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Abstract— Visual SLAM is an area of vivid research and
bears countless applications for moving robots. In particular,
micro aerial vehicles benefit from visual sensors due to their low
weight. Their motion is, however, often faster and more complex
than that of ground-based robots which is why systems with
multiple cameras are currently evaluated and deployed. This,
in turn, drives the computational demand for visual SLAM
algorithms.

We present an extension of the recently introduced monoc-
ular ORB-SLAM for multiple cameras alongside an inertial
measurement unit (IMU). Our main contributions are: Em-
bedding the multi-camera setup into the underlying graph
SLAM approach that defines the upcoming sparse optimization
problems on several adjusted subgraphs, integration of an
IMU filter that supports visual tracking, and enhancements
of the original algorithm in local map estimation and keyframe
creation. The SLAM system is evaluated on a public stereo
SLAM dataset for flying robots and on a new dataset with
three mounted cameras.

The main advantages of the proposed method are its re-
stricted computational load, high positional accuracy, and low
number of parameters.

I. INTRODUCTION

Highly accurate simultaneous localization and mapping
(SLAM) is one of the most important capabilities for mi-
cro air vehicles (MAV), in particular during autonomous
operation. Compared to established environment-perceiving
sensors, like laser scanners, cameras bear the advantage that
they are lightweight, can detect most solid materials, and
yield readings with comparably high frequency. Hence, they
are essential in navigation, motion planning, and obstacle
avoidance. However, in typical applications the camera field
of view is limited. Close obstacles occlude large parts
of the scene, structureless surfaces often lack visual cues,
and repetitive textures complicate finding correspondences.
Using multiple cameras with completely different viewing
directions can help in mitigating these effects. Furthermore,
these system can handle rapid motions when one camera
is directed towards the axis of rotation (cf. Fig. 1). Timely
processing a single video stream comes, however, already at
the burden of high computational cost. This is even more
critical if several cameras are deployed.

In this work, we present a multi-camera visual 6 DOF-
SLAM that is able to integrate inertial measurements. The
relative poses (extrinsics) among the cameras are assumed to
be static and calibrated beforehand as are camera intrinsics
and lens distortion.
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Fig. 1: The problem at hand: A (flying) robot equipped with
multiple cameras traverses a scene orienting itself at distinct
feature points that are tracked over time and between cam-
eras. Observing points in multiple directions facilitates self-
localization and motion estimation during complex move-
ments. The bottom camera can track this turning manoeuvre
while the stereo camera cannot.

We base our work on the release of Mur-Artal et al. [1]
who introduced ORB-SLAM: a monocular SLAM approach
based on ORB features [2]. It builds a map representation
that is a covisibility pose graph by inserting relative pose
constraints between frames that are covisible, i.e., have ob-
served the same part of the scene. Loop closing is performed
via a Bag-of-Words representation for every keyframe based
on ORB descriptors.

We extend ORB-SLAM by applying the covisibility graph
concept to multiple cameras, integrating IMU readings, and
adapting the concept of local mapping to also account for
large scenes with high interconnectivity between covisible
frames. In order to restrict the computational effort, we
present a new criterion that avoids creating keyframes from
all cameras at every possible instance but still exploits the
valuable known rigid relative poses between them. Very
recently, Mur-Artal et al. have released an open-source
version of their algorithm that was extended by a stereo
variant. It requires, however, a pixel-wise stereo transform
as pre-processing step and makes strong use of epipolar con-
straints between known camera poses. Our work focuses on
possibly non-overlapping multi-camera systems and handles
them independently.

Our field of application is directed to autonomous flying
robots which is the main focus of the experiments presented
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in this paper. We evaluate the algorithm on a public dataset
combining a stereo camera pair with an IMU and a newly
acquired dataset with three cameras (a stereo pair and a
monocular camera facing downward) and an IMU.

Our contribution is an accurate self-localization, re-
localization, and mapping interface with multiple cameras
at moderate computational cost suitable for onboard execu-
tion. The reconstruction allows for navigation and motion
planning in safe distance to obstacles. The entire algorithm
has very few critical parameters, apart from the camera
calibration, and can be deployed out-of-the-box in most
cases.

