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Abstract—Robotic applications require a comprehensive un-
derstanding of the scene. In recent years, neural fields-based ap-
proaches that parameterize the entire environment have become
popular. These approaches are promising due to their continuous
nature and their ability to learn scene priors. However, the use
of neural fields in robotics becomes challenging when dealing
with unknown sensor poses and sequential measurements. This
paper focuses on the problem of sensor pose estimation for large-
scale neural implicit SLAM. We investigate implicit mapping
from a probabilistic perspective and propose hierarchical pose
estimation with a corresponding neural network architecture.
Our method is well-suited for large-scale implicit map rep-
resentations. The proposed approach operates on consecutive
outdoor LiDAR scans and achieves accurate pose estimation,
while maintaining stable mapping quality for both short and
long trajectories. We built our method on a structured and sparse
implicit representation suitable for large-scale reconstruction and
evaluated it using the KITTI and MaiCity datasets. Our approach
outperforms the baseline in terms of mapping with unknown
poses and achieves state-of-the-art localization accuracy.

Index Terms—Hierarchical Pose Optimization, Structured
Neural Fields, Large-Scale Implicit Mapping, Implicit SLAM,
Sequential Data Training

I. INTRODUCTION

Pose estimation and mapping are essential tasks that have a
significant impact on mobile robotics, self-driving cars, virtual
reality, and computer vision. These two tasks are closely
related, as the quality of one influences the quality of the
other. The combined task is commonly known as simultaneous
localization and mapping (SLAM). In recent years, researchers
have explored novel approaches to high-quality and efficient
mapping with accurate pose estimation [1]–[4].

Although significant progress has been made in SLAM,
it remains necessary to develop novel methods to meet the
increasing demands for quality and generalization ability. For
instance, sparse methods [5] produce maps that have limited
applicability (mainly further localization) because they do
not represent dense surfaces or volumes. On the other hand,
dense [6] and semi-dense [7] maps can capture a greater
amount of information and finer details allowing numerous
downstream tasks. However, they require more computational

Fig. 1. Demonstration of the flexibility of the proposed implicit mapping
extended to semantic domain. We create the map using sequential LiDAR
measurements and corresponding semantic labels from the SemanticKITTI
dataset [12]. Our approach effectively learns a 3D semantic representation
from the data, demonstrating its generalization abilities. We employ the
Marching Cubes algorithm [13] to visualize the learned information.

resources and still have limited expression capability because
of their discrete nature.

Today, numerous robotic applications [8] demand a more
advanced understanding of the environment, which calls for
the development of novel comprehensive maps. To address
this, some works [9]–[11] introduce parameterized elements
to the scenes (doors, planes, small items, etc.). However, these
approaches can parameterize only a portion of the scene’s
objects, which can be sufficient for some scenarios but does
not provide a general solution.

Recently, Neural Radiance Fields (NeRF) [14]–[16] have
gained attention in the scientific community. Although most
of these approaches rely on ground truth poses that are unavail-
able for real-time robotics applications, they still possess use-
ful properties. For instance, neural fields can parameterize the
entire scene from plain geometry to fine-grained details [17]–
[20]. Moreover, this representation can easily be extended
to additional levels of scene understanding [21]. Figure 1
illustrates the semantic mapping achieved by the proposed
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approach that is augmented to represent semantic information
alongside 3D geometry (Section III-B).

In this paper, we advance the current state of research
on neural implicit representations for robotic applications.
Specifically, we focus on implicit representations of large-scale
environments and simultaneous pose estimation inside neural
fields. We provide a probabilistic interpretation of implicit
mapping and introduce coarse-to-fine pose optimization based
on sequential LiDAR data for large-scale neural field maps,
enabling operations in street-sized environments.
In summary, we present in this work:

• structured sparse implicit mapping and pose estimation
with probabilistic interpretation,

• hierarchical pose optimization based on the octree map
structure, and

• evaluation of our proposed approach relative to state-of-
the-art methods.

II. RELATED WORKS

CodeSLAM [22] is one of the pioneering works in SLAM
that proposes a compact auto-encoder based implicit environ-
ment representation. However, in recent years, NeRF-based
architectures [14] have gained popularity in the field of implicit
mapping, leading to the development of novel SLAM algo-
rithms. Deng et al. [23] demonstrated that providing additional
depth information improves the training convergence of such
architectures. For instance, iMap [24] is one of the first ap-
proaches that uses neural radiance fields and an RGB-D sensor
for SLAM, but it can only operate in small environments.

Several studies have advanced neural fields to encompass
larger scales. For instance, KiloNeRF [25] proposes the use of
tiny voxel-assigned neural networks to accelerