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Abstract—Time-of-Flight (ToF) cameras gain depth infor-
mation by emitting amplitude-modulated near-infrared light
and measuring the phase shift between the emitted and the
reflected signal. The phase shift is proportional to the object’s
distance modulo the wavelength of the modulation frequency.
This results in a distance ambiguity. Distances larger than the
wavelength are wrapped into the sensor’s non-ambiguity range
and cause spurious distance measurements.
We apply Phase Unwrapping to reconstruct these wrapped mea-
surements. Our approach is based on a probabilistic graphical
model. We use loopy belief propagation to detect and infer
the position of wrapped measurements. Besides depth discon-
tinuities, our method utilizes multiple modulation frequencies
to identify wrapped measurements. In experiments, we show
that wrapped measurements are identified and corrected, even
in situations where the scene shows steep slopes in the depth
measurements.

I. INTRODUCTION AND RELATED WORK

Time-of-Flight (ToF) cameras attracted attention in the

field of robotics and automation in the last decade. They

are compact, solid-state sensors, which provide depth and

reflectance images at high frame rates.

One of the first applications in robotics considering ToF

cameras as an alternative to laser scanning has been pre-

sented in 2004 by Weingarten et al. who evaluated the utility

of ToF cameras in terms of basic obstacle avoidance and

local path-planning [1]. In 2005, Sheh et al. used a ToF

camera for human-assisted 3D mapping in the context of the

RoboCup Rescue league [2]. Ohno et al. used a ToF camera

for estimating a robot’s trajectory and reconstructing the

surface of the environment in 2006 [3]. Recently, May et al.

presented and evaluated different approaches for registering

multiple range images of ToF cameras for fully autonomous

3D mapping [4].

All the aforementioned approaches have shown that the

complex error model of ToF cameras requires special at-

tention. The different systematic and non-systematic errors

cause, amongst other effects:

• Measurement noise: Data from the ToF camera is

subject to noise, especially at larger distances and on

poorly reflecting objects.

• Jump edges: ToF cameras measure a smooth transition,

where the transition between one shape to the other is

disconnected due to occlusions [4].

• Distance ambiguity: ToF cameras employ an array of

light emitting diodes (LEDs) that illuminate the environ-

ment with modulated near-infrared light. The reflected

light is received by a CCD/CMOS chip for every pixel
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Fig. 1. Unwrapping the input depth image (left). The brightness encodes
the measured distance (dark pixels are near, bright pixels far away). The
abrupt change from bright to dark in the input image is the phase jump that
we want to detect in order to correct the measured distances and to obtain
the unwrapped depth image (right).

in parallel. Depth information is gained by measuring

the phase shift between the emitted and the reflected

light, which is proportional to the object’s distance

modulo the wavelength of the modulation frequency.

This results in an ambiguity in distance measurements.

Measurements larger than the used wavelength are

wrapped into the sensor’s non-ambiguity range and

cause artifacts and spurious distance measurements.

As shown by Fuchs and Hirzinger, extrinsic and depth cal-

ibration can considerably improve the signal-to-noise ratio of

ToF cameras [5]. For detecting jump edges, sufficient results

can be achieved by examining, for every measurement, the

opposing angles of the triangle spanned by the camera’s focal

point, the point itself and its local pixel neighborhood [4].

Distance ambiguities, however, have (to the best of our

knowledge) not yet been addressed for ToF cameras.

Especially when mapping larger environments where mea-

sured distances exceed the wavelength of the modulation

frequency, obtaining an unwrapped depth image becomes

crucial [4]. Inferring a correct, unwrapped signal from a

wrapped signal is also known as Phase Unwrapping. That

is, depth measurements being erroneously projected into

the non-ambiguity range of the sensor are identified and

projected back into the correct interval. Phase unwrapping

is a fundamental problem in image processing [6] and has

been successfully applied in magnetic resonance imaging [7]

and interferometric synthetic aperture radar (SAR) [8].

The goal of phase unwrapping is to infer a number of rel-

ative phase jumps (or phase shifts) from the wrapped signal.

A phase jump is defined between two adjacent pixels in x-
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and y-direction of the image. Since the unrestricted phase

unwrapping problem is ill-posed, most algorithms make

a priori assumptions to reduce the number of admissible

phase jumps. One common assumption is that neighboring

measurements are more likely closer to each other than

farther apart. With this assumption, phase jumps bringing

unwrapped measurements as close together as possible are

chosen. However, even in the absence of noise, situations

may arise where a decision cannot be made that is based

only on the gradient, especially when the actual phase jump

between two adjacent pixels is larger than the modulation

wavelength.

