
Learning Sequential Tasks Interactively from Demonstrations and Own
Experience

Kathrin Gräve and Sven Behnke

Abstract— Deploying robots to our day-to-day life requires
them to have the ability to learn from their environment in
order to acquire new task knowledge and to flexibly adapt
existing skills to various situations. For typical real-world tasks,
it is not sufficient to endow robots with a set of primitive
actions. Rather, they need to learn how to sequence these
in order to achieve a desired effect on their environment.
In this paper, we propose an intuitive learning method for a
robot to acquire sequences of motions by combining learning
from human demonstrations and reinforcement learning. In
every situation, our approach treats both ways of learning as
alternative control flows to optimally exploit their strengths
without inheriting their shortcomings. Using a Gaussian Process
approximation of the state-action sequence value function, our
approach generalizes values observed from demonstrated and
autonomously generated action sequences to unknown inputs.
This approximation is based on a kernel we designed to account
for different representations of tasks and action sequences as
well as inputs of variable length. From the expected deviation of
value estimates, we devise a greedy exploration policy following
a Bayesian optimization criterion that quickly converges learn-
ing to promising action sequences while protecting the robot
from sequences with unpredictable outcome. We demonstrate
the ability of our approach to efficiently learn appropriate
action sequences in various situations on a manipulation task
involving stacked boxes.

I. INTRODUCTION

Robots today are typically used for highly specialized but
repetitive tasks and their software is tailored to an isolated
and controlled environment. On the other hand, considerable
progress is being made on the development of humanoid
robots that eventually may become a part of our everyday
life. Endowing robots with the skills to interact safely with
humans and to solve meaningful tasks in a diverse and
dynamic environment remains a challenging problem. In
practice, foreseeing every situation a robot may encounter
is clearly infeasible which is why learning algorithms are
actively being developed as a means of efficient knowledge
transfer and to allow a robot to adapt its skills under varying
starting conditions. A common assumption is that complex
actions can be factorized into a sequence of elementary and
often goal-directed movements. Accordingly, a substantial
body of work addresses the problem of representing such
motion primitives and investigates how they can be trans-
ferred to a robot efficiently [1]. Being endowed with a set of
motion primitives alone does not enable a robot to perform
complex tasks. Rather, it requires the ability to sequence

The authors are with the Autonomous Intelligent Systems group,
Department of Computer Science, University of Bonn, Germany.
graeve@ais.uni-bonn.de This work was supported by the B-IT
Research School.

primitive skills to achieve effects on the environment through
skillful manipulation of objects. Depending on the situation,
a different set of primitives may need to be combined in
order to achieve the same effect.

In this work, we propose a system that combines rein-
forcement learning and imitation learning to teach a robot
how to sequence motion primitives in order to solve a
complex task. We assume that the value of actions and
situations varies smoothly in the chosen representation and
can, hence, reasonably be approximated by a Gaussian
Process. By applying Gaussian Process Regression [2], we
obtain an estimate on the value of an action sequence in a
particular situation, along with an associated uncertainty of
the prediction. Generalizing reward experienced from learned
sequences this way, our approach is able to derive proper
action sequences for similar tasks under varying conditions.
This formulation draws on our previous work on single
motion primitive learning [3], [4] which we extend here
to variable-length movement sequences and a discrete task
representation. Applying Gaussian Process Regression to
action sequences entails a set of unique challenges, among
them the need to consolidate continuous state spaces with
inherently categorical spaces of action sequences. In this
work, we employ a composition of task-specific kernels
to incorporate different representations of tasks and action
sequences of different lengths into the Gaussian Process
framework.

In our system, we integrate learning from demonstrations
and autonomous improvement as two alternate control flows.
In contrast to many existing approaches that merely use
human demonstrations during a bootstrapping phase for
reinforcement learning [1], we decide in every situation
which method to apply based on the available knowledge,
in order to take advantage of the complementary strengths
of both methods. If there is only little information available
for the situation at hand, the predictions made by the
Gaussian Process have a large uncertainty and searching
for a promising action sequence might be too risky. In this
case, our system will ask for a human demonstration. On
the other hand, placing this burden on the demonstrator
is unnecessary if sufficient data is available. In this case,
autonomous improvement of the policy will likely produce
better results.

To quickly converge our policy towards optimal action
sequences, we devise an exploration policy based on op-
timizing the expected deviation. By trading the expected
improvement [5] which is well known in the Bayesian global
optimization literature and its counterpart, the expected

behnke
Schreibmaschine
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, 2013.

degradation, this criterion leads to an optimization process
that avoids unknown areas of the state space and potentially
unsafe action sequences. Enabling a safe operation of robots
is of particular importance for practical applications where
robots solve tasks in collaboration with humans. More gen-
erally, we believe the application of learning principles well
known from human behavioral sciences contributes to the
accessibility of a technical learning system which in turn
improves its acceptance among potential users.

The remainder of this paper is organized as follows: After
a brief review of related work in Sec. II, we describe our
combined approach in Sec. III and detail Gaussian Processes
with the combination of different kernels. We evaluate our
approach on a manipulation task involving stacked boxes as
described in Sec. IV.

II. RELATED WORK

Over the last decade, a lot of work has been dedicated to
endowing robots with primitive skills in the form of motion
primitives [6]. The results have motivated recent research on
the open question: how can robots learn to sequence primitive
actions in order to solve complex tasks.

One direction of research formulates the sequence learning
problem as a planning task. Toussaint et al. [7] propose an
approach based on a model of the environment and the effects
of actions on it. They translate relational rules capturing
the effects of actions into a Bayes network, allowing to
infer predictions of future states and rewards. Based on this
representation, they devise a probabilistic planning algorithm
that incrementally selects actions based on predicted reward
sequences. Once a task level action has been identified, motor
commands to execute the corresponding low-level motion
are generated using stochastic optimization. In the approach
of Abdo et al. [8], preconditions and effects of actions
are learned from human demonstrations of a movement.
These serve as input to a general-purpose planning algorithm,
allowing a robot to generate sequences of manipulation
movements. Assuming a suitable segmentation of the demon-
stration is provided, the authors proceed to analyze the
variance in state at both ends of demonstration segments to
identify preconditions and effects of actions. Generalization
is performed by analyzing multiple demonstrations of the
same task, or by interactively asking the teacher to relax
preconditions by hinting at irrelevant task features. One
challenge inherent to planning-based approaches is to find
a suitable symbolic representation of the environment.

Several approaches circumvent the choice of a symbolic
representation by tackling the problem from a reinforce-
ment learning perspective. Daniel et al. [9] developed a
reinforcement learning approach called Hierarchical Relative
Entropy Policy Search. In their approach, movement primi-
tives are parametrized using a dynamical system model. For
a given number of segments, the sequence learning problem
is formulated as a constrained optimization problem whose
solution yields the parameters of the dynamical system. They
reported results where a robot arm achieved a reasonable
performance within 300 episodes of a robot hockey game.

To find a good policy more quickly, Stulp et al. [10] use a
demonstrated trajectory to initialize the optimization of shape
parameters of primitive movements. In their approach, they
extend the PI2 algorithm [11] to optimize the shape and
goal parameters of a sequence of movement primitives. Both
approaches are limited to a predefined number of primitives,
restricting the ability of the robot to optimize its policy.

To learn sequences of actions, graph-based representa-
tions on the task-level have been proposed in conjunction
with reinforcement or imitation learning methods. Konidaris
et al. [12] encode generalized action sequences in skill
trees. Sequences may be trained either by demonstrating
viable solutions or by explorative reinforcement learning.
Multiple sequences achieving the same goal from different
starting points are then merged to a tree by considering
their statistical similarities in reverse order. The authors note
in their experiments that the availability of demonstrations
may greatly accelerate the learning process. Similar to our
approach, skill trees encode a deterministic task policy
that does not require planning at runtime. In contrast, we
propose an interactive approach that integrates imitation and
reinforcement learning at task level using a probabilistic de-
cision. Kulić et al. [13] recently proposed a framework where
different motion sequences are encoded as alternate paths
in a motion primitive graph. Demonstrated trajectories are
segmented and clustered hierarchically to motion primitives
which are subsequently encoded as Hidden Markov Models
for retrieval and motion reproduction. In the motion primitive
graph, nodes correspond to actions and edges are labeled
with transition probabilities learned from the observed data.

Our work presented here is in line with the model-free ap-
proaches outlined above in that we require neither extensive
planning at runtime nor the availability of a dynamical model
of the robot. Instead, we propose to learn a probabilistic
approximation of the state-action sequence value function
using a combination of imitation and reinforcement learning
that puts the teacher in the loop where appropriate. One main
focus of our work is the safety of human-robot interaction.
To this end, we propose an efficient yet safe optimization
strategy to guide reinforcement learning.

III. PROPOSED METHOD

In this paper, we are concerned with the task of combining
reinforcement and imitation learning to teach a robot how to
apply action sequences to solve a task. In our approach, we
approximate the value function on the combined space of
states and action sequences by a Gaussian Process (GP) to
generalize observed values to similar situations and action
sequences. Based on this information, we decide in every
situation whether a valuable and safe action sequence can be
generated or whether a human demonstration is necessary.
During imitation learning, demonstrations are segmented
and classified to obtain a symbolic representation of the
action sequence, suitable for the kernel used by the Gaussian
Process. Reinforcement learning in our approach is based
on a Bayesian optimization criterion involving the expected

deviation to safely and efficiently find promising action
sequences.

A. Probabilistic Model

Let S be the partially continuous state space of the
environment and A denote the space of action sequences
from a predefined set of motion primitives parametrized with
reference points. To generalize the observed values and to
establish a guide for autonomous improvement, we approxi-
mate a task-dependent scalar value function on the combined
state-action sequence space with a Gaussian Process

Q : S ×A → R ∼ GP
(
m(~x), k(~x, ~x′)

)
,

where m and k denote the mean and covariance functions
of Q, respectively. This allows us to generalize the values of
known situation-action sequence pairs and to obtain predic-
tions for varied action sequences or unknown situations. For
every prediction, we also obtain an associated uncertainty
which reflects the dissimilarity of the query point from the
training data. Assuming that action sequences which are
dissimilar from those previously seen are potentially unsafe,
we interpret the uncertainty together with the mean of the
GP prediction as a measure of safeness of an action sequence
and use it for making a decision for one of the two learning
methods and to guide reinforcement learning.

While Gaussian Process Regression (GPR) is often used
on Euclidean inputs, one of its main benefits—and more
generally of kernel methods—is that it can be applied to
a wide range of representations, provided a valid covariance
function k can be defined. In particular, action sequences of
variable length aren’t reasonably represented by Euclidean
vectors. Therefore, in our approach, we define the kernel
by combining distance kernels on the application-dependent
state space and the space of action sequences.

For example, in our experiments described in Sec. IV,
states are defined on an Euclidean space whereas action
sequences are described using sequences of motion primitive
identifiers and corresponding reference points. To obtain
a notion of similarity among these inputs, we combine a
Gaussian kernel with the string subsequence kernel first pro-
posed by Lodhi [14] for text classification. Since the space
of individual actions forms a finite set, it is only endowed
with a discrete metric, i.e. every action is dissimilar to all
others. Considering all ordered subsequences of an action
sequence leads to an elastic distance that accepts inputs of
different length and allows us to generalize value across
action sequences. As subsequences do not necessarily have
to be contiguous, the kernel gracefully handles dissimilarities
due to gaps in the inputs. The subsequence kernel over action
sequences is defined as:

kstr(x, x
′) =

∑
u∈A∗

φu(x)φu(x
′), (1)

φu(x) =
∑

i:u=x[i]

λl(i), (2)

whereA∗ denotes the set of all sequences with elements from
A, i is a sequence of length |u| of monotonically increasing

Method Selection

Reinforcement
Learning

Task

Make
Suggestion

Assess Task
Knowledge

Evaluation

Autonomous
Improvement

Imitation
Learning

Process
Demonstration

insufficient sufficient

GP

re
je

ct
ed

negative example

ac
ce

p
te

d

Fig. 1. Schematic overview of the proposed system

indices from [1, . . . , |x|], x[i] denotes the set of elements of
x identified by i, l(i) is the length of the subsequence x[i]
in x and λ ∈ (0, 1] is a decay factor. In our experiments,
we construct a kernel on the combined state-action sequence
space by taking the product of subsequence and Gaussian
kernels which, as shown in [2], is again a valid kernel for a
Gaussian process:

k(x, x′) = krbf(s, s
′) · k̂str(a, a′),

k̂str(a, a
′) = kstr(a1:p−1, a

′
1:q−1) · kstr(ap:n, a′q:m).

(3)

Here, x = (s, a) denotes a state-action sequence pair, m and
n denote the lengths of action sequences a and a′ which are
not necessarily the same and p ∈ [1, n] and q ∈ [1,m] are
used to split the inputs a and a′ into a sequence of motion
primitive ids and a sequence of associated reference points.

B. Learning Method Selection

Since the scenarios where learning from demonstration
and reinforcement learning can make use of their strengths
best are quite complementary, we integrate them as two
alternate control flows in our approach as depicted in Fig. 1.
When asked to provide a sequence of actions that fulfills
a task in a given situation, our system decides whether
the previously collected task knowledge is sufficient to
autonomously generate a reliable solution, or whether human
assistance is needed. This is in contrast to related approaches
that often restrict the human expert to a bootstrapping phase
and exclusively rely on autonomous improvement thereafter.
Our approach offers a trade-off that involves the human
expert only where necessary, thus keeping the number of
expensive demonstrations at a minimum. On the other hand,
it allows the system to adapt to changes in the environment.

To make the decision for one of the learning methods,
we consider the predicted value of previously experienced
situation-action sequence pairs, combined with the similarity

to the current situation. To find a training example x̂ = (ŝ, â)
that has high value and is akin to the current situation scurr,
we search for a minimum of

x̂ = argmin
(s,a)∈X

α (Qmax − µ(s, a)) + ‖scurr − s‖2 , (4)

where X ⊆ S × A is the set of positive training examples,
Qmax is the optimal value, and α expresses the relative
preferences for high value or similarity of the situation.

If a valuable action sequence in a similar situation is
found, i.e. its score undercuts a predefined threshold θ, it
is taken as a starting point for autonomous improvement
as described in Sec. III-D. Otherwise, expert knowledge is
requested. The threshold θ determines the carefulness of
the system. With a large θ, the system will lean on expert
knowledge less often. On the other hand, the outcome of
action sequences becomes less predictable and the risk of
failing the task increases. Decreasing θ reduces the risk at
the cost of an increased human effort.

In order to reduce the cost of providing demonstrations to
the system if no suitable action sequence was found, our
system first attempts to suggest the best action sequence
found before asking for a demonstration. The expert is then
asked to either approve or reject this suggestion. In the latter
case, a demonstration is requested and a new training sample
is added to the Gaussian Process to remember the sequence
as being unsuited for the task in the current situation. The
demonstrated action sequence or an accepted suggestion is
executed to obtain a reward and is added as new GP sample.

C. Imitation Learning
In our approach, a demonstration consists of a trajectory

comprising a sequence of actions that together achieve a
desired effect on the environment. To learn to reproduce
the effect, we determine the ordering of individual actions
by segmenting the trajectory and labeling its components
according to a library of pre-trained motion primitives.
At the same time, we determine the origin and the final
points of the segments and assign each to a reference point
from a predefined set by nearest neighbor classification.
The reference points identify task-dependent locations in the
environment rather than fixed coordinates. For example, they
may correspond to the location of objects or landmarks in the
world. To create a complete training sample for the Gaussian
Process model, the sequence of motion primitives has to be
executed with respect to the identified reference points and
its reward needs to be computed.

In our implementation, we use an iterative segmentation
and classification algorithm that relies on Hidden Markov
Models (HMM) to encode spatio-temporal features char-
acterizing actions [15]. By optimizing the likelihood of a
segment ending at a point as well as the likelihood of the
succeeding segment starting at that point, motion boundaries
are delineated reliably. The HMM representation of motion
primitives also allows to generate smooth trajectories for
movement classes and to generalize them to arbitrary goals.
In our experiments, we use trajectories generated this way to
simulate the effect of action sequences on the environment.

