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Abstract— Depalletizing is a challenging task for manip-
ulation robots. Key to successful application are not only
robustness of the approach, but also achievable cycle times in
order to keep up with the rest of the process. In this paper,
we propose a system for depalletizing and a complete pipeline
for detecting and localizing objects as well as verifying that the
found object does not deviate from the known object model, e.g.,
if it is not the object to pick. In order to achieve high robustness
(e.g., with respect to different lighting conditions) and generality
with respect to the objects to pick, our approach is based on
multi-resolution surfel models. All components (both software
and hardware) allow operation at high frame rates and, thus,
allow for low cycle times.

In experiments, we demonstrate depalletizing of automo-
tive and other prefabricated parts with both high reliability
(w.r.t. success rates) and efficiency (w.r.t. low cycle times).

I. INTRODUCTION

In the past decade(s), the paradigm of car production
has shifted from mass production to increased customiza-
tion of products (build-to-order). More customized products
with increased numbers of assembly combinations implicitly
mean more components to store, transport and feed to the
production line. Due to this variability of the production and
to the diversity of suppliers and parts, part handling during
the assembly stages in the automotive industry is the only
task with automation levels below 30%.

Following this trend, kitting type distribution has devel-
oped massively in the automotive industry over the past few
years. The main idea is to concentrate the value added on
the production line and decentralize re-packing operations.
Kitting operations are usually performed by operators called
pickers. These pickers collect parts as needed from containers
they are stored in, i.e., bins and pallets. Once complete, the
kits are delivered to the production line and synchronized
with the car to be produced. The full automation of such
tasks will not only have a huge impact in the automotive
industry but will also act as a cornerstone in the development
of advanced mobile robotic manipulators capable of dealing
with semi-structured environments, thus opening new possi-
bilities for manufacturing in general.

In the course of a larger project on kitting using mobile
manipulators, we have developed a system for automated
grasping of parts from pallets. This task comprises two major
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Fig. 1: Hardware setup with pallet. The platform is composed
of a Universal Robots UR10 arm, a Robotiq 3-finger gripper,
three Asus Xtion Pro RGB-D camera for perceiving the
workspace, and a PrimeSense Carmine RGB-D camera at
the wrist for close-range object perception.

sub-problems: 1) object perception and 2) motion planning
and execution. In this paper, we focus on the former and
present a complete pipeline for object detection, localization
and verification where all components (both software and
hardware) allow operation at high frame rates. We thereby
explicitly exploit the characteristics of depalletizing problems
such as well-separated parts (under the assumption that
intermediate packaging is removed already).

1) We segment the pallet, its support surface and possible
object candidates thereon in real-time [1].

2) By efficiently registering multi-resolution surfel mod-
els [2], we accurately localize the object in real-time
(after moving gripper and wrist camera to a potential
object candidate).

3) We use the matching score to detect deviations from
the learned object model (e.g., damages) and to detect
wrong objects.

The whole perception pipeline needs less than 0.5s for
execution (excluding motion planning and execution). With
our hardware setup (Fig. 1), we achieve cycle times of 13s
for grasping an object on the pallet (starting from the initial
safety pose of the arm used when the base is moving).

In addition to real-time applicability, we focus on the
generality of our approach w.r.t. to the objects to be picked.
While the majority of related works focuses on particular
aspects such as 2D contours in camera images [3], [4], [5],
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[6], distinct 2D and 3D keypoints and feature descriptors [7],
[8], [9], [10], or geometric primitives [11], we densely
match RGB-D measurements to object models using multi-
resolution surfel maps (MRSMaps) [2]. In this way, we make
full use of the available image information without relying
on an explicit feature extraction stage.