Another limitation is that phase jumps can only be de-

tected based on the gradient surface of the neighboring

measurements, which poses a problem, for example, when

all measurements in the field-of-view are wrapped. For SAR

systems, these limitations have been approached by including

measurements from multiple modulation frequencies [9],

[10]. In theory, a completely unwrapped signal can be

reconstructed from two wrapped signals acquired with two

mutually prime modulation frequencies. In practice, however,

multi-frequency phase unwrapping is still challenging due to

the measurement noise of ToF cameras.

In [11], we have applied phase unwrapping to ToF camera

data captured at a single modulation frequency.

In this paper, we extend our previous work by adding

information from multiple modulation frequencies to infer

phase jumps in situations where a decision, only based on

the gradient of neighboring measurements, is not possible.

The remainder of this paper is organized as follows. The

next section describes our probabilistic approach to phase

unwrapping, including the use of multiple modulation fre-

quencies. Sec. III presents results showing that the proposed

method outperforms our previous approach which does not

take multiple modulation frequencies into account.

II. PHASE UNWRAPPING

Throughout this chapter we are using an ongoing example

to visualize the different steps of our approach to proba-

bilistic phase unwrapping. We have chosen this particular

example since the approach from our previous work [11]

is not able to accurately determine the phase jumps in this

scenario. A photo of the scene is shown in Fig. 2(a). The

depth image in Fig. 2(b) is acquired using a SwissRanger

SR4000 ToF camera from Mesa Imaging [13].

The camera is calibrated for a measurement range of

5 m. It supports different modulation frequencies, amongst

others, 29 MHz, 30 MHz and 31 MHz with a non-ambiguity

range of, respectively, 5.17 m, 5 m and 4.84 m. To obtain

one corrected range image, we acquire two range images A
and B at different modulation frequencies, with wavelengths

λA = 5.17 m and λB = 4.84 m. In the following, B is only

used to take multiple modulation frequencies into account,

and A forms the basis for deriving the corrected range image.

For our setup we deactivated the camera’s internal averaging

filters since they smooth the wrapped depth image.

(a) (b)

Fig. 2. (a) An image of the scene. (b) Wrapped depth image from the
ToF camera. A pixel’s gray-scale value corresponds to the measured depth,
from dark (close) to bright (far). The dark parts of the image indicate that
distance measurements larger than 5 meters are wrapped.
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Fig. 3. The graphical model representing possible locations of phase jumps.
The image pixels (black x’s) are connected to their neighbors by jump nodes
(white filled circles). Four jump nodes are connected by a curl node (black
filled circles) which enforces the zero curl constraint.

To infer phase jumps between adjacent pixels, we use

a graphical model which represents possible locations of

relative phase jumps in x- and y-direction (see Fig. 3). The

image pixels are connected to their neighbors by so-called

jump nodes. These jump nodes represent the probability of

a phase jump between two neighboring pixels. To assure

consistency of phase jumps in a local neighborhood, we

apply the idea of zero-curl constraints [12]. Four jump nodes

are connected by a curl node that enforces local consistency

of the individual jump configurations. Interaction between

jump and curl nodes is achieved by passing messages across

the graph that represent a node’s belief. After convergence of

the message passing, the detected phase jumps are integrated

into the depth image by carrying out the respective projec-

tions, thereby correcting the erroneously wrapped distance

measurements. The following subsections describe the above

steps in detail.

A. Jump Nodes

Jump nodes represent the probability that a phase jump

occurs between the two neighboring pixels. A phase jump

in x-direction, i.e., between pixels (x, y) and (x + 1, y), is
denoted as sx(x, y). Jumps in y-direction, i.e., between pixels
(x, y) and (x, y + 1), are denoted as sy(x, y).
A phase jump can occur either in positive direction (-1),

in negative direction (+1) or not at all (0). Considering the

x-jumps, positive direction at pixel (x, y) means that there is



a phase jump between pixels (x, y) and (x + 1, y). Negative
means that the phase jump occurs between pixels (x + 1, y)
and (x, y). The direction of a phase jump is important for the

correction of distance measurements as it decides which and

how the measurement needs to be corrected. The possible

shift directions (-1, 0, and 1) are called jump configurations.