D. Reinforcement Learning

While learning from demonstrations allows to transfer de-
tailed task knowledge in close interaction with a robot, rein-
forcement learning allows to develop a policy autonomously
in situations where human demonstrations are expendable,
reducing human effort. In our approach, we approximate
the reward the system receives for executing a chosen
action sequence by a Gaussian Process. This allows us
to obtain predicted values for candidate action sequences
with an associated uncertainty. From these, we compute
the expected deviation of an action sequence, which trades
off the expected improvement versus its counterpart, the
expected degradation. For a maximization problem, the
expected improvement ED⊕ at a point is the expected
value of the predicted improvements over the maximum
Qbest of all previous function evaluations. Similarly, the
expected degradation ED	 measures how much the function
value is expected to deteriorate with respect to Qbest. In
reinforcement learning, we select candidate sequences based
on their expected deviation ED to rapidly converge our
policy towards optimal action sequences:

ED(x) := ED⊕(x,Qbest)− f(ED	, Qbest), (5)

f(ED	, Qbest) =
(
Qmax −

(
Qbest −ED	(x,Qbest)

))2
.

At the same time, the expected deviation criterion ensures
that possibly unsafe action sequences and sequences that are
unlike any previously observed demonstration are avoided.
We deem this an important feature of our approach for
real-world scenarios because it increases the predictability
of action sequences and mitigates the risk of damage from
executing arbitrary sequences. The method used to optimize
the expected deviation is not restricted by our approach
and only depends on the action sequence representation. In
our experiments, we use an action sequence representation
that does not exhibit a meaningful notion of a gradient.
Consequently, we employ a local neighborhood search that
evaluates all sequences differing by at most one element from
the known good sequence found in the decision step.

IV. EXPERIMENTS

To validate our approach, we consider a tabletop manipula-
tion setting where the task is to move a stack of boxes from
one position to another safely. Instances of this simplified
scenario are ubiquitous in our daily life, for example in
setting a table or clearing up a desk. At the same time, the
task is challenging because different manipulation strategies
need to be applied depending on the situation at hand. For
example, obstacles may prevent a direct movement towards
the desired goal and instabilities of the object stack limit
the number of stacked boxes that can be displaced at the
same time without causing the stack to collapse. In this case,
the system should learn to decompose the task and move
only a limited number of boxes at a time. We report here
results from experiments we conducted using the physics-
based simulator Gazebo [16] to demonstrate the ability of
our approach to safely learn a policy solving this task.

-0.5-0.4-0.3-0.2-0.10.0
y

0.35

0.40

0.45

0.50

0.55

x

Fig. 2. Top-down view on the table with the obstacle (gray) and tasks
where a human demonstration was requested depicted as arrows connecting
the initial and target locations of the box. The color of the arrows indicates
whether the box was lifted over the obstacle (red/light) or pushed to the
target location (blue/dark).

A. Experimental Setup

In every episode of our experiments, a stack of boxes is
placed in the workspace and one box is highlighted. The task
is to move this box and all boxes on top of it to some target
location in the workspace. All components of this setup, i.e.
the initial position of the stack, its size, the highlighted box
and the target location are chosen at random. In particular, the
system may be tasked with moving an entire stack of boxes
or only part of it, leaving a stub at the original location. The
task is complicated by a static obstacle placed in the center
of the workspace. Furthermore, our simulation models the
physical interactions of the stacked rigid bodies. For our
experiments, we set up friction coefficients such that the
stack becomes instable and collapses if more than two boxes
are relocated at the same time. To solve the task, the system
is equipped with four primitive actions: grasping an object,
displacing it, pushing it to a destination without lifting it,
and retracting the hand. These primitive actions were trained
using the approach described in our earlier work [15] and can
be sequenced arbitrarily to create complex movements.

B. Task Definition

We measure the performance in relocating a stack of boxes
as the work W spent throughout an episode of length T . It
is defined as the change in kinetic energy Ek of the moved
objects, which in turn is derived from the mass m of objects
and their velocity v at time t:

W =

T∑
t=1

|Ek(t)− Ek(t− 1)| ; Ek(t) =
1

2
mv2(t). (6)

At the end of an episode, the system is given a reward
proportional to this value if it succeeds in relocating the
stack. If its movements lead to a collision with the obstacle, a
negative reward is assigned to discourage the action sequence
that caused the collision. Action sequences that were rejected
by the teacher are also given a negative reward according to
the teacher’s assessment. If relocating the boxes fails for any
other reason, the system is given a reward of zero:

r(s, a) =

 −1 collision or rejected suggestions,
0 failure,
1−W success.