II. RELATED WORK

Using vision sensors for object detection and pose estima-
tion in industrial robotics applications has been focus of re-
search within the last decades. Early work used very specific
geometric features of objects which are found in intensity
images. Rothwell et al. [3], for example, use invariants of
such geometric features under perspective transformation for
fast indexing and matching of observed edges of planar
shapes to a model database. Other works, e.g. Rahardja and
Kosaka [4], use singulated geometric shapes such as circular
or polygonal structures on the objects as landmark features
to find the pose of the object. Such features have also been
extracted from range images for object detection and pose
estimation—one prominent early example being the 3DPO
system of Bolles and Horaud [5].

A. Bin Picking and Depalletizing Research

More recently, Papazov et al. [7] use depth images of
a Microsoft Kinect sensor to find objects in a scene for
picking and placing by a robot. Their recognition approach
compares surfel-pair matches between scene point cloud and
object model in a RANSAC scheme for detection and pose
estimation. Drost et al. [8] propose to use Hough voting
with surfel-pair matches instead. This approach has been
extended by Choi et al. [9] with oriented points on contours
of the object. They acquire point clouds of small objects in a
transport box, and grasp them with a high success rate with
an industrial robot arm. Skotheim et al. [10] also propose a
voting scheme based on pairs of oriented points in 3D point
clouds. They mounted a laser triangulation sensor directly at
the wrist of the robot such that it can scan the object from
arbitrary view points. Our approach finds a highly accurate
pose of the object through segmentation and dense model
alignment by exploiting that in a depalletizing scenario, a
coarse initial guess of the object orientation on the palette is
typically known.

Pretto et al. [6] use a monocular vision system in a
bin picking scenario, i.e., they find objects using intensity
images. The approach is based on matching contours in the
scene with the object model, assuming planar surfaces on the
objects. They report cycle times of up to 7s in a statically
mounted robot setup. Our approach does not make such
strong assumptions on object shape.

Brachmann et al. [12] use a learned object representation
combining dense 3D object coordinate labeling and dense
class labelling for textured and texture-less objects. They
achieve high detection accuracies and runtimes (depending
on the parameterization) around 500 ms, but only for single
objects as opposed to scenes containing multiple instances
of the same object.

In own previous work [11], we have developed an ap-
proach to mobile robot bin picking where objects are mod-
eled using geometric shape primitives. Compounds of both
2D contour and 3D shape primitives are found by graph
matching of primitives detected in 3D point clouds. Our new
approach is less restrictive in the sense that objects need not
to be composed from geometric primitives.

B. Commercial Bin Picking Solutions

Feeding small unordered parts from transport boxes to pro-
duction lines is still mostly done by vibratory bowl feeders.
These machines are noisy, large, and lack flexibility. Larger
parts are mostly handled manually. Robotic part feeders
grasp individual parts, which makes them more flexible.

Halfway between vibratory bowl feeders and robot bin
pickers are solutions which separate parts before detection
and grasping, which simplifies these tasks. Adapt Technolo-
gies AnyFeeder, which is widely used in many industries,
is one example for this approach. It is, however, limited to
small parts. Through advances in 3D sensing, computing,
and algorithms, more and more industrial part feeding ap-
plications can be automated by robot bin picking, which is
mostly used for larger parts.

An increasing number of companies offer 3D sensors,
which are needed to acquire the geometry of the parts inside
the box. Examples include Isra Vision (3D SHAPEscan),
Sick (IVC-3D, Ruler), GFM (ShapeScan3D, AreaScan3D),
Leutze (LPS 36), Tordivel (Scorpion 3D Stinger), LMI
Technologies (Gocator), ShapeDrive (SD-1K-V ), and Mesa
(SR4000). These 3D sensors rely on special illumination of
the scene, mostly by moving laser lines, but also by varying
stripe patterns or phase-modulated light. Some companies
offer affordable 3D sensors for consumer applications, such
as human-computer interaction. Examples include Microsoft
(Kinect), Asus (Xtion), Intel (Creative Interactive Gesture
Camera), and Leap Motion (hand gesture sensor).

Software solutions for detecting parts and estimating their
pose from 3D scans are offered by several vendors, such
as Agsense (SAL3D Match3D), Isra Vision, Vision++ (Bin-
Picker++), VMT Vision, MVTec (Halcon), Tordivel (Scor-
pion 3D Stinger), and Fanuc (iRVision 3D area sensor).