II. RELATED WORK

Visual Odometry (VO) and visual SLAM methods can
be roughly categorized into dense, semi-dense, and feature-
based approaches. Dense methods like DTAM [3] estimate
for each pixel a depth value and often rely on massive hard-
ware parallelization via GPUs to obtain real-time capabilities.
The prerequisite of a GPU typically prohibits the usage of
these algorithms in many MAV applications where very strict
limitations on payload exist.

Instead of estimating the ego-motion from the whole
image, semi dense approaches often use regions with high-
intensity gradients like edges, corners, and texture. The most
prominent semi-dense method is LSD-SLAM [4], which
aligns images by minimizing the photometric error between
the current frame and the last keyframe. The high-gradient
regions are then used to estimate the inverse depth of the
scene and graph optimization is utilized on keyframe poses
to reduce drift over time and allow for loop closures.

Feature-based approaches typically extract robust and dis-
tinctive features [1] sparsely distributed over the whole
image. These are matched between frames using feature
descriptors, before the ego-motion is estimated within a
RANSAC-scheme to discard outliers [5], [6]. Instead, SVO
[7] uses a combination of feature-based and semi-dense
approaches by first using direct alignment of previously seen
feature-patches towards the current image and then finding
corresponding features, before continuing to use features
only. Likewise, Krombach et al. presented a feature-based
approach facilitating semi-dense reconstruction with a variant
of stereo LSD-SLAM [8].

Since monocular SLAM can only create the map up to
scale, many researchers either use a second camera with
known baseline (Stereo-LSD-SLAM [9], ORB-SLAM2 [1])
or an Inertial Measurement Unit [10], [11] to obtain the
correct scale. If possible, the use of a calibrated stereo camera
is most often preferred, due to the noise characteristics
of an IMU [12]. Nevertheless, the IMU provides crucial
information about the ego-motion and research has recently
focused on tightly-coupling the IMU into the VO/SLAM
system. Tanskanen et al. [11] used patches instead of
points and integrated the minimization of the photometric
error into an EKF, that allows to directly include the IMU
measurements.

A more standard approach is taken by Leutenegger et al.
[13] in OKVIS. The IMU measurements are incorporated in
a probabilistic way into the non-linear optimization, linking
consecutive keyframes and allowing to apply keyframe-
marginalization. The reference implementation also supports
multiple cameras and can improve the extrinsic calibration.

In contrast, Forster et al. [14] preintegrate all inertial
measurements between consecutive keyframes to obtain a
single constraint, while considering the rotations manifold
structure.

Apart from OKVIS [13] the work of Kaess et al. [15]
is one video-based approach that is able to incorporate
multi-camera setups in real-time by restricting local bundle
adjustment to the three most recent frames.

Within the categorization laid out in this paragraph, the
proposed ORB-SLAM extension is a multi-camera keyframe
and (ORB-)feature-based SLAM algorithm that aggregates
IMU readings to a motion prior which is in turn used to
accelerate the tracking and quickly retrieve the relevant local
map.

III. METHOD

The original version of ORB-SLAM is a monocular
feature-based SLAM approach that uses interest points from
a multi-scale FAST or alternatively Harris corner detector to
achieve a matching between two consecutive camera frames.
Apart from the position of a keypoint, its ORB descriptor,
scale, and dominant orientation are taken into account. A
RANSAC scheme is used to estimate a pose or, in degenerate
cases, a homography. After a coarse relative pose to the
previous frame has been established, the algorithm tries to
match the current observations against the local map that
consists of triangulated points which have been observed
before. Depending on the amount of unmatched points, a
new keyframe is added and passed along to the mapping
thread that asynchronously builds and refines the observed
scene as well as the relative keyframe poses. Likewise, every
keyframe is asynchronously searched for possible loop clo-
sures via a similarity score based on a bag-of-words approach
over the feature descriptors and a subsequent relative pose
estimation.