(7)

In reinforcement learning, the Q value estimates the expected
long-term reward for state-action sequence pairs. In our

-0.5-0.4-0.3-0.2-0.10.0
y

0.35

0.40

0.45

0.50

0.55

x

ob
st

ac
le

s

-0.5-0.4-0.3-0.2-0.10.0
y

0.35

0.40

0.45

0.50

0.55

x

ob
st

ac
le

s

-0.5-0.4-0.3-0.2-0.10.0
y

0.35

0.40

0.45

0.50

0.55

x

ob
st

ac
le

s

-0.5-0.4-0.3-0.2-0.10.0
y

0.35

0.40

0.45

0.50

0.55

x

ob
st

ac
le

s

Fig. 3. Top-down view on the workspace depicting the evolution of the
strategy of our reinforcement learning approach after 10, 20, 30 and 60
episodes. The gray box on the right side represents the start position s of the
box which was fixed for this experiment. The movement sequence produced
by our reinforcement learning module for arbitrary target locations is color
coded. Target locations depicted in red (light) would lead to a sequence
consisting of grasping, lifting and retracting whereas the box was pushed to
locations depicted in blue (dark). Targets next to the initial position and the
obstacle, depicted as white buffers, were not considered to avoid collisions.

approach, an episode consists of a single task-level action,
which abstracts an entire sequence of primitive actions, so
Q is equal to r. Rather than approximating the reward
function with a single fixed kernel width, we apply GPR for
each component and combine the predictions in a Gaussian
mixture model. This allows us to assign different weights
to the components. Throughout our experiments, we set the
kernel widths to 0.25 for the successful and 0.055 for the
unsuccessful cases. By choosing narrower kernel widths for
the latter, they are given a more local influence. The threshold
θ used to decide for reinforcement or imitation learning was
set to θ = 0.25. This value provides a good trade-off between
safety and the number of interactions with the human expert.

The state space S in our experiments consists of the task-
space coordinates of the stack and the target position on the
table, the number of objects in the stack and the number
of the box on the stack that has to be moved to the target
location. While states encode the locations of objects, task-
level actions refer to objects in terms of their semantics in

Fig. 4. Visual representation of the strategy required to relocate a stack of three boxes in our experiment. The target location is marked green, whereas
yellow markers designate additional storage locations. The obstacle is represented by a gray box. Since three stacked boxes are unstable in our experiment,
the stack has to be split in the first step by moving the top boxes to a temporary location. Then the stack’s base may be moved to the target, where the
stack is re-assembled in a third step.

the context of the task. We identify several locations that
are relevant for the task with reference points, independent
of their position. The set of reference points contains the
initial and target locations of the stack, two locations where
objects may be temporarily stored and a resting position
the robot may assume between actions. All reference points
have different levels within the stack. Since only the initial
and target locations of the stack vary across episodes, their
coordinates are the only ones that need to be encoded in
the state vector. Task-level actions a ∈ A then consist of
a variable-length sequence of motion primitive ids to be
executed and a list of associated reference point ids.

For our experiments, human demonstrations are simulated
using a statistical model trained on collected motion capture
data [15]. Using the learned motion primitive models, action
sequences generated by our system are converted to trajecto-
ries and executed by a controller that computes their effects
on objects and updates a simulated environment accordingly.

C. Mutual Benefit of Imitation and Reinforcement Learning
To illustrate how our algorithm benefits from both imita-

tion and reinforcement learning to quickly and safely find a
policy, we consider in this experiment a simplified version of
the task involving only a single box and random positions.

Fig. 2 depicts a top-down view of the table with the
obstacle on it. Learning was started from scratch causing
the system to ask for demonstrations during episodes one,
three and seven. Prior to requesting a demonstration, the
system recognized that it did not have enough information to
generate an action sequence. Indeed, the best known action
sequence suggested by the system would have caused a
collision and was rejected by the trainer. Thereafter, the
collected task knowledge was sufficient for the system to
find solutions for further generated tasks autonomously.