Some vendors offer integrated solutions for bin picking.
One example is Scape Technologies A/S, which places a
camera on the robot end-effector. Images are taken with
active illumination from two perspectives for depth recon-
struction. Parts with mostly simple geometry, like disks,
cylinders, pipes, and boxes are picked with a cycle time of
less then 10s. Another example for mounting the sensor on
the robot arm is the bin picking solution of Faude, which uses
a Leuze Line Profile Sensor on a Universal Robots arm.

In contrast, the bin-picking system of VMT Vision Ma-
chine Technic Bildverarbeitungssysteme GmbH, acquires the
scene by a laser scanner moving on a linear axis above
the bin. Placing the 3D sensor above the bin has the
advantage that the sensor can make the next scan while the
robot is delivering a part. Other examples for this approach
include SICK’s PLB vision system and Liebherrs bin picking
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Fig. 2: Perception pipeline and overall data flow.

solution, which equips the gripper with additional axis for
collision-free part picking, and iRob Feeder developed by
PROFACTOR GmbH and IH Tech.

These examples might suggest that industrial bin picking
and depalletizing are solved, but this is not the case. Success-
ful demonstrations usually require significant engineering
efforts for each use-case. Many technological advances are
needed to make the systems easy to set up, flexible, reliable,
fast, and cost effective.

III. APPROACH

Referring to the pipeline overview in Fig. 2 and the
platform description in Fig. 4a, our object perception and
grasping pipeline comprises the following steps.

1) Using the workspace camera, we detect the pallet and
object candidates. If no object is found (e.g., when the
pallet is cleared) the robot stops and reports to the
operator.

2) The wrist camera is positioned on top of the object
candidate being closest to the pallet center.

3) Using the wrist camera, we recognize and localize the
part. The quality of the found matching is used for
object verification. Poor matching quality indicates that
a wrong object was found. In case of a wrong object, the
robot stops, reports the errors and waits for an operator
instruction to continue its operation.

4) A grasp is selected from a set of predefined grasps and
the robot plans a motion to reach it.

5) The robot grasps the object and plans a motion to the
secure tray (used as a dummy for subsequent tasks).
The robot then follows the planned trajectory to move
the object over the secure tray, releases the object and
moves back to its initial pose.

A. Initial Part Detection

The task of picking an object from the pallet starts,
respectively, when navigation has already taken place and
the robot is positioned in the vicinity of the pallet. In order
to compensate for potential misalignments or inaccuracies
in the estimated poses of robot and pallet, we first use
the workspace camera to find the pallet and to get a first

estimate of where to find potential object candidates. Under
the assumption that we know the side to which to find
the pallet, we acquire images of the respective workspace
camera and search for horizontal support surfaces above the
ground plane. In order to achieve real-time performance,
we efficiently compute local surface normals using integral
images, extract points whose normals point along the gravity
vector, and fit planes perpendicular to the normals of the
extracted points [1].

Referring to Fig. 3, we restrict these extracted (horizontal)
planes to lie in the region where we expect the pallet to
be found, e.g., not outside the robot’s reachable workspace,
and neglect others such as the ground plane. In order to find
potential object candidates, we then select the most dominant
support plane, compute both convex hull and minimum area
bounding box, and select all RGB-D measurements lying
within these polygons and above the extracted support plane.
Thereby, we slightly shrink the limiting polygons in order to
neglect measurements caused by the exterior walls of the
pallet. The selected points are clustered (to obtain object
candidates), and the cluster being closest to the center of the
pallet is selected to get approached first.

After approaching the selected object candidate with the
end effector, the same procedure is repeated with the wrist
camera in order to separate potential objects from the support
surface. Using the centroid of the extracted cluster as well
as the main axes (as derived from principal component
analysis), we obtain a rough initial guess of the object pose.
With the subsequent registration stage, it does not matter
when objects are not well segmented (connected in a single
cluster) or when the initial pose estimate is inaccurate.

