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Abstract— For task planning and execution in unstructured
environments, a robot needs the ability to recognize and localize
relevant objects. When this information is made persistent in
a semantic map, it can be used, e. g., to communicate with
humans. In this paper, we propose a novel approach to learning
such maps. Our approach registers measurements of RGB-D
cameras by means of simultaneous localization and mapping.
We employ random decision forests to segment object classes in
images and exploit dense depth measurements to obtain scale-
invariance. Our object recognition method integrates shape
and texture seamlessly. The probabilistic segmentation from
multiple views is filtered in a voxel-based 3D map using a
Bayesian framework. We report on the quality of our object-
class segmentation method and demonstrate the benefits in
accuracy when fusing multiple views in a semantic map.

I. INTRODUCTION
Autonomous robots require semantic knowledge about

their surroundings in order to plan and execute complex tasks
or to communicate with human users on a semantic level. In
order to gain such world knowledge, a robot not only needs
the capability to recognize and localize objects, but also to
represent this information persistently.

In this paper, we propose a novel approach to learning
semantic 3D maps containing object information. We com-
bine object recognition in RGB-D images with simultaneous
localization and mapping. For object recognition, we apply
random decision forests to classify images pixel-wise. By
exploiting depth information for the object-class segmen-
tation algorithm, we obtain a scale-invariant classifier that
incorporates shape and texture cues seamlessly. The classifier
provides the probability over class labels for each pixel.
Given the camera trajectory estimate of an RGB-D SLAM
method, we filter this soft labeling in a voxel-based 3D map
within a Bayesian framework (see Fig. 1). By this, we can
fuse classification evidence from several views and improve
the robustness of our method for classification errors. Our
approach results in 3D maps augmented with voxel-wise
object class information.

In experiments, we evaluate the performance of our object
recognition method and demonstrate the benefits of fusing
recognition information from multiple views in a 3D map.

II. RELATED WORK
Many mapping approaches build geometric representations

of the environment. Different sensors have been used for
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Fig. 1. We fuse learned object-class segmentations of various views in 3D
in a Bayesian framework. We not only obtain 3D object-class maps: Filtering
in 3D from multiple views also reduces false positives and improves
segmentation quality significantly. This reflects in the crisp back-projection
of the 3D object-class map into the images.

this in the past, including 2D and 3D laser scanners, single
cameras, and stereo systems. Recently, several methods have
been proposed that acquire full 3D maps from RGB-D
images. Henry et al. [1], for example, extract textured surface
patches, register them using ICP [2] to the model, and apply
graph-optimization to obtain an accurate map. Engelhard et
al. [3] match SURF features between RGB-D frames and
refine the registration estimate using ICP. In own work, we
apply rapid registration of RGB-D images [4] and graph
optimization to learn multi-resolution surfel maps. Such
approaches do not incorporate valuable semantic information
like place or object labels into the map.

Some systems have been proposed that map semantics.
While most approaches utilize SLAM as a front-end to obtain
a sensor trajectory estimate [5], [6], [7], [8], [9], [10], some
methods also incorporate the spatial relation of objects into
SLAM. Tomono et al. [11], for example, detect polyhedral
object models in images and perform SLAM in 2D maps
using the detected objects as landmarks. In contrast to our
approach, this method is restricted to objects with clearly
visible linear edges. Zender et al. [5] apply SLAM in 2D
maps using laser scanners, recognize objects using SIFT
features, and map their locations in the 2D map. In addition
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Fig. 2. Random decision forests consist of multiple decision trees. For
each tree, a query pixel q passes through several decision nodes. The node
functions make a binary decision on the pixel using scalar features and a
threshold. Each query pixel arrives at a specific leaf node l(q) in a tree and
is assigned the class probability p(c|l) of training pixels that arrive at the
leaf. The final class probabilities are computed by averaging the individual
trees.