Jump nodes are represented by a 3-element vector storing

the probabilities for every jump configuration. The prob-

abilities for a jump at a pixel location are calculated by

the discontinuity term fd fused with the frequency term ff ,

which is described in the following.

1) Discontinuity Term fd: The basic assumption behind

the discontinuity term fd is that neighboring measurements

are more likely closer to each other than farther apart. This

term increases the probability P
(

s{x,y}(x, y) = i | A,B
)

,

when the phase jump for configuration i brings the respec-

tive distance measurements closer together than the other

configurations. Here we follow the formulation of [12]:

fd(x, y, i) =

{

e−(φ(x+1,y)−φ(x,y)−i)2/2σ2

, for sx

e−(φ(x,y+1)−φ(x,y)−i)2/2σ2

, for sy

(1)

where φ(x, y) is the wrapped distance measurement for pixel

(x, y) from the image A, scaled into the interval [0, 1] (for
simplicity, but without loss of generality) and σ2 is the

variance in the depth values between neighboring pixels in

the wrapped image.
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Fig. 4. The relationship between measurements a# and b, acquired with
two different modulation frequencies λA and λB .

2) Frequency Term ff : To determine the frequency term

ff , depth images with two different modulation frequencies

are acquired. The basic idea behind the frequency term is

that, in the absence of noise, the range images acquired with

the two modulation frequencies measure the same distance

for those pixels that are not wrapped. In contrast, wrapped

pixels show different distances due to the different non-

ambiguity intervals. Ideally, these differences d should be

equal to (λA − λB) if measurements are wrapped in both

depth images.

Note that measurements acquired with two different mod-

ulation frequencies have a non-overlapping part between λA

and λB . Therefore, we project the measurements a ∈ A
into the interval (0, λB ] obtaining a range image A# = {a
mod λB | a ∈ A}.
As illustrated in Fig. 4, we obtain three regions by this

projection. In regions I and II differences between distance

measurements a# and b are not measurable and d(a#, b) is 0.
In region III, where wrapped measurements occur, d(a#, b)
is close to (λA − λB). In principal, under the assumption

of ideal distance measurements, examining the differences

d(a#, b) allows for detecting all wrapped measurements and

for constructing an unwrapped depth image.

We compute a reconstructed depth image R̂ only based on

the frequency difference, where a pixel r̂(x, y) is defined as

r̂(x, y) =

{

φ(x, y) + 1, if d(a#(x, y), b(x, y)) > τ

φ(x, y), else
(2)

where the threshold τ is chosen based on (λA − λB)
and the camera’s deviation in distance measurements. Those

measurements that exceed the threshold are corrected by

adding 1, i.e., unwrapping the distance measurement.

Since the measurements are subject to noise (especially

when measuring poorly reflective objects), or caused by erro-

neous measurements (at jump edges, for example), a simple

reconstruction based on R̂ is not possible. This can be seen

in Fig. 5 showing the reconstructed depth image of the scene

in Fig. 2. Wrapped pixels measured at plane surfaces with

good reflection properties, e.g., the wall, are reconstructed

correctly whereas pixels measured at the edges or on the

ground are subject to reconstruction errors (indicated by the

bright and dark spots). The reason for the reconstruction

errors is that measurements at edges or poorly reflecting

objects are subject to noise that exceeds ±(λA − λB). In
our setup (λA − λB) is 33 cm.

Fig. 5. The reconstructed depth image based on the difference of the two
modulation frequencies.

For obtaining a frequency difference that is robust against

noise, we do not consider individual pixels but take their

local neighborhood into account. Referring to Fig. 6, for

every jump node location we take medians m
{pos,neg}
{x,y} in

positive and negative direction each in x and y-direction over

k adjacent pixels before and after an examined jump node.

We determine mpos and mneg in, both, the wrapped range

image A and the reconstruction R̂ that is solely obtained

from d(a#, b), as described above. For example, mpos
A,x is

the horizontal median over the k adjacent pixels after an

examined jump node in the wrapped depth image.



Fig. 6. For a given jump node (red/dark gray circle) the two neighbor-
hoods (green/light gray boxes) are considered for taking the horizontal (x-
direction) medians m

pos
x and m

neg
x .

