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Abstract— The ability to recognize human actions is a funda-
mental problem in many areas of robotics research concerned
with human-robot interaction or learning from human demon-
stration. In this paper, we present a new integrated approach
to identifying and recognizing actions in human movement
sequences and their reproduction in unknown situations. We
propose a set of task-space features to construct probabilistic
models of action classes. Based on this representation, we
suggest a combined segmentation and classification algorithm
which processes data non-greedily using an incremental look-
ahead to reliably locate transitions between actions. In a pro-
gramming by demonstration scenario, our action models afford
the generalization and reproduction of learned movements to
previously unseen situations. To evaluate the performance of
our approach, we consider typical manipulation tasks in a
table top setting. In a sequence of human demonstrations,
our approach successfully extracts and recognizes actions from
different classes and subsequently generalizes them to unknown
situations.

I. INTRODUCTION

In order to assist in typical day-to-day tasks, robots need
to be able to closely collaborate with humans. This requires
the ability to perceive human actions in order to react appro-
priately. On the other hand, interaction-based methods such
as programming by demonstration (PbD) are being actively
explored to reduce the programming effort it takes to endow
robots with the skills needed for tasks of practical relevance.
Programming by demonstration requires the identification of
relevant subtasks in movement sequences to reveal inherent
task structure and redundancies in the data which can be
exploited to limit the computational effort of learning.

In this work, we consider the problem of automatically
identifying and extracting actions from a sequence of human
movements using an action representation suitable for both,
action recognition and reproduction. A central goal of our
approach is to extract meaningful actions that can be used
as primitives in PbD or other interactive applications (Fig. 1).
This is necessary in order to ensure that actions can be reused
on their own or be assembled in order to solve more complex
tasks. Furthermore, this level of structuring provides a good
trade-off between flexibility with respect to various tasks and
data efficiency. To this end, a major challenge is how the
intuitive notion of a meaningful action can be formalized.
Usually, actions are executed in a context and blend into
adjacent movements. This makes it difficult to exactly delimit
individual primitives.
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Fig. 1. Illustration of typical actions in a table top scenario extracted from
human demonstrations using the presented approach.

Moreover, action classes that are totally different semanti-
cally may appear quite similar on a trajectory level and differ
mostly by the context they are executed in, although this
kind of relevant information is often not available to robots.
Instead, data recorded by, e. g., motion capture devices
or kinesthetic training usually provides purely geometrical
information whose inherent redundancies conceal the essence
of the action.

Clearly, segmentation and classification of movement data
are two closely related problems whose solutions mutually
depend on each other. In this paper, we therefore propose an
algorithm which solves both tasks at the same time. Our
method relies on Hidden Markov Models (HMM) [1] to
encode action classes. This allows us to iteratively delineate
meaningful segments corresponding to previously learned
actions in unknown movement sequences using a maximum
likelihood criterion. We represent actions by generic task
space features which allow us to use our model in a gen-
erative way to reproduce learned actions and to generalize
movements to new situations.

The proposed approach allows to recognize and extract
an arbitrary number of known actions from a sequence of
demonstrated movements by providing a unified view on
segmentation and classification using HMMs. Systematic
errors in the choice of segment boundaries due to the
sequential processing of input data are avoided using a non-
greedy segmentation algorithm. Our approach posesses no
free parameters and can readily be applied to a wide range
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Fig. 2. Illustration of the feature extraction scheme. Left: Original trajectory
data. Center: after linear transformation. Right: final features after distance
transformation.

of directed movements.
The remainder of this paper is organized as follows: After

a brief review of related work in Sec. II, we describe the
contributions of this paper in Sec. III, detailing our integrated
approach, the spatio-temporal features it uses and our com-
bined segmentation and classification method. We evaluate
our approach with respect to segmentation and classification
performance and the ability to generalize learned movements
using experiments described in Sec. IV.

II. RELATED WORK

Action segmentation, classification, and generation are
fundamental problems to the fields of human-robot interac-
tion and programming by demonstration. A lot of research
has been devoted to different aspects of these problems but
only little work has addressed solving the entire problem in
an integrated manner. Offering a solid probabilistic frame-
work, HMMs are a popular tool which has been successfully
applied to the segmentation and classification of human
movements. Bashir et al. [2], for example, use HMMs to
recognize hand gestures from Australian Sign Language.
Trajectories are segmented at inflection points into a series
of short sub-trajectories and Principal Component Analy-
sis (PCA) is applied to reduce sub-trajectories to feature
vectors of a fixed size which are subsequently clustered
and encoded in HMMs. Classification is then performed
by selecting the HMM which maximizes the observation
probability of the data.

