duration optimization. Black: start pose; Yellow:
goal pose. The grey-scale lines represent the trajectories of the end-effector.
The brighter the segment is, the larger is the velocity. In the first case (a)
the initial and the goal velocities are 0 rad/s. In the second case (c) the
initial velocity is 0.7 rad/s. In both cases the optimizer attempts to reach
the maximum velocity and keeps it as long as possible before deceleration.
However, as in (c) the velocity is non-zero initially, there is less time spent
for acceleration, and hence, the overall duration is smaller.

(a) (b)

Fig. 9. Obstacle avoidance with a real robot. (a) Planned trajectory which
avoids the obstacle in order to reach a pre-grasp pose. (b) Momaro executing
the planned trajectory.

B. Robot Experiments

To demonstrate that our method can be applied in reality,
experiments with real robots were performed. The videos of
the experiments are available online3.

1) Momaro: We used our method to reach a pre-grasp
pose with the Momaro robot. As shown in Fig. 9, Momaro
successfully avoided an obstacle placed on the way. This
demonstration was shown live during the review meeting of
the CENTAURO4 project. Different obstacle cost importance
weights were used to avoid the obstacle with different
margins, to demonstrate planning of safe or fast trajectories.

3http://www.ais.uni-bonn.de/videos/IROS_2017_
Trajectory_Optimization

4https://www.centauro-project.eu



(a) (b)

Fig. 10. Replanning with iiwa arm. (a) Two trajectories: initial (lower
line) and replanned (upper line), which was produced when previously
unconsidered obstacle (box in the middle) interfered the initial trajectory.
(b) iiwa arm executing a replanned trajectory, avoiding the previously
unconsidered obstacle (box).

2) KUKA arm: STOMP-New was used during the Show-
case evaluation of the KittingBot project in the Euro-
pean Robotics Challenge 2 (EuRoC)5. In this challenge, the
KUKA miiwa robot was used, which consists of an iiwa ma-
nipulator on an omnidirectional mobile base. The objective
was to pick up different engine parts in different locations
across the arena. Our method was used to plan trajectories
for the iiwa arm to reach a pre-grasp pose and to deliver
a grasped object to a pre-release pose. There were three
different objects: metal engine support parts of two sizes and
engine pipes. In order to plan trajectories with these objects
during one run, rough approximations of these objects were
attached and detached from our collision model. In addition,
we performed a replanning experiment, which shows the
capability of our method to perform a quick replanning when
an obstacle interferes with the already planned trajectory. In
Fig. 10 one can see the robot executing the final trajectory,
replanned to avoid the box.

V. CONCLUSIONS

In this paper, we presented an approach for optimization of
arm trajectories with respect to multiple criteria that extends
STOMP. Trajectory duration is optimized by including a
velocity into the configuration space. We proposed a multi-
component cost function, which includes the following cost
components: collisions, joint limits, orientation constraints,
joint torque and trajectory duration. The components are
normalized and have importance weights assigned. These
weights allow to prioritize component optimization and ob-
tain trajectories with different properties. The cost function
is designed to evaluate a trajectory efficiently, keeping the
computational load as low as possible. It is easy to extend
the cost function with any additional costs as long as they
are normalized. We evaluated our method in simulation and
on real robots. Our approach demonstrated high success rate
and low runtime, making it suitable for frequent replanning
in dynamic environments.

5http://www.euroc-project.eu/index.php
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