In the following, we refer to these medians as mxpos
A,{x,y},

mneg
A,{x,y}, mpos

R̂,{x,y}
, and mneg

R̂,{x,y}
. Analogous to Eq. 1, the

frequency term is defined as

ff (x, y, i) =
{

e
−(|mneg

R̂,x
−mneg

A,x
|−|mpos

R̂,x
−mpos

A,x
|−i)2/2σ2

, for sx

e
−(|mneg

R̂,y
−mneg

A,y
|−|mpos

R̂,y
−mpos

A,y
|−i)2/2σ2

, for sy.

If no phase jump between (x, y) and (x + 1, y) occurred,

ff (x, y, i) will be close to 1 for the configuration i = 0. More

generally, depending on the actual configuration, ff (x, y, i)
will be close to 1 for the respective configuration. Analogous

to Eq. 1, the difference |mneg

R̂
− mneg

A | − |mpos

R̂
− mpos

A | is
approximately equal to the configuration i in case that a jump

occurs at the examined node.

3) Fusing fd and ff : As can be seen in Fig. 7(a-d), solely

using the discontinuity term fd results in detections exactly

localizing phase jumps while leaving a number of jumps

undetected. In contrast, solely using the frequency term ff

accurately detects all phase jumps but causes a larger number

of false positives. For fusing both terms we trust fd with

cd = 90 % and ff with cf = 50 % (empirically determined),

resulting in:

P
(

s{x,y}(x, y) = i | A,B
)

∝

((1 − cd) + cdfd (x, y, i)) ((1 − cf ) + cfff (x, y, i))

The result of combining and weighting fd and ff is shown

in Fig. 7(e+f). It can be seen that the resulting detections are

both accurate and exactly localized.

B. Curl Nodes

Four jump nodes are connected by a curl node which

enforces the zero-curl constraint [12]. A curl node assures

local consistency of the phase jumps, by summing up the

shift configurations of the jump nodes around it. For exam-

ple, the sum of the 4-pixel loop around (x, y) is sx(x, y) +
sy(x+1, y)−sx(x, y+1)−sy(x, y) (see Fig. 8). A zero-curl

constraint is violated when a jump is not matched by another

jump in the opposite direction, i.e., when the sum around a

pixel loop is 6= 0. Therefore, the set of phase jumps for an

image must satisfy the constraint

sx(x, y) + sy(x + 1, y) − sx(x, y + 1) − sy(x, y) = 0.

If all zero-curl constraints are satisfied, consistency of the

inferred phase jumps in the complete image can be assumed.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Fig. 7. The probabilities for the jump configurations (-1, 0, 1) indicated
by colors (blue, green, red). (a) + (b) The initial phase jump probabilities
based on the depth discontinuity term fd for the x and y-direction. (c) + (d)
The initial phase jump probabilities based on the frequency term ff . (e) +
(f) The fusion of fd and ff . (g-i) The resulting phase jump configurations
after belief propagation converged.



sx(x, y)

sx(x, y + 1)

sy(x + 1, y)sy(x, y)

Fig. 8. A curl node assures local consistency of the phase shifts by summing
up the shift configurations of the jump nodes around it (red dashed arrow),
taking into account the direction of the jumps (blue arrows). A zero-curl
constraint is violated when a jump is not matched by another jump in the
opposite direction.

C. Message Passing

Inference of phase jumps is done by applying belief

propagation (sum-product algorithm) in the graphical model.

Messages, representing a node’s belief of a configuration,

are passed bi-directionally through the graph on the vertices

between jump and curl nodes in a forward-backward-up-

down type schedule.

µ1

µ3

µ4

µ2

(a)

µ1

µ2

(b)

µ1

µ2

(c)

Fig. 9. (a) Messages from curl nodes to jump nodes (red arrows) are
computed using incoming messages from jump nodes (blue arrows). (b)
Messages from jump nodes to curl nodes are computed using incoming
messages from curl nodes. (c) Messages from curl nodes to jump nodes are
combined to approximate the marginal probability of a phase jump.

Messages are represented by 3-element vectors, where the

elements are the probabilities for a specific configuration. As

illustrated in Fig. 9(a), messages from curl nodes to jump

nodes are calculated using incoming messages from jump

nodes. For example, the outgoing message µ4i depends on

the incoming messages µ1, µ2 and µ3

µ4i =
1

∑

j=−1

1
∑

j=−1

1
∑

k=−1

δ(k + l − i − j)µ1jµ2kµ3l

with δ(x) =

{

1, x = 0

0, otherwise.