B. Object Pose Refinement

We use multi-resolution surfel maps (MRSMaps, [2]) as a
concise dense representation of the RGB-D measurements on
an object. In a training phase, we collect one to several views
on the object whose view poses can be optimized using pose
graph optimization techniques. Our pose refinement approach
is closely related to our soft-assignment surfel registration
approach in [13] for registering sparse 3D point clouds.
Here, for segments with only a few measurements, the soft-
assignment method improves robustness and accuracy over
the registration approach in [2] which uses one-to-one surfel
associations with trilinear interpolation instead.

We want to register the points P = {py,...,pp} in a
segment with the points @ = {q1,...,qq} represented in
the object model MRSMap. Instead of considering each point
individually, we map the RGB-D segment into a MRSMap
and match surfels, i.e.,

N
p(P10,Q) ~ [[pi]6,Y) . ()

i=1
By this, several orders of magnitudes less map elements
are used for registration. Similarly, the registration of two
MRSMaps is treated as the registration of their point sets. We
denote the set of surfels in the scene (the measured segment)
by X = {z1,...,zn} and write Y = {y1,...,yn} for



Fig. 3: Typical results of detection and localization. From left to right: workspace camera point cloud with extracted object
candidates (cyan) and selected object (magenta), and wrist camera point clouds during localization, approach and grasping.

the set of model surfels in the object model map. A surfel
x; summarizes its attributed P, ; points by their sample
mean i, ; and covariance X, ;. We assume that scene and
model can be aligned by a rigid 6 degree-of-freedom (DoF)
transformation 7'(6) from scene to model.

We explain each transformed scene surfel as an obser-
vation from a mixture model, similar as in the coherent
point drift (CPD) method [14]. A surfel x; is observed under
the mixture defined by the model surfels and an additional
uniform component that explains outliers, i.e.,

M+1

> pleiy) plai | cif,0,Y). ()

j=1

p(zi |6,Y) =

The binary variable ¢; indicates the association of x; to
one of the mixture components. The model is a mixture on
Gaussian components for the M model surfels that measure
the matching likelihood between the surfels through

p(x; | ci,j,G,Y) =
N (T(0) i3 11y, Sy,5 + ROZ.:RO)T +071], (3)

where o; = %py_; is a standard deviation that we adapt to
the resolution p,, ; of the model surfel. We set the likelihood
of the uniform mixture component to a constant. This way,
we do not make a hard association decision for each surfel,
but a scene surfel is associated to multiple model surfels.
The alignment pose 6 is estimated through maximization

of the logarithm of the joint data-likelihood

M+1
p(xi | ¢ j,0,Y).

Inp(P|0,Q) =~ Zlean p(ci ;)
4)

We optimize this objective function through expectation-
maximization (EM) [15]. In the M-step, the latest estimate g
for the distribution over component associations is held fixed
to optimize for the pose 6

R N M+1
0= argmaxZPm i Z q(ci ;) Inp(z; | ¢ ;,0,Y). (5

Y i=1 j=1
This optimization is efficiently performed using the

Levenberg-Marquardt (LM) method as in [2].

The E-step obtains a new optimum ¢ for the distribution ¢
by the conditional likelihood of the cluster associations given
the latest pose estimate 6

~ ~ pleiy) plai] iy, 0,Y)
q(ci ) = Ml
Z =1 p(cm ) p(i | Cw’79 Y)

In order to evaluate these soft assignments, we perform a
local search in the MRSMap of the model. We first look
up the surfel available on the finest resolution in the model
map at the transformed mean position of the scene surfel.
We consider this surfel and its neighbors in a local volume
for soft association whose size scales with the resolution of
the surfel.

(6)

C. Object Verification

After pose refinement, we verify that the observed segment
fits to the object model for the estimated pose. By this,
we can find wrong registration results if observed and
assumed object match as well as detect if a wrong object
has been placed on the pallet. In such cases, the robot stops
immediately and reports to the operator (as per specification
of the task).