to SIFT-based recognition, Vasudevan et al. [6] also detect
doors by analyzing laser scans, since they are important
topologic objects that connect rooms. Meger et al. [7]
combine semantic 2D mapping of objects with attention
mechanisms. We build 3D semantic maps containing dense
object information. Nï¿ 1

2chter et al. [8] apply ICP, plane
segmentation, and reasoning to label planar segments in 3D
maps that they acquire using 3D laser scanners. They apply
AdaBoost on Haar wavelets and SVM classifiers on contour
descriptions to detect objects and persons in the 3D maps. In
our approach, we segment the original image data and fuse
segmentation evidence from multiple views. Castle et al. [9]
and Civera et al. [10] propose purely vision-based means to
acquire 3D maps with object labellings. In both approaches,
SLAM is solved with feature-based monocular EKF-SLAM
formulations. Objects are recognized using SIFT features and
persistently maintained in the 3D feature map. The approach
of Ranganathan and Dellaert [12] learns 3D constellation
models of places composed of objects using SIFT features.
In this approach, the map consists of a set of places with
associated models. The aforementioned approaches, however,
do not build 3D maps with dense object information.

We integrate image-based object-class segmentation with
SLAM from RGB-D images into a semantic 3D mapping
framework. Each image is segmented pixel-wise into object
classes and irrelevant background. Based on the SLAM esti-
mate, this information is then projected into 3D to fuse object
recognition results from multiple views into a consistent 3D
map. This not only provides 3D segmentations of objects,
but also improves classification accuracy significantly.

III. OBJECT-CLASS SEGMENTATION USING
RANDOM DECISION FORESTS

Object-class image segmentation is a challenging, actively
researched problem in computer vision [13], [14], [15], [16].

One branch of research applies variants of random decision
forests (RF, [17]). RFs are efficient classifiers for multi-class
problems. They ensemble multiple random decision trees and
achieve lower generalization error than single decision trees
alone. RFs have been demonstrated to achieve comparable
performance to SVMs [18]. Their major advantage is their
high computational efficiency during recall. Implemented on
GPU, training can be performed on massive datasets [19].

Semantic Texton Forests proposed by Shotton et al. [13]
use simple features of luminance and color at single pixels
or comparisons between two pixels in a RF classifier. Using
image-level priors and a second stage of RFs, local and scene
context is incorporated into the classification framework.
Schroff et al. [20] enhance the basic RF classifier by further
features such as image regions, Histograms of Oriented
Gradients [21], and filterbanks. They demonstrate that post-
processing of the RF segmentation with Conditional Random
Fields further improves segmentation quality. Recently, the
RF approach has been successfully applied for segmenting
human body parts and tracking body pose in real-time using
depth images [19]. Shotton et al. propose to normalize feature
queries with the available depth to obtain scale-invariant
recognition. We extend RF classification by incorporating
both depth and color features. In contrast to previous own
work [22], we use simple region features in color and depth
and only normalize for scale changes to gain an efficient
classifier for RGB-D images.

A. Structure of Random Decision Forests

A random decision forest F is an ensemble of K random
decision trees Tk. Each node n in a tree classifies an example
by a binary decision on a scalar node function over features.
In addition, each node is associated with a distribution p(c|n)
over class labels c ∈ C.

To determine the posterior distribution over class labels
at a query pixel q, it is evaluated on each decision tree Tk
in the ensemble. In this process, the example pixel is passed
down the tree, branching at each node according to its binary
decision criterion until a leaf node l is reached. The posterior
distribution is computed by averaging over the individual
distributions at the leaf nodes lk(q) the example reaches,
i. e.,

p(c|F , q) =
1

K

K∑
k=1

p(c|lk(q)).

For learning a forest, each tree is trained independently
on a random subset of the training examples. At each node
in a tree, we sample many features and thresholds randomly
and select the one that seperates the training examples best
according to the measure of information gain. This allows
for mixing different kinds of features such as functions in
color and depth cues.