Messages from the jump nodes to the curl nodes are

calculated using incoming messages from the curl nodes

(Fig. 9(b)). For example, the outgoing message µ2 is cal-

culated from the incoming message µ1 from the curl node

by

µ2i =

µ1i ((1 − cd) + cdfd (x, y, i)) ((1 − cf ) + cfff (x, y, i)) .

The message vectors are normalized in every iteration. The

marginal probabilities for the phase jumps are approximated

by

P̂ (a(x, y) = i | A,B) = (µ1iµ2i)/

1
∑

j=−1

(µ1jµ2j).

When all zero-curl constraints are satisfied, the propagation

of beliefs converges. The resulting jump configurations for

the running example are shown in Fig. 7(g+h). Propagating

the beliefs and combining the discontinuity term and the

frequency term results in consistent and correct phase jump

locations along x and y-directions. After convergence or

when a fixed number of iterations is exceeded, the phase

jumps are integrated into the wrapped depth image. Wrapped

measurements can be localized by the position and the

configuration of the x and y-direction phase jumps and

corrected by adding the phase, i.e., λA. The phase jump

locations for the example input image is shown in Fig. 7(h).

III. EXPERIMENTS

Two different experiments have been carried out in an

indoor environment. In a first experiment, a scene with a

continuous wall was chosen. The depth images from the

scene can be unwrapped without employing the frequency

term, since neighboring measurements are close together.

Fig. 11 shows the wrapped and unwrapped depth images,

as well as the resulting 3D point clouds. For this example,

both the approach from our previous work and the proposed

extension correctly unwrap the acquired depth image.

(a) (b)

Fig. 10. (a) The resulting phase jumps without frequency term. (b) Phase
jumps using the frequency term.

The second experiment in Fig. 12 shows a steep slope in

neighboring depth measurements that contain discontinuities

larger than λA/2. In this scenario, additional information

based on the modulation frequencies is necessary. Without

this additional information, i.e., making decisions solely

based on distance discontinuities does not reliably unwrap

the acquired depth image. Fig. 10(a) shows the resulting

phase jumps without the frequency term. The resulting jumps



(a) (b) (c)

(d) (e) (f) (g)

Fig. 11. (a) An image of the scene. (b) Wrapped depth image from the ToF camera. A pixel’s gray-scale value corresponds to the measured depth, from
dark (close) to bright (far). The dark parts of the image indicate that distance measurements larger than 5 meters are wrapped. (c) The unwrapped depth
image. (d + f) The wrapped point clouds from two different perspectives. (e + g) The unwrapped point clouds. The color of the points indicate the result
of the algorithm. Wrapped measurements are colored red.

are disconnected. Fig. 10(b) shows the resulting phase jumps

obtained by including the introduced frequency term.

The experiments show that the depth images could be

unwrapped successfully, even in scenes where phase unwrap-

ping only based on depth discontinuity is not possible.

In the two experiments belief propagation converged in

less than 5 iterations.

IV. CONCLUSIONS AND FUTURE WORK

We have presented a probabilistic approach for phase

unwrapping specifically designed for handling ambiguities in

ToF camera data. By means of a graphical model with loopy

belief propagation, the approach does not only take into

account discontinuities in the measured distances but also

exploits multiple modulation frequencies to obtain accurate

estimates of the locations where phase jumps have taken

place.

The results show that the approach enables to correct

ambiguous distance measurements such that the structure of

the scene can be reconstructed correctly from wrapped depth

images. This is an important result for the use of ToF cameras

in the field of robotics, since current camera models, such as

the SR4000 from Mesa, have a non-ambiguity range that is

shorter than the maximum measurable distance of commonly

used laser range scanners. Simply sorting out the wrapped

measurements based on the ratio of distance and amplitude

does not work reliably in natural scenes, e.g., when highly

reflective objects are sensed.

Especially in the context of 3D mapping, the ambiguity

of the phase-shift based distance measurements prevented the

use of ToF cameras for modeling larger environments where

measured distances exceed the wavelength of the sensor’s

modulation frequency [4]. With correctly unwrapped depth

images, we have, in principle, the ability of to model larger

environments. However, it remains a matter of future work to

actually apply probabilistic phase unwrapping for mapping

a larger environment.

REFERENCES
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