Multi-scale ORB features provide several useful properties
that ORB-SLAM builds upon. For one, they have been shown
to yield fast, stable, robust, and repeatable interest points that
are mostly unaffected by changes in perspective, rotation, and
blur which renders them ideal for map tracking and matching
between frames. The orientation allows to define a global
constraint on every matched frame as the relative rotation
should approximately be the same for every interest point. In
this particular setting, ORB features are also extracted from
different image scales which represents another important
cue for matching, tracking, and localization accuracy when
the distance to the corresponding map point is known and,
thus, the change in apparent size can easily be computed. As
a side effect, the ORB descriptors can straightforwardly be
used as complete-frame similarity score for the purpose of
loop closing.



Aside from the use of the eponymous ORB features, a
central characteristic of ORB-SLAM is the graph-like data
structure that manages the observed scene and allows fast
determination of currently relevant parts of the map. The
covisibility graph is a sub-graph of this structure that encom-
passes all keyframes that have been created so far. Here, two
keyframes are adjacent if they are covisible, i.e., they observe
a common part of the scene. Furthermore, each keyframe
node is adjacent to all map points it observes. No further
correspondence is stored. In particular, it is impossible to
reconstruct the order in which the keyframes were created
from the graph structure alone as two consecutive keyframes
may not be covisible if the scene in between their poses
is already known. Although the keyframes and map points
as nodes of the graph carry geometric information, the
covisiblity graph manages common visual features which
allows a simple and elegant formulation of many problems in
visual SLAM. In fact, it avoids probabilistic representations
that are oftentimes hard to parametrize and more costly to
compute [16].

Apart from this near-topologic map interpretation within
the covisibility subgraph, the pose graph tracks the variable
correspondences and, thus, the sparsity of several underlying
optimization problems posed by visual SLAM: During local
bundle adjustment, the poses of the keyframes and the
positions of the map points are optimized. During loop
closing, only the relative poses of the covisibility graph
spanning tree combined with the loop detections and strong
covisibility edges, coined essential graph, are taken into
account. All optimization problems are solved with the
Levenberg-Marquardt implementation of the g2o library [17].

We denote sets and matrices with capital letters and
vectors with bold letters. Let F = (TF ,KF ) be a camera
frame (or keyframe) with pose matrix TF = Tcw, mapping
from world to camera coordinates and corresponding camera
matrix KF . The world is defined by the first recorded frame.
M is a map point with position pM = (px, py, pz)

T in world
coordinates. The projection of M into F is, hence, given as
πF (pM) with

πF : pw → pc,pc =
1

p′z

(
p′x
p′y

)
,p′ = KFTF

(
pw

1

)
. (1)

The nodes within the pose graph are connected by two
types of edges: P and C. The projection edge P =
((FP ,MP),xP) denotes the connection between frame F
and an observed map point M where xP is the corre-
sponding feature point of MP in image coordinates. C =
((FC ,F ′C), TC , wC) defines the weighted covisibility edges
where wC is the number of covisible map points and TC =
TFT

−1
F ′ is the relative transform between the corresponding

poses of frame F and F ′.

A. Multi-camera Integration

In order to introduce multiple cameras to the SLAM
algorithm, we add an element c that denotes the camera the
keyframe was created by: F = (TF ,KF , cF ). We assume
that the cameras that are used in the SLAM approach are
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Fig. 2: The adapted pose graph with three kinds of correspon-
dences. Solid (red) lines indicate a rigid correspondence R
between frames from two different cameras that represent the
constraint from the calibrated relative pose. Dashed (black)
lines P connect an observed map point and the correspondent
keyframe and carry the frame pose, the map point position,
and the image coordinates of the corresponding key point in
the frame. The dotted (green) lines denote covisibility rela-
tions C that carry relative poses between incident keyframes.
Please note that the keyframe criterion does not necessarily
add keyframes for all cameras at the same time. Thus, the
size of the cliques formed by rigid edges varies.

triggered to expose simultaneously and that their relative
pose Tcc′ is known. Even though it is possible to compute
overlap, the proposed procedure does not handle overlapping
cameras differently apart from the initialization where match-
ing key points between stereo frames is much more reliable
than monocular initialization and initially yields an accurate
map scale. In case of a static arrangement, the cameras must,
hence, be calibrated extrinsically.