We establish one-to-one associations of surfels between
segment and object model map, and determine the ob-
servation likelihood using these associations similar as in
Eq 4. In addition to the surfel observation likelihood given
by the matching of their Gaussian statistics, we now also
consider occlusions by model surfels of the observed RGB-D
image as highly unlikely. Such occlusions can be efficiently
determined by projecting model surfels into the RGB-D
image given the estimated alignment pose and determining
the difference in depth at the projected pixel position. The
resulting segment observation likelihood is compared with
a baseline observation likelihood of observing the model
MRSMap by itself, in order to avoid the calculation of the
partition function of the joint data likelihood. We determine
a detection confidence from the rescaled ratio of both log
likelihoods thresholded between O and 1.

D. Motion Planning and Execution

Motion planning and execution are based on Movelt[16].
In each pipeline cycle, we need a series of individual motions
in order to verify, pick, and place an object. Since planning
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every single motion is a time consuming task, we use pre-
computed motions whenever the arm is moved between
predefined poses. Pre-computed trajectories are planned and
stored only once and can be retrieved whenever the robot
needs to follow the resulting motion. For being able to
use pre-computed motions, we define several fixed poses,
e.g., the initial pose of the robot (used while navigating
with the mobile base), and the pose where objects are
placed (placement pose). In addition, we define rectangular
grids (Fig. 4b) of poses to the sides of the robot and above
the maximum height where we assume pallets. For every
pose in the grid, we pre-compute a joint trajectory from the
initial pose to the grid pose as well as from the grid pose
to an intermediate pose and the placement pose. Whenever
possible, the robot uses pre-computed trajectories to reach
its goal, or approaches the closest pose reachable with pre-
computed trajectories and only plans the residual motion
from that pose on. By this means, we only need to plan
short trajectories that are computed faster and only check if
collisions exist between the robot and the environment for
every pre-computed motion before execution, which is not as
time consuming as motion planning. In an average picking
cycle, following this scheme reduces motion planning time
by more than 25 %.

For executing planned and pre-computed motions, we use
standard components such as the standard drivers for arm
and gripper as made available by the manufacturers within
the ROS Industrial initiative!.

IV. EXPERIMENTS AND RESULTS

In order to assess robustness and performance of our
approach, we conducted a series of experiments of both indi-
vidual components and the integrated platform. As evaluation
criteria, we focus on the success rates and the execution times
of the individual components and the overall cycle times (for
picking an object from the pallet) of the integrated system.

For more information on ROS industrial, see http://rosindustrial.org.

(a) Parts used in the experiment

Object Mean Stdev Min Max
Correct object (“cross clamp”) 0.901 0.024 0.853 0.951
Similar cross clamp (pose 1) 0 0 0 0
Similar cross clamp (pose 2)  0.407 0.034 0.299 0.452
Small starter 0 0 0 0
Large starter 0.505 0.055 0.398 0.581
Smaller cross clamp 0 0 0 0

(b) Object detection confidences

Fig. 5: Object detection and verification. (a) Used parts, from
left to right: correct object, different cross clamp in poses 1
and 2, small starter, large starter, and smaller cross clamp.
(b) Resulting object detection confidences.

In all experiments, we use the same platform as depicted
in Fig. 4a. It consists of a Universal Robots UR10 6 degree-
of-freedom arm, a Robotiq 3-finger gripper, an Asus Xtion
Pro RGB-D camera (workspace camera), and a PrimeSense
Carmine short range RGB-D camera (wrist camera). Gripper
and wrist camera are mounted on a linear linkage extending
the robot’s reachable workspace for being able to reach into
corners of deeper boxes and lower layers of pallets.