Several authors have investigated suitable features for
HMM-based classification. For instance, Al Mansur et al. [3]
compute dynamics features using an articulated model of
the human body. Using torques from four selected joints,
their approach allows to classify seven distinct full-body
movements. De Schutter et al. [4] developed a coordinate-
free representation of 6 DOF rigid body movements which
exhibits several invariance properties.

As an alternative to identifying action boundaries with
local extrema of features, some researchers considered to use
HMMs for both, classification and segmentation. Elmezain
et al. [5] proposed a segmentation algorithm based on com-
petitive differential observation probability which measures
the likelihood difference between the most likely class given
the data and a garbage class [6]. A sign change of this
measure is considered as a segment boundary. Kohlmorgen
and Lemm [7] proposed an online segmentation algorithm
which performes unsupervised segmentation by using HMMs
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Fig. 3. Illustration of the effect of our linear transformation. Left: original
multimodal trajectory data. Right: Transformed unimodal features

to track the probability density function of the data over time.
The segmentation is represented implicitly by the states of
the most likely path given the data.

In order to reduce the complexity of learning, Li et al. [8]
use a two-layered approach inspired by speech recognition.
For every relevant object, a set of motion primitives, whose
features are also relative to the object, is kept on the bottom
layer. The top layer contains transition probabilities among
the primitive sets and is responsible for modelling tasks.
Sugiura et al. [9] propose to represent actions in an object-
dependent coordinate system. Trajectories are encoded using
Reference-Point-Dependent Trajectory HMMs which allows
for classification and reproduction of presegmented actions.
The optimal coordinate system in a maximum likelihood
sense is selected during training. Billard et al. [10] consider
the problem of generating movements that reproduce the
essence of a learned task. They use the variability of joint and
task space features to assess their relevance for movement
reproduction by a cost function. In a preprocessing step,
key points are extracted from the features corresponding
to inflexion points. These are encoded in one HMM per
dimension. During reproduction, the optimal state sequences
are computed and interpolated. In more recent work, Calinon
et al. [11] use a combination of Gaussian Mixture Regression
and HMM motion models learned from demonstrations to
generate movements from a dynamical system. Multiple task
constraints are satisfied by combining HMMs learned for
various reference frames. In contrast to the HMM-based
approaches discussed above, the aim of the present work
is to find a holistic approach to classification, segmentation,
and generation.

In a similar effort, Kulić et al. [12] recently proposed a



Fig. 4. Schematic overview of our segmentation algorithm. In the top row, a sample movement on a table and relevant segments are depicted. The
corresponding likelihoods are shown in the bottom row. In Step 1 (left), the likelihood of candidate segments S∗i,0→j is computed and the terminal
point P ∗i of the most likely candidate is determined. In Step 2 (center), the likelihood of the succeeding segment is computed for origins Qi in a
neighbourhood of P ∗i . In Step 3 (right), for all points Qi, the likelihoods of the first segment ending at that point and the second segment starting are
added. The maximum is considered the segment boundary.

framework that integrates several approaches to incremen-
tally learn human movements. Trajectories are segmented on-
line using an improved variant of Kohlmorgan and Lemm’s
algorithm [7] and clustered to abstract motion primitives.
A HMM is used to encode motion primitives for retrieval
and motion reproduction. Sequences of motion primitives
can be generated according to a graph that is learned from
the observed transition probabilities. While Kulić et al.
efficiently combine several models, in our work we strive
for a single model suitable for all three tasks.

A recent approach that does not rely on HMMs for
the segmentation and classification of movement data has
been proposed by Meier et al. [13]. They train Dynamic
Movement Primitives (DMP) [14] which allow to generalize
actions to arbitrary positions. By reformulating the original
framework, the authors obtain an estimate for the goal posi-
tion and the duration of a partially observed trajectory. Based
on these estimates, a segmentation algorithm is devised.

In contrast to these approaches, our work is based on goal-
directed spatio-temporal features capturing the characteristics
of action classes. Furthermore, instead of processing data
in a purely sequential manner, we employ a look-ahead to
improve segmentation results.