B. RGB-D Image Features

For a pixel q, we determine region features in depth and
color cues and utilize dense depth to normalize the region



Fig. 3. Features in the random decision classifier compare the average
values in two regions relative to the query pixel q. We normalize for
perspective scale changes in the image by exploiting the dense depth
available in RGB-D images. We scale relative offset locations ui and region
extents wi, hi by the inverse of the depth d(q) measured at the query pixel.

queries for scale changes in the image (see Fig. 3). We
parametrize features at pixel q by

fθ(q) :=

∑
p∈R1(q)

φ1(p)

|R1(q)|
−
∑
p∈R2(q)

φ2(p)

|R2(q)|
, (1)

where Rj(q) := R
(
q +

uj

d(q) ,
wj

d(q) ,
hj

d(q)

)
is the rectangular

image region at the offset u that is normalized in offset posi-
tion and size by the depth d(q) measured at the query pixel.
The set of feature parameters θ comprises the unnormalized
offset positions uj , the region extents wj , hj , and the image
channels φj . Note, that we restrict comparisons to either two
depth regions or to any two color regions. We represent the
color cues in the CIE Lab color space. In the depth image,
the region size |Rj(q)| counts the number of valid depth
readings in the region. If an offset region contains no valid
depth measurement or lies beyond the image, its feature value
is set to a large positive constant. We efficiently implement
region features using integral images.

Each node in the decision tree decides on the query pixels
with a threshold τ to either pass it to its left or right child.
Individually, each feature gives only small information about
the object class at a pixel. Within the cascades in the decision
trees, however, the tests are sufficient to accurately classify
pixels.

C. Training

Each of the K decision trees is trained with a subset D
of images from the training set. We split the training set
into K equally sized sets and extract |D| ·N random pixels
from all images (using N = 2000 in our experiments).
Since we also train explicitly on the background class and
since the individual object classes may differ in the number
of pixels, we balance the classes by random sampling of
equally sized sets for each class. In this way, small objects
are well sampled for training. We will, however, have to
consider the actual distribution of class labels in the training
images at later training stages in order to incorporate the
prior probability of each class into the classifier.

We train the decision trees in a depth-first manner by
choosing feature parameters θ and a threshold τ at each node

and splitting the pixel set Q accordingly into left and right
subsets Ql and Qr:

Ql(θ, τ) := {q ∈ Q|fθ(q) < τ} and
Qr(θ, τ) := {q ∈ Q|fθ(q) ≥ τ} .

(2)

Since the parameter space cannot be evaluated analytically,
we sample P random parameter sets and thresholds (e. g.,
P = 2000) and select feature and threshold that yield
maximal information gain

I(θ, τ) := H(Q)−
∑

s∈{l,r}

|Qs(θ, τ)|
|Q|

H (Qs(θ, τ)) , (3)

where H(Q) := −
∑
c∈C p(c|Q) log2 (p(c|Q)) is the Shan-

non entropy of the distribution of training class labels in
pixel set Q. This splitting criterion finds feature parameters
and threshold that most distinctively seperate the pixel set at
a node. Each node is split until a maximum depth is reached
in the tree, or the number of pixels lies below a minimum
support threshold.

At each leaf node l, we want to maintain the distribu-
tion p(c|l,D) of pixels of class c that arrive at the node
from the original training set. Since we train the decision tree
from pixels with equally distributed class labels, we actually
measure the class distribution p(c|l, Q) of training pixels Q
at the leaf, i. e.,

p(c|l, Q) := p(c(q)|l, q ∈ Q) = p(c(q)|l, q ∈ Q, q ∈ D).
(4)

The distribution of interest can be obtained by applying
Bayes rule:

p(c|l, Q,D) =
p(q ∈ Q|c(q), l, q ∈ D) p(c(q)|l, q ∈ D)

p(q ∈ Q|l, q ∈ D)

=
p(q ∈ Q|c(q), q ∈ D) p(c(q)|l, q ∈ D)

p(q ∈ Q|q ∈ D)
.