We extend the pose graph by a new edge type that we
call rigid edge (cf. Fig. 2). Keyframes F ,F ′ of different
cameras from the same timestep are fully connected by
rigid edges R = ((F ,F ′), TR) that carry the respective
relative pose TR = Tcc′ that was extrinsically calibrated
beforehand. It represents a new strong constraint during all
graph optimization steps and is used during determination of
the local map (cf. Sec. III-D).

1) Tracking: After a set of newly acquired camera frames
Ω has been matched against the most recent local map—
establishing corresponding projection edges—a nonlinear
optimization is performed to minimize the reprojection error
eP and refine the robot pose:

arg min
TF ,F∈Ω

{eP (Ω) + λ eTR (Ω)} ,

eP (A) =
∑
F∈A

∑
M∈NP(F)

ρ (πF (pM)− xM) ,

eTB
(A) =

∑
F∈A

∑
F ′∈NB(F)

d
(
TB , TFT

−1
F ′

)
, (2)

where ρ (·) denotes the robust Huber-norm and
NP(F), NR(F) are the neighbouring map points of
F connected by a projection edge and the neighbouring
frames of F connected by a rigid edge, respectively. d(·, ·)



is a measure of difference between two relative poses and
the scalar parameter λ defines a trade-off between both
terms.

2) Local Bundle Adjustment: After a set of keyframes Ω
from different cameras has been created (cf. Sec. III-B), a
local bundle adjustment is performed to refine the poses of
all covisible keyframes and the positions of all observed map
points:

arg min
pM,TF
M∈NP(F)

F∈(NC(Ω)∪NR(Ω))

{eP (NC (Ω)) + λ1 eTR (Ω) + λ2 eM (Ω)} ,

eM (A) = eP (NC(NC(A)) \NC(A)) . (3)

Please note that the last sum imposes a correspondence
between the local and the non-local map.

3) Loop Closing: When a loop closure between two
keyframes FL,F ′L was found, the pose graph is optimized by
only considering the essential graph, i.e., the spanning tree
of the covisibility graph with additional strong covisibility
edges. We denote its edges, including the loop edge itself,
by E 3 (FL,F ′L) and its set of keyframe nodes by Ω ⊃
{FL,F ′L}. The optimization problem that takes the newly
defined rigid edges into account is

arg min
TF ,∀F∈Ω

{eTC (E) + eTR (R)} . (4)

B. Keyframe Creation

In monocular ORB-SLAM, a new keyframe is created if
and when a given percentage µ of the computed features
cannot be assigned to the local map and is, hence, considered
novel. This threshold is derived from the corresponding
matching ratio τ of the most covisible keyframe in order
to adapt to regions of the scene with varying quality in
keypoint matching. Since the number of involved keyframes
is the main factor for computational complexity in all opti-
mization stages, the local mapping thread contains a culling
criterion that may remove keyframes afterwards when their
contribution to the map is considered too low. We found the
reliance on only the most covisible keyframe to be instable
at times. A weighted average over all covisible keyframes
with the number of shared map point observations provided
a smoother thresholding:

τF :=
∑

F ′∈NC(F)

wF ′µF ′ , (5)

where µF is the ratio of matched features in keyframe F .
With more than one camera, two conflicting objectives

need to be balanced. On the one hand, the number of
keyframes should still be as low as possible as it governs
the size of all optimization problems, on the other hand,
the accurately known relative pose between two or more
isochronically created keyframes is a very valuable constraint
during pose graph optimization due to the static robot
configuration which can be calibrated very precisely.