III. PROPOSED METHOD

In this section, we describe our integrated method for
action segmentation, classification, and reproduction. The
segmentation and classification algorithm is based on a
maximum likelihood criterion which takes into account both
segments touching a boundary point. It is derived from a
single probabilistic model that we use for action segmenta-
tion, recognition, and reproduction. This is a major advantage
since these tasks are closely related in practical applications.
At the core of our approach are Hidden Markov Models
which encode spatio-temporal characteristics of actions. The
performance of this model relies on a suitable choice of the
input features.

A. Spatio-temporal Features

From a modelling perspective, features need to capture a
notion of similarity, i. e. there should be little variance among

features corresponding to actions of the same category. At
the same time, features should be distinctive enough to allow
for robust categorization. From an application perspective,
action representations should be flexible enough to describe
all relevant actions.

Clearly, global Cartesian coordinates do not fulfill the
former requirements since a movement is represented by
different coordinates if it is executed in a different situation
or in a slightly different way. This also reduces the inter-class
separability. In this work, we therefore normalize Cartesian
trajectory and context information in a preprocessing step be-
fore using them as input to an HMM. During normalization, a
linear transformation is applied to the input trajectories such
that the movement starts at the origin and ends at a point
along the first axis. We then consider a straight line between
these two points which we sample at regular intervals and
use the relative positions of the transformed trajectory with
respect to these samples as input to our model. This process
is depicted in Fig. 2. As a result, we obtain features which
preserve the original movements’ characteristics but gain
the advantage of invariance with respect to spatial rotations,
translations, and different start or end points. This is illus-
trated in Fig. 3. Furthermore, we include the distance to
relevant objects in our feature vector in order to provide
context for the classification algorithm. This is motivated by
the fact that–depending on the situation–actions may have
very different meanings although they are very similar on
a trajectory level. In order to recognize these movements
correctly, it is necessary to take their context into account.

The feature generation process can easily be inverted in
order to generate movements for arbitrary start and end
points, given a set of feature vectors.

B. Stochastic Model

To compactly represent learned actions for the segmenta-
tion and classification of new movements, we train HMMs
on their feature representations. To this end, we assume that
a training set of presegmented actions is available. Every
action class is represented by a dedicated model whose
parameters are incrementally estimated using the Baum-
Welch algorithm [1]. The initial state distribution and state



Fig. 5. Actions used throughout our experiments: (left to right) grasping an object, displacing it, pushing it, and retracting the hand to a resting position.
For every action, serveral poses are overlaid. The final pose of every action is shown non-transparently.

transition matrices are chosen to constrain the model to
traverse all states in linear order, i. e. the only possible state
transitions are those to the subsequent or the current state.
This choice reflects the sequential structure of the input data.
The temporal characteristics of the input data are encoded
implicitly in the state transition probabilities of the model.

C. Combined Segmentation and Classification Algorithm

In this section, we present a unified algorithm for proba-
bilistic segmentation and classification of actions.

Since the feature representation of a movement depends on
the segmentation, existing solutions to HMM-based segmen-
tation [15] cannot be readily applied. We therefore propose
an iterative approach to delineating an action in a continuous
movement sequence. This process is depicted in Fig. 4.
Instead of taking into account only the frames processed
up to a potential segment boundary, the algorithm performs
a look-ahead in order to assess the probability of another
segment starting. The boundary is determined by maximizing
the likelihood of both segments. The algorithm takes the
following steps to delineate an action:
Step 1:

In this step, a candidate P ∗i for the intersection point Pi

separating the current segment Si from its successor Si+1

is computed. The algorithm starts at the beginning of Si

with an empty preliminary segment S∗i,0→0 and incrementally
appends trajectory points, forming preliminary segments
S∗i,0→1, . . . , S

∗
i,0→n. In every iteration, features for S∗i,0→j

are computed using the scheme outlined in Sec. III-A. Using
these features, the likelihood

P (S∗i,0→j | Ak) ∀j, k (1)

of the segments S∗i,0→j with respect to the action models
Ak is computed using the Viterbi algorithm [1] and the most
likely model Abest

j is recorded for every S∗i,0→j along with
its likelihood. Among all S∗i,0→j , the one with the maximum
likelihood is determined and its terminal point is returned as
the potential intersection point P ∗i .
Step 2: The choice of an intersection point not only delin-
eates the action preceeding it but also defines the start of the
succeeding action. To take this influence into account, the
potential intersection point P ∗i is improved by considering
points Ql in a local neighborhood as potential origins of a

succeeding action Si+1. By executing Step 1 starting from
these potential origins, a likelihood according to Eq. (1) of
the succeeding action starting at that point and a correspond-
ing terminal point are computed for each of them.