(5)

For the desired distribution we obtain

p(c(q)|l, q ∈ D) =
p(c(q)|l, q ∈ Q) p(q ∈ Q|q ∈ D)

p(q ∈ Q|c(q), q ∈ D)
(6)

We can further reformulate the probability of a pixel of
class c to be included in the class-equalized training data Q
to

p(q ∈ Q|c(q), q ∈ D) =
p(c(q)|q ∈ Q) p(q ∈ Q|q ∈ D)

p(c(q)|q ∈ D)
,

(7)
and obtain

p(c(q)|l, q ∈ D) =
p(c(q)|l, q ∈ Q) p(c(q)|q ∈ D)

p(c(q)|q ∈ Q)
. (8)

By design, p(c(q)|q ∈ Q) is uniform among class labels
and, hence, we incorporate the distribution of classes in the
complete training set into the leaf distributions through

p(c|l,D) = η p(c|l, Q) p(c|D), (9)

where η−1 := p(c|Q) = 1/|C|.
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Fig. 4. Semantic mapping. a) RGB image of a scene. b) Ground truth object-class segmentation. c) Back-projected 3D object-class segmentation overlayed
on RGB image. d) 3D object-class map obtained by fusing multiple views from a SLAM trajectory.

Fig. 5. We perform simultaneous localization and mapping by registering
multi-resolution surfel maps of RGB-D images and optimizing spatial
relations in a key view graph. The example maps are visualized by samples
from the surfel distributions at 2.5 cm (bottom) and 20 cm (top) resolution.

IV. SEMANTIC MAPPING

We integrate our object-class segmentation method with
SLAM to fuse the segmentations of individual images in a
dense 3D map.

A. Simultaneous Localization and Mapping Front-End

We base our SLAM method on fast and accurate RGB-D
image registration using multi-resolution surfel maps [4]. Our
registration approach aligns 640×480 images at a framerate
of about 10 Hz.

Since small registration errors may accumulate in sig-
nificant pose drift over time, we establish and optimize a

graph of probabilistic spatial relations between similar view
poses (see Fig. 5). We denote a view pose in the graph as
key view and register the current camera frame to the most
similar key view in order to keep track of the camera pose.
Similarity is measured by distance in translation and rotation
between view poses. New key views are added to the graph,
if the similarity measure indicates a significant motion of the
camera. This also establishes a spatial relation between the
new key view and the reference key view. In addition, we
establish relations between further similar key views.

Our probabilistic registration method provides a mean and
covariance estimate for each spatial relation. We obtain the
likelihood of the relative pose observation z = (x̂,Σ(x̂)) of
the key view j from view i by

p(x̂|xi, xj) = N (x̂; ∆(xi, xj),Σ(x̂)) , (10)

where ∆(xi, xj) denotes the relative pose between the key
views under their current estimates xi and xj .

From the graph of spatial relations we infer the probability
of the trajectory estimate given the relative pose observations

p(x1,...,N |x̂1, . . . , x̂M ) ∝
∏
k

p(x̂k|xi(k), xj(k)). (11)

We solve this graph optimization problem by sparse
Cholesky decomposition using the g2o library [23]. Finally,
our mapping framework supports the fusion of the RGB-
D images in a single multi-resolution surfel map using the
optimized trajectory estimate.

B. Probabilistic 3D Mapping of Object-Class Image Seg-
mentations

Given the trajectory estimate from our SLAM approach
and the depth information in the images, we project the prob-
abilistic object-class segmentations into 3D and filter this
information in a probabilistic octree map. Each voxel v of
the octree stores a belief Bel(c(v)) that the object class c(v)
is present in its volume

Bel(c(v)) = p(c(v)|Z,S), (12)

where Z is the set of RGB-D images with probabilistic
labelling and S is the trajectory estimate. Our goal is to
integrate segmentation evidence from multiple views in a
3D map and to improve segmentation quality.