A. Object Detection, Localization, and Verification

The purpose of this first experiment is to assess the ro-
bustness of the object detection and verification component.
The pallet is set up to contain only one object. After initial
detection, the wrist camera is positioned over the found
object candidate. For every object (Fig. 5), we query the
object detection and verification component 25 times (for



(a) Photo sequence of one run (detecting, localizing, verifying, grasping and releasing the part). Full videos at http://www.ais.uni-bonn.de/STAMINA.

Execution Times

Success Rate

Component Mean Stdev Min Max Successful / Total

Initial object detection 26.3ms 10.3ms 15.2ms 38.5ms 120 /120 (100 %)
Detecting that the pallet is empty 10 /10 (100 %)

Object localization & verification 532.7ms 98.2ms 297.0ms 800.1ms 100 / 100 (100 %)
Identifying wrong objects 20/20 (100 %)

Grasping a found object 7.80s 0.56's 6.90s 10.12s 99 /100  (99%)

Object detection and grasping 13.84s 1.89s 10.42s 23.81s

Overall cycle time 34.57s 3.01s 29.53s 49.52s

(b) Execution times and success rates per component (measured over 10 complete runs). Cycle times include releasing and moving to initial pose.

Fig. 6: Depalletizing experiments with our laboratory setup. In a total of 10 runs, the robot clears a pallet containing 10
correct objects (a). It correctly detects the objects on the pallet and detects, localizes, and verifies parts with high success rates
and low execution times (b). Only a single grasp fails due to a collision. The robot reports the error and successfully grasps
the object after being commanded to continue operation. Overall, we achieve cycle times for detecting and grasping objects
of approximately 13s (c). Note that we focus on object perception and neglect further optimization of motion execution.

the same query object, i.e., with the same object model) and
inspect the reported confidence (summarized in Tab. 5b). Ata
confidence lower than 0.75, the robot assumes that the object
is either wrong or considerably deviates from the model.

As can be seen, our approach very well separates the
object to pick from other objects deviating from the queried
model.

B. Integrated Depalletizing in the Lab

The purpose of the integrated depalletizing test is to test
the complete object perception and grasping pipeline for
picking tasks where the part to pick is packaged on pallets.

In this experiment, the pallet is equipped with a total of
12 objects: 10 being the right part to pick, and two wrong
objects (a very similar one and a very different one). A
typical experiment setup is depicted in Fig. 6a. Instead of
waiting for a particular pick order, the robot is repeatedly
asked to pick an object from the pallet. The robot is expected
to clear the pallet by grasping all (correct) objects, stop and
report when it has found a wrong object, and to report when
the pallet is empty. In case of failure (wrong object, empty
pallet, etc.), the robot waits for commands by an operator,
e.g., to continue operation. The latter is a special requirement
by the industrial partner. It is intended that robots and human
workers not only share a workspace but work hand-in-hand.

The procedure in the final demonstrator is as follows:
(1) Using the workspace camera, the robot detects the pallet
and potential object candidates. If no object is found (e.g.,

when the pallet is cleared) the robot stops and reports to the
operator. (2) The wrist camera is positioned on top of the
object candidate being closest to the pallet center. (3) Using
the wrist camera, we recognize and localize the part. In case
of a wrong object, the robot stops, reports the error and waits
for an operator instruction to continue its operation. (4) A
grasp is selected from a set of predefined grasps and the
robot plans a motion to reach it. (5) The robot grasps the
object and plans a motion to the secure tray. (6) The robot
follows the planned trajectory to move the object over the
secure tray, releases the object, and moves back to its initial
pose. We measure both the success rates and the execution
times per component and present details results in Fig. 6.

In all ten runs, the pallet was cleared without major fail-
ures. Only for a single out of the 100 grasps, a grasp failure
occurred: during approach, the robot avoided a phantom
obstacle, collided with the object and failed grasping. The
robot stopped operation due to the detected collision and
reported the error. After inspection of the scene, the operator
commanded the robot to continue. When the same object
was approached again later, it was successfully grasped. In
another case, the robot stopped execution due to a phantom
object: when approaching and grasping the last object on
the pallet, a phantom obstacle (erroneous measurements
caused by the surrounding packaging) appeared right on top
of the object. The problem was reported to the operator
who commanded the robot to continue after inspecting the



scene. The robot then successfully continued grasping the
object. Both failures were caused by incorrectly updating
the obstacle map used for motion planning. The problem
was resolved and did not occur in later runs.