In order to illustrate how the system incrementally gathers
task knowledge across the state-action sequence space during
the learning process, we generate a series of queries from
a common starting point to target locations on a regular
grid across the workspace. Fig. 3 depicts the distribution of
action sequences proposed by the system at various points in
time. Since our reward function penalizes the kinetic energy
of the movement sequence, the system may achieve better
results by pushing the object. On the other hand, pushing
is only possible if no obstacle obstructs the direct path
to the target location. The figure shows how the system
suggests lifting for almost every target location after 10
episodes. At this time, all demonstrations depicted in Fig. 2

are already available. Lifting the box to locations in the
right part of the workspace is sufficiently similar to previous
examples involving lifting to be considered safe. On the
other hand, there are not enough examples yet to reliably
estimate the reward, leaving room for potential improvement.
As more examples are gathered, the uncertainty of the reward
estimates decreases and the system correctly selects the more
energy efficient action where possible. Note that trading
off expected improvement and degradation and involving
the teacher, the system always produced action sequences
suitable to solve the task and not a single collision with the
obstacle was observed.

D. Variable-Length Policies

To demonstrate the ability of our system to efficiently learn
a policy involving action sequences of variable length, we
consider in this section the complete task with up to three
stacked boxes. Fig. 4 depicts a strategy the system needs
to learn in order to relocate a stack of three boxes. In our
simulation, moving stacks with more than two boxes causes
the stack to become unstable and collapse. As a consequence,
relocating can only be achieved by first lifting a part of the
stack, then moving the remaining stub to the target location
and finally re-assembling the parts. Furthermore, since our
reward function involves the kinetic energy of movements,
better results can be achieved by pushing boxes to the target
location. This is only possible if there is no obstacle in-
between and the subject is located directly on the table. We
report results attesting that our system captures all these task
aspects and reliably generates safe action sequences without
producing a single collision.

For this experiment, we ran 150 episodes with randomly
generated tasks. Fig. 5 shows the sequence of decisions
made by our system. Altogether, human assistance was

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
episode

Fig. 5. Choices made by our system during an experiment with 150
episodes of the full task with up to three boxes. In episodes marked in
blue (dark), our system asked for a demonstration after its initial suggestion
was rejected by the teacher. Episodes where the suggestion was accepted
are depicted in yellow (light). In the majority of episodes, highlighted in
green (medium), our system selected an action sequence autonomously.

0 20 40 60 80 100 120 140
episode

-1.0

-0.5

0.0

0.5

1.0
re

w
ar

d

Fig. 6. Received rewards and their moving average over 50 episodes.

requested in 24 episodes. In the early episodes, little task
knowledge has been gathered to autonomously generate an
action sequence. Consequently, in 20 of the first 50 episodes,
the teacher’s assistance is requested and in 45 % of them the
suggestion made by the system was rejected. This leads to
nine requests for a demonstration of the task. Beyond this
point, no further demonstrations were requested. As more
experiences are gathered from demonstrations and successful
autonomous attempts, the quality of suggestions increases
and they are increasingly accepted by the teacher. At the
same time, the number of instances where the teacher’s
approval of a suggestion is requested decreases. After 84
random episodes, an exhaustive policy was learned and the
system no longer observed unknown situations requiring
the teacher’s consent. Since our exploration policy involves
the uncertainty associated with predicted values, the system
refrains from suggesting arbitrary action sequences and in-
stead varies its actions within limits prescribed by previous
experiences. Fig. 6 shows the rewards obtained throughout
the learning process and their moving average over 50
episodes. While rejected suggestions led to several negative
rewards during the first 50 episodes, only positive rewards
were received thereafter. The outliers correspond to situations
that required disassembling the stack. The additional actions
require additional energy and lead to a reduced reward.

V. CONCLUSIONS

In this work, we presented a novel approach to learning
action sequences of arbitrary length in order to solve complex
tasks. Learning is achieved using a combination of reinforce-
ment learning and imitation learning in a way that exploits
their individual strengths and avoids their shortcomings. In
every episode, the system makes an autonomous decision
for either way of learning that is based on task knowledge
acquired so far. We apply Gaussian Process Regression to
generalize long-term rewards of action sequences across
the combined state-action sequence space and make use of
predictions and their uncertainty to assess the value of state-
action sequence pairs. By combining continuous Gaussian
kernels with string kernels, our approach gracefully handles
states and action sequences of varying lengths comprising
Euclidean coordinates and categorical values. We consider
safety a major concern in applications involving close inter-
action of humans and robots and account for it by devising an
exploration strategy during reinforcement learning based on
expected deviation. This provides us with a trade-off among