In order to coordinate the keyframe creation events, we
propose a scheme where the matching ratio µFi

of each
camera frame Fi is compared to two thresholds mlowτFi

and mhighτFi with mlow < mhigh. If the ratio of at least
one frame drops below mlow, all frames with µFi

< mhigh

are used to create a keyframe, i.e., the creation of keyframes
is preponed for camera frames with a medium matching ratio
mlow < µFi

< mhigh.

C. IMU Integration

Apart from control purposes of a robot, the usage of an
IMU exhibits a number of benefits, especially in visually
challenging scenarios including, e.g., high differences in
lighting within one or between consecutive images, motion
blur due to fast movements, or repetitive surface textures
yielding many local minima for triangulation. For example, if
the scene features are far away, the triangulation can estimate
the orientation quite well while the translation remains
imprecise. The IMU can then improve the position accuracy
and prevent tracking loss. In a multi-camera setup, the IMU
provides viable information to bridge contradicting feature
matchings or frames missing due to insufficient exposure or
rapidly changing lighting conditions.

Instead of using one filter for both the attitude and the
position, we combine two existing filters. The attitude is
estimated by the quaternion based complementary filter of
[18]. Given the current attitude Rbw ∈ R3×3, a fixed
covariance filter is employed to estimate the current position
tbw ∈ R3 [19]. We chose this approach for its speed and
capabilities to estimate the gyroscope and accelerator noise,
as well as straightforward parameter choice. Currently, we
only use five parameters for the position filter and two
for the attitude filter—in contrast to standard Kalman filter
approaches which need accurate covariance matrices that are
often hard to obtain.

During typical outdoor applications, we can rely on the
magnetometer as an absolute reference. Indoors, the mag-
netometer is, however, often useless due to interference by
metal in walls or objects. For flight in proximity to walls
and obstacles, we use the orientation of our SLAM system
to provide a reference w.r.t the first frame. Obviously, this
reference underlies drift but is much more precise than the
accumulated gyroscope drift. This is especially important
under frequent and large rotations.

The combined filter provides the current 3D pose Tbw =
(Rbw, tbw) w.r.t. the first frame with gravity pointing down-
ward in direction of the negative z-axis of a right handed
coordinate system with the x- and y-axis pointing forward
and leftwards, respectively. On arrival of the next frame,
our system tries to match the current features against the
local map that was determined for the previous frame. For
this purpose, the IMU yields a prior on the current motion
estimate which can speed up feature-matching. Given the
coarse pose and the extrinsic calibration between body and
camera

TF = TcFb · Tbw,∀F ∈ Ω, (6)

the local map points are reprojected onto the current image
plane and matched with the extracted feature points. If too
few matches were found, we perform a full frame-to-frame



matching, before we proceed with the remainder of the visual
SLAM pipeline.

D. Local Mapping

It is essential for successful self-localization to be able to
access currently relevant parts of the map fast and reliably.
The covisibility graph as defined in Sec. III allows to do
this seamlessly without knowledge of the current pose or a
sensor model that encompasses a range characteristic. In the
original ORB-SLAM, one starts with a coarse pose estimate
by tracking features from the previous camera frame. This
allows to backproject the map points from the previous local
map estimate for matching them with the keypoints of the
current frame. The observations of all covisible keyframes
and their closure, i.e., the set of the adjacent keyframes in
the covisibility graph, form the local map.

As detailed below, we refine this procedure that is imple-
mented in the original ORB-SLAM as it quickly becomes
intractable with multiple cameras since the number of in-
volved keyframes grows fast. Furthermore, we found that
the number of directly covisible keyframes may already be
high in scenes recorded from far and near distance and that
a large number of keyframes from the covisible closure may
be irrelevant for the currently observed part of the scene. To
address these issues, we add another criterion that controls
when to include a keyframe to the local map. At least one of
the observed map points must fulfill the following conditions:
• It must lie in the frustrum of the current frame which

can be checked by comparing the reprojection of the
map point against the image borders.

• Given the distance of the respective map point and the
scale of its ORB feature, the apparent scale when pro-
jected into the current camera frame can be computed.
This scale must lie between the minimum and maximum
observable scale of the keypoints of that frame.