We successively project the image pixels into 3D and
determine corresponding octree voxels. The belief in the



voxel is then updated in a Bayesian framework with the pixel
observations q1:N := {q1, q2, ..., qN} that fall into the voxel:

p(c(v)|q1:N ,S)

=
∑

c(q1),...,c(qN )

p(c(v), c(q1), . . . , c(qN )|q1:N ,S). (13)

Neglecting the known trajectory and applying Bayes rule
yields

p(c(v)|q1:N ) =
∑
...

p(c(v)|c(q1), . . . , c(qN ), q1:N )

p(c(q1), . . . , c(qN )|q1:N ). (14)

The left term can be further factored using Bayes rule, while
for the right term we impose independence between pixel
observation. We arrive at

p(c(v)|q1:N ) = p(c(v))
∑
...

∏
i

ηi p(c(qi)|c(v)) p(c(qi)|qi),

(15)
where ηi := 1/p(c(qi)|c(qi+1), . . . , c(qN )). We approx-
imate p(c(qi)|qi) with the output of the RF classi-
fier p(c(qi)|qi,F). The probability p(c(v)) =: Bel0(c(v))
incorporates prior knowledge on the belief. For the distribu-
tion p(c(qi)|c(v)) = 1{c(v)}(c(qi)) we assume a determinis-
tic one-to-one mapping. It follows that

p(c(v)|q1:N ,S) = Bel0(c(v))
∏
i

ηi p(c(qi) = c(v)|qi,F),

(16)
which can also be applied recursively.

V. EXPERIMENTS

We evaluate our approach on a datasets containing RGB-
D videos of three smaller table-top object classes and four
larger object classes. The datasets contain 617 and 500
training images and 500 test images each from 47 and 40
scenes, respectively, with several instances of the object
classes in varying configuration. We use precision, recall,
and accuracy [24] measures to quantify segmentation quality.
We assess the overall accuracy on each test set by counting
over the pixel decisions of all classes. Since the background
class is semantically different from the object classes, we
also measure the segmentation quality of the object classes
without background. To assess the quality of the fused
semantic maps, we back-project the octree belief over object-
classes into the test images.

A. Annotation Tool

In order to acquire large amounts of annotated training
data in reasonable time, we developed an interactive semi-
automatic annotation tool. In addition to directly annotating
pixels with a pen tool or applying grab cut, our tool makes
use of depth in several ways: Since typically objects are
located on planar surfaces, the user can select image pixels
on background planes and let points on the plane automati-
cally be labelled as background. The user can also crop out
foreground objects using depth continuity as segmentation
hint.

TABLE I
OBJECT-CLASS SEGMENTATION PERFORMANCE FOR SMALL OBJECTS.

method precision recall accuracy
w (w/o) bg w (w/o) bg w (w/o) bg

unnorm. color 0.95 (0.14) 0.95 (0.14) 0.91 (0.07)
norm. color 0.95 (0.14) 0.95 (0.15) 0.91 (0.08)
norm. depth 0.96 (0.40) 0.96 (0.62) 0.93 (0.32)

norm. color + depth 0.96 (0.35) 0.96 (0.66) 0.91 (0.30)
norm. color + depth + 3D 0.97 (0.56) 0.98 (0.64) 0.95 (0.42)

TABLE II
OBJECT-CLASS SEGMENTATION PERFORMANCE FOR LARGE OBJECTS.

method precision recall accuracy
w (w/o) bg w (w/o) bg w (w/o) bg

unnorm. color 0.80 (0.61) 0.80 (0.48) 0.67 (0.37)
norm. color 0.85 (0.74) 0.85 (0.61) 0.74 (0.51)
norm. depth 0.80 (0.71) 0.80 (0.38) 0.67 (0.33)

norm. color + depth 0.87 (0.78) 0.87 (0.69) 0.78 (0.58)
norm. color + depth + 3D 0.91 (0.87) 0.91 (0.76) 0.83 (0.68)

We extract multiple views on a scene from image se-
quences in which the camera is swept through the scene.
The user can then select one of the images in the sequence,
segment the image using the aforementioned convenient
tools, and project the segmentation to further images. It only
requires little effort to refine the projected segmentations.
We integrate our Bayesian filtering approach to fuse image
annotations from multiple views in a 3D map. For this
purpose, we preprocess the image sequence to obtain a
trajectory estimate using our SLAM method.