Step 3: For each point evaluated in Step 2, a combined
likelihood is computed from the results of Step 1 and Step 2
which takes into account the likelihood of the point being the
terminal point of segment Si as well as the likelihood of it
being the origin of segment Si+1. The point Pi maximizing
this likelihood is determined according to

p = argmax
l

{ logP (S∗i,0→l |Abest
l )

+ logP (S∗i+1,l→m|Abest
m )},

(2)

where Abest
m is the most likely model determined for

S∗i+1,l→m in Step 2. The segment Si is classified according
to the likelihoods of the model Abest

l . In order to determine
the next intersection point, the procedure is repeated, reusing
the terminal point of S∗i+1,l→m found in Step 2 of the first
run as result P ∗i+1 of Step 1 in the second run.

D. Motion Generation

Our choice of a probabilistic model and the features we
encode therein allows us to reproduce the learned actions and
to generalize them to new situations. To generate a movement
from a learned class between given start and terminal points,
we first recover a sequence of key points from the model.
We then obtain a set of features through interpolation from
which we compute the desired trajectory.

Encoding features in HMMs allows us to employ a
straightforward scheme in order to obtain a sequence of
feature vectors for a given action which is largely inspired
by [16]. Due to our model topology, the hidden states of
our model are traversed sequentially. Following [16], we use
the mean values of the hidden states’ Gaussian observation
models as keypoints of the desired feature sequence. In
contrast to their approach, we use Gaussian Process Re-
gression (GPR) [17] to interpolate the features between the
keypoints. GPR implicitly models the statistics of the data
and provides a trade off between a close fit to the data
and a smooth approximation. Once a sequence of features
is determined, the final trajectory from an arbitrary origin
to a user-defined end point can easily be computed by
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Fig. 6. Sample trajectory where the segments have been correctly identified
by our approach (top). The boundary delimiting the first segment has been
identified by maximizing the log likelihood of candidate points depicted in
the bottom graph.

reversing the procedure described in Sec. III-A using the
desired origin and terminal points as inputs to the procedure.
Since the features themselves are independent of these points,
and only encode the shape of the trajectory, the procedure
easily generates movements even for previously unknown
situations.

IV. EXPERIMENTS

We validate our approach in a series of experiments.
As an exemplary task, we choose manipulation movements
in a table top scenario, which is relevant to many real-
world applications for service robots. As shown in Fig. 5,
we consider four different classes of manipulation actions,
namely grasping an object, displacing it, pushing it to a
different position without lifting it, and retracting the hand
to a convenient resting position. These primitive movements
can be chained in order to solve complex tasks.

A. Experimental Setup

The 3D trajectory data for our experiments was recorded
using an optical motion capture rig at a rate of 100 Hz. This
provides us with the Cartesian positions of a human’s hand
and relevant objects. We recorded several demonstrations
for every action class to train the models. Their end points
were chosen from six predefined points located in front of
the demonstrator, to her left, and to her right at a distance
of 25 cm and 40 cm, respectively. For every location, we
separately demonstrated ten times how to grasp an object
and how to retract the hand. Furthermore, we gave five
demonstrations of a displacement and push movement from
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Fig. 7. Top: Segmentation which does not take segments following a
boundary point into account. This leads to a suboptimal result as the
grasping movement (blue) streches into the push movement (orange).
Bottom: Improved segmentation obtained by also considering the successor.

two points to all others. The different end points led to
variations in the movements’ shape.

To reduce the effects of occlusions and noise, we applied
temporal resampling and spatial smoothing to the motion
capture data before computing the features for training. The
reference objects we use throughout our experiments to
provide context information to the feature calculation are
the table top and the object we manipulate. Therefore, the
input to our model is a five dimensional vector containing
the 3D features computed from the hand trajectory, the
vertical distance of the end effector to the table’s surface,
and the Euclidean distance to the object.

B. Combined Segmentation and Classification

To validate our approach and demonstrate its performance,
we recorded another set of sequences containing different
numbers of actions. Since our recognition of actions is robust
with respect to noise in the input data, we do not need to
preprocess the recordings.