• The angle between the viewing direction of the map
point and the average viewing direction of all other
keyframes that are adjacent must fall below a given
threshold.

If these criteria are satisfied, the regarded keyframe does
indeed observe a currently relevant part of the scene. The
computational cost to check the conditions is lightweight
since intermediate results, like the reprojected coordinates
and the apparent scale, must be computed anyway and can
be stored and re-used later on.

Starting from the directly covisible keyframes, we initiate
a breadth-first-search on covisibility edges and continue to
add adjacent keyframes with at least one map point that
fulfils the above stated conditions. The search stops if the
respective keyframe does not contain any relevant scene
points.

IV. EXPERIMENTS

All experiments were performed on an Intel Core i7-
4710MQ CPU @ 2.50GHz desktop PC with 16 GB RAM.
It should be noted that the algorithm does not make use of
GPU implementations. The video stream was asynchronously

replayed at original speed to simulate realistic runtime con-
straints.

A. Stereo and IMU

We use the publicly available dataset from ETH Zürich
[20] obtained from dynamic flights in a small cluttered room.
The sequences are recorded with an Asctec Firefly hex-rotor
copter. The MAV pose is tracked with a Vicon 6D motion
capture system at 100 Hz. Depending on the density of the
local map, the main tracking thread performed at an average
frame rate of 15–20 Hz, where 20 Hz is also the rate of the
cameras. Table I presents the results of our method in com-
parison to those of state-of-the-art algorithms that we adopt
partly from the paper by Krombach et al. [8]. It contains the
absolute trajectory error (ATE) between the estimated and
the reference trajectory. In all cases both trajectories were
aligned by a rigid transform that minimizes their distance.
For monocular SLAM algorithms, an additional scale was
estimated. For the evaluation the published pose estimate was
recorded, thus, allowing to use only the sequence information
up to that time.

Our adapted version of ORB-SLAM is able to self-localize
the copter with a level of accuracy in the range of established
SLAM and VO methods, clearly outperforming LIBVISO
2, LSD-SLAM, Mono-ORB-SLAM, and S-PTAM. Unlike
the approach from this paper where IMU information is
used as a prior, OKVIS computes a tight coupling between
image and IMU information which performs very well on
the test sequences. ORB-SLAM2 makes direct use of the
stereo pair in order to obtain a depth estimate, while our
approach allows for an arbitrary setup that contains the stereo
sensor as special case. However, the aptitude of both methods
is similar. Sequence V1 03 contains large motion blur and
changing lighting conditions which is handled very well with
the fast and robust ORB features. Sequence V2 03 is even
more challenging. Six of seven methods, including ours, lose
their track during the sequence.

B. Monocular, Stereo, and IMU

We use an AscTec Neo copter with a visual-inertial stereo
camera pair facing front and a monocular wide-angle camera
facing downward for inner-building flights in a room of
size 8×10 m and 4 m in height. Ground truth is obtained
via a Vicon 6D motion capture system at a rate of 100 Hz.
Both the extrinsic and the intrinsic calibration of the three
cameras where obtained with an extended version of the
Kalibr calibration toolbox [22] that is able to estimate the
extrinsics of non-overlapping cameras when observing a
calibration pattern, which was projected to a flat wall surface.

The IMU yielded an accurate pose that allowed to match
the map points from the previous frame in 33 % of all
cases and to match its entire local map in 95 % of the
cases which is only done when matching with the previous
frame fails. Thus, using the IMU prior is beneficial as
it avoids the extensive RANSAC-based feature matching
between consecutive frames in many cases and without any
drop in tracking accuracy.
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Fig. 3: Comparison of several trajectories from our approach with the given ground truth.