the expected improvement of an action sequence and the risk
for the robot and its environment of executing the sequence in
terms of similarity to previous experiences. We evaluated our
approach on a typical manipulation task involving stacked
boxes and reported results demonstrating the ability of our
system to safely and efficiently learn the task from few
human demonstrations. This was achieved by allowing the
system to ask for demonstrations in situations where little
task knowledge is available and executing the best guess
would entail the risk of failure or even collision.

In future work, we would like to extend the formalism
presented in this work to construct a coherent hierarchical
system for robot learning, allowing to simultaneously learn
complex tasks and low-level motion primitives.

REFERENCES

[1] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Brown-
ing. A survey of robot learning from demonstration. Robotics and
Autonomous Systems, 57(5):469–483, May 2009.

[2] Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Pro-
cesses for Machine Learning. Adaptive Computation And Machine
Learning. MIT Press, 2006.

[3] Kathrin Gräve, Jörg Stückler, and Sven Behnke. Learning Motion
Skills from Expert Demonstrations and Own Experience using Gaus-
sian Process Regression. In International Symposium on Robotics
(ISR) and German Conference on Robotics (ROBOTIK), 2010.

[4] Kathrin Gräve, Jörg Stückler, and Sven Behnke. Improving Imitated
Grasping Motions through Interactive Expected Deviation Learning.
In Humanoid Robots (Humanoids), pages 397–404, 2010.

[5] Donald R. Jones. A Taxonomy of Global Optimization Methods Based
on Response Surfaces. Journal of Global Optimization, 21:345–383,
2001.

[6] Dana Kulic, Danica Kragic, and Volker Krüger. Learning action
primitives. In Visual Analysis of Humans, pages 333–353. 2011.

[7] Marc Toussaint, Nils Plath, Tobias Lang, and Nikolay Jetchev. Inte-
grated motor control, planning, grasping and high-level reasoning in
a blocks world using probabilistic inference. In IEEE International
Conference on Robotics and Automation (ICRA), 2010.

[8] Nichola Abdo, Henrik Kretzschmar, Luciano Spinello, and Cyrill
Stachniss. Learning manipulation actions from a few demonstra-
tions. In IEEE International Conference on Robotics and Automation
(ICRA), Karlsruhe, Germany, 2013.

[9] Christian Daniel, Gerhard Neumann, Oliver Kroemer, and Jan Peters.
Learning sequential motor tasks. In IEEE International Conference
on Robotics and Automation, (ICRA), Karlsruhe, Germany, 2013.

[10] Freek Stulp, Evangelos Theodorou, and Stefan Schaal. Reinforcement
learning with sequences of motion primitives for robust manipulation.
IEEE Transactions on Robotics, 28(6):1360–1370, 2012.

[11] Evangelos Theodorou, Jonas Buchli, and Stefan Schaal. A generalized
path integral control approach to reinforcement learning. Journal of
Machine Learning Research, 11:3137–3181, December 2010.

[12] George D. Konidaris, Scott R. Kuindersma, Roderic A. Grupen, and
Andrew G. Barto. Robot learning from demonstration by constructing
skill trees. International Journal of Robotics Research, 31(3):360–375,
2012.

[13] Dana Kulić, Christian Ott, Dongheui Lee, Junichi Ishikawa, and
Yoshihiko Nakamura. Incremental learning of full body motion
primitives and their sequencing through human motion observation.
The International Journal of Robotics Research, 31(3):330–345, 2012.

[14] Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini,
and Chris Watkins. Text Classification using String Kernels. The
Journal of Machine Learning Research, 2:419–444, 2002.

[15] Kathrin Gräve and Sven Behnke. Incremental Action Recognition and
Generalizing Motion Generation based on Goal-Directed Features. In
IEEE/RSJ International Conference on Intelligent Robots and Systems,
(IROS), pages 751–757, 2012.

[16] Nathan Koenig and Andrew Howard. Design and use paradigms
for Gazebo, an open-source multi-robot simulator. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
volume 3, pages 2149–2154, 2004.