In our approach, we find action boundaries by maximizing
the likelihood of the input data with respect to the learned
action classes. Fig. 6 shows a sample trajectory and the
boundary of the first segment found by our algorithm, as well
as the development of the log likelihood during the search
process using an incrementally growing window. The likeli-
hood increases almost monotonically, with the exception of
a few deviations caused by outliers in the input data. At the
terminal point of the first segment, the likelihood exhibits a
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Fig. 8. Examples of complex movement sequences successfully segmented and classified by our algorithm. Actions are represented by colors: Grasping
(blue), displacing an object (red), pushing an object (orange), and retracting the hand to a resting position (green). The segment boundaries are highlighted
using bullets.
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Fig. 9. Performance of our approach on distorted data. The example
movement is correctly recognized in spite of a large gap in the data between
the displacement movement (red) and retraction movement (green).

pronounced global maximum. By further increasing the win-
dow size, we find another local maximum of the likelihood
corresponding to the end of the second segment. This is due
to the shape of the combined movement which at a coarse
level resembles a grasping movement in the feature space.

Although the segment boundaries determined this way are
often correct, there are some cases where considering only
the segment preceeding a boundary is not sufficient. Fig. 7
depicts the difference between choosing a segment boundary
considering only the preceeding segment and the boundary
obtained by also taking into account the following segment.
Whereas the first choice leads to a segment extending into
its successor, taking into account the likelihood of the latter
yields the correct boundary.

To quantitatively assess the performance of our approach,

we recorded 107 sequences containing three successive ac-
tions each. At the beginning of every sequence, we grasped
an object on a table. We then either lifted or pushed the
object to a different location and finally retracted the hand.
The movements were executed in the same area that was
used to train the models–we did not, however, limit our
experiments to the trained positions but also recorded actions
at intermediate places. We applied our algorithm to segment
and classify the recorded sequences and counted the number
of erroneous segmentations and misclassifications. Among
the 321 recorded actions, 13 were incorrectly delineated by
our algorithm. This corresponds to an accuracy of 96%.
The errors were mostly caused by particularly sweeping
grasping movements that were split into two separate actions.
Subsequent segments were not influenced by these mistakes.
Our classification alorithm achieved an accuracy of 100% on
the correct segments and did not misclassify a single action.

The previous experiment demonstrated the performance
of our approach on exemplary sequences of three segments.
The ability of our approach to segment sequences composed
of a larger number of actions is demonstrated in Fig. 8.
All shown sequences start with a grasping movement fol-
lowed by a series of displacement and push actions on the
grasped object. Finally, the hand is retracted to a convenient
resting position. The examples are chosen representatively
and demonstrate that all individual actions are correctly
delineated and classified.

Our approach copes well with long movement sequences
and easily handles difficulties such as noise, outliers and
gaps in the input data. This is demonstrated in Fig. 9
which contains examples of degraded trajectories that are
segmented and classified correctly.
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C. Movement Reproduction and Generalization

The aim of movement reproduction is to generate trajec-
tories for arbitrary situations which exhibit the characteristic
features of the learned action while abstracting from the
specifics of individual trained movements. To this end, we
propose to apply GPR to extract smooth features from the
state sequence encoded in HMMs.

The generalization abilities of our approach are demon-
strated in Fig. 10. Several displacement actions are repro-
duced between various positions on a table. Only the desired
starting and ending points in task space are used as input
to the algorithm. The shape of the generated movements is
solely determined by the learned models. The plots show that
the characteristic shape of the action is preserved across the
various reproductions. To execute the generated trajectory on
a robot, it is important to verify the kinematic feasibility.

V. CONCLUSIONS

In this paper, we proposed an incremental algorithm
for probabilistic action recognition and generation based
on HMMs. A linear transformation of features from task
space and a representation relative to the endpoints of
movements leads to a low intra-class variance which allows
for accurate segmentation, classification, and reproduction
of actions using a common model. To obtain meaningful
segmentation results, we developed an algorithm that takes
into account the likelihood of actions on both sides of seg-
ment boundaries. Our experiments show that segmentation
results are improved by this strategy. We demonstrated that
the approach is capable of correctly segmenting sequences
of several actions. On a sample set of 321 actions, we
achieved an accuracy of 96% for segmentation and 100%
for classification of correctly segmented actions. By applying
GPR to key points extracted from our model, our approach
is able to reproduce learned actions retaining the essence
of the original movement. The choice of our features also

allows to generalize reproductions to unknown situations. In
future work, we would like to extend our approach to handle
multiple objects and to add the ability to recognize objects
relevant to the task. Another way to extend our method is to
investigate the use of recognized actions as training samples
to improve the performance of the underlying models.
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