B. Results

Table I and Table II show average results for different
kinds of RF classifiers on both datasets. The 3D fusion of
image segmentations using color and depth features clearly
outperforms the other approaches. It improves in accuracy
on purely image-based segmentations by about 10% for big
objects without background and ca. 12% for smaller objects
(w/o background).

We also see that, in contrast to the small objects, for big
objects depth-normalized color is a prominent feature and
yields higher accuracy than normalized depth queries alone.
Here, the scale normalization of the color features using
depth enhances segmentation quality significantly.

In Tables III and IV we show results for the individual
object classes. While for the big objects again the fusion
in 3D is dominantly superior to image-based segmentation
alone, we can see that for the small objects recall and
accuracy of the computer mice is reduced. The computer
mice are very flat objects and are easily confused with the
table plane (background class). This also explains the slightly
lower recall for the 3D fusion method in average for the
object classes. Nevertheless, the increase in precision shows
that most false positive detections could be successfully
removed by filtering image segmentations in 3D.



TABLE III
PER CLASS SEGMENTATION PERFORMANCE FOR SMALL OBJECTS.

norm. color + depth norm. color + depth + 3D
class prec. recall acc. prec. recall acc.
cup 0.42 0.82 0.38 0.76 0.94 0.73

teabox 0.28 0.64 0.24 0.41 0.72 0.36
mouse 0.43 0.47 0.29 0.98 0.20 0.20

background 0.99 0.96 0.96 0.99 0.98 0.98

TABLE IV
PER CLASS SEGMENTATION PERFORMANCE FOR LARGE OBJECTS.

norm. color + depth norm. color + depth + 3D
class prec. recall acc. prec. recall acc.

palette 0.93 0.84 0.78 0.98 0.90 0.88
barrel 0.92 0.73 0.68 0.95 0.85 0.81

canister 0.74 0.13 0.12 0.95 0.22 0.22
human 0.56 0.59 0.40 0.69 0.64 0.49

background 0.91 0.94 0.86 0.92 0.97 0.89

VI. CONCLUSIONS
In this paper, we proposed a novel approach to semantic

mapping. We apply object-class image segmentation to rec-
ognize objects pixel-wise in RGB-D images. We incorporate
depth and color cues into a random decision forest classifier
and normalize the features for scale using depth measure-
ments. Based on trajectory estimates obtained with a SLAM
method, we propose to fuse the image segmentations into
a probabilistic 3D object-class map. In experiments on two
datasets, we demonstrate that our approach not only provides
a 3D segmentation of the object classes, but also improves
2D segmentation quality significantly.

Our approach directly operates on the original image
measurements. While fusing RGB-D measurements in a 3D
map and classifying the 3D volumes would also be possible,
the aggregation into 3D typically involves some sort of
compressive aggregation and, hence, loss of information to
cope with the large amount of data. We note that the seg-
mentation quality of our approach depends on the properties
of the underlying object-class image segmentation method.
While many other methods exist that demonstrate good
segmentation results, the recall efficiency of the segmentation
approach is of equal importance for online processing and
application in a robotics setting.

In future work, we plan to integrate further descriptive
image features like Histograms of Oriented Gradients or Fast
Point Feature Histograms. In order to scale our approach to
larger sets of objects, we will consider the combination of
multiple random decision forests. Finally, we will implement
interactive training tools using GPUs to enable online train-
ing on massive datasets.
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