TABLE I: ATE results on EuRoC / ASL dataset

EuRoC
Dataset

Ours LIBVISO2 [5] LSD-SLAM
[4]∗

ORB-SLAM
[1]

ORB-SLAM 2
[1]

OKVIS [13] S-PTAM [21]

V1 (easy) 0.11 (0.10) 0.26 (0.24) 0.19 (0.10) 0.08 (0.08) 0.09 (0.09) 0.08 (0.08) 0.20 (0.17)
V1 (medium) 0.14 (0.10) 0.17 (0.15) 0.98 (0.92) 0.73 (0.67) 0.17 (0.15) 0.61 (0.48) 0.58 (0.50)
V1 (difficult) 0.36 (0.24) 0.24 (0.21) X X X 0.14 (0.13) X
V2 (easy) 0.11 (0.10) 0.53 (0.51) 0.45 (0.41) 0.16 (0.15) 0.09 (0.08) 0.10 (0.10) 1.88 (1.56)
V2 (medium) 0.27 (0.23) 0.92 (0.75) 0.51 (0.48) X 0.22 (0.21) 0.18 (0.17) X
V2 (difficult) X X X X X 0.24 (0.23) X

Mean 0.20 (0.15) 0.42 (0.37) 0.53 (0.48) 0.32 (0.30) 0.14 (0.13) 0.22 (0.20) 0.89 (0.74)

∗ numbers taken from [8]

TABLE II: Performance on own dataset with three cameras
and a stereo camera pair only.

Dataset ATE (median)
mono + stereo

ATE (median)
stereo

Spiraling flight facing outward 0.08 (0.07) 0.14 (0.14)

Flight into scaffolding and
fast manoeuvring 0.08 (0.07) 0.07 (0.07)

Chasing the author 0.02 (0.02) 0.03 (0.02)

Aisle of scaffolding
covered by tarpaulin 0.11 (0.08) 0.13 (0.09)

Aisle of mattresses (loop) 0.09 (0.05) 0.10 (0.07)

Gate from scaffolding 0.08 (0.08) 0.06 (0.06)

Aisle of mattresses (double loop) 0.09 (0.06) 0.09 (0.08)

Mean 0.08 (0.06) 0.09 (0.08)

We measured the ATE with respect to the Vicon system
in several piloted flights with reasonably fast manoeuvring.
Table II shows the results for a stereo and a three-camera
system (stereo and mono). The sequences included flying
into and through a scaffolding and chasing the first author
of this paper. The presence of moving objects results in map
points that are incorrectly assumed to be static, but which
are then recognized as outliers and removed from the map.

As shown in Tab. II, both setups allowed for an accurate
trajectory estimation at a frame rate of 12–18 Hz due to
the load of two and three cameras, respectively. The multi-
camera setup yields slightly more precise trajectories as there

are situations where the estimation benefits from multiple
cameras, albeit seldomly. Figure 3 shows some example
trajectories with their respective ground truth from the public
ETH dataset, Fig. 4 inserts them into an occupancy map
with the map points estimated by our own method and LSD-
SLAM for reference.

V. CONCLUSIONS

We have demonstrated how an adaptation of the recently
introduced ORB-SLAM algorithm can be used to yield an
accurate and fast simultaneous localization and mapping for
micro aerial vehicles. An inspection of the constructed map
reveals that it is sufficient for path planning with moderate
safety margin, but falls short when operating near obstacles.

The algorithm shows the necessary robustness to han-
dle very dynamic flight manoeuvres. Adapting the problem
size to the current flight situation by dynamically changing
the number of key points per frame yields potential for
improvement. Preliminary results on the copter CPU show
that this load shedding approach is able to provide a pose
estimation at 15–20 Hz, however, further tests in real-life
flying scenarios will have to be performed. Secondly, we
will address the shortcomings of the mapping approach by
feeding the computed poses and visual cues into a semi-dense
scene reconstruction framework [4].
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(a) Semi-dense direct recon-
struction based on [8]

(b) Ours (c) Intensity value overlay

Fig. 4: Result for our first dataset showing the occupancy grid map by a semi-dense direct method (a) and the proposed
feature-based method (b). The color encodes the height over the ground plane. The green curve denotes the Vicon ground
truth, the magenta curve the estimated trajectory. Figure (c) shows the reconstruction from (a) overlaid with intensity values.
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