Regarding object detection, localization and verification,
no errors occurred. The robot correctly localized all objects,
correctly identified wrong objects, and correctly detected that
the pallet had been cleared in 100 % of the cases. None of
the components had false positives (or false negatives).

As for the execution times, the initial object (candidate)
detection and pallet detection runs roughly with the framerate
of the workspace camera (30 Hz). Object localization and
verification using the wrist camera takes roughly 0.5 s. Over-
all, none of the object perception components considerably
interrupts the operation of the robot and increases cycle time.
That is, almost 100 % of the reported cycle times is spent on
motion planning and execution.

C. Integrated Depalletizing at the Industrial End-User Site

In order to show the generality of our approach, the
complete part detection and grasping pipeline has been
integrated into a skill-based control architecture [17], [18]
and tested on another robot platform at the industrial end-user
site of PSA Peugeot Citroén. In a total of ten experiments,
the robot received a kitting order for two compressors. For
each compressor, the robot had to pick up the part and place
it in the respective compartment of the kitting box. Note,
that in our pipeline execution stops after grasping the part
and moving the arm to an intermediate pose. Placing the
part in the kitting box and the final verification if the box is
correctly filled are tasks handed by another project partner.
Navigation was not tested in these experiments.

Out of 20 parts the robot had to pick, only a single
grasp failed. In the fifth out of the ten runs, the robot
successfully picked the first compressor and placed it in
the kitting box. While approaching the second part (after
initial object detection), the robot deviated from the planned
trajectory to avoid an obstacle that was not present in the
scene, i.e., a phantom obstacle. This phantom obstacle was
formed by spurious depth measurements (most likely caused
by reflective surfaces and the sun shining brightly through
the semi-transparent roof). Such a phantom obstacle was not
observed in any other experiment, neither in this series of
runs nor in any previous experiment. Although the robot
started to follow the planned trajectory immediately after,
the robot was manually stopped for safety reasons.

In Fig. 7, we show a sequence of photos and visualizations
captured during one of the ten runs, and report the measured
success rates and cycle times. As can be seen, the measured
execution and cycle times considerably deviate from the
results obtained with the lab setup (Fig. 6). This is primarily
caused by 1) operating the FANUC arm at very low velocities
due to safety requirements by the system integrator and
the end-user site, and 2) using a considerably slower on-
board computer that was running under full load during the
experiments (an older dual core Xeon processor as opposed
to an Intel Core i7 in the lab setup). The latter caused

that the involved processes were running delayed and taking
longer. It can be expected that using a more decent on-
board computer and relaxing the strong constraints on the
maximum velocities of the arm will considerably lower both
the execution times of the individual components and the
overall cycle time.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a complete pipeline for
object detection, localization and verification in the context
of robotic depalletizing tasks. Using multi-resolution surfel
models, the approach can reliably handle both generic objects
and objects composed of simple geometric primitives. In
experiments, we could demonstrate that our approach can not
only achieve success rates of 100 % without false positives,
but also run almost real-time without causing interruptions
in the work-flow of the robot.

As a proof-of-concept we have integrated our approach
at the industrial end-user site. However, it is a matter of
ongoing and future work to evaluate performance in long-
term operation. Moreover, it is planned to further robustify
and speed up the whole pipeline for picking objects.
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(a) Picking and placing one part (from top to bottom: external camera image, workspace camera image, wrist camera image, visualization).

Execution times Success Rate
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(b) Execution times per component and overall cycle times for picking. Cycle times include moving to an intermediate pose for placing.
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pick up the part and place it in the respective compartment of the kitting box. Only a single picking failed. A phantom
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thereafter, we stopped the robot for safety reasons. All components were integrated into and started from the skill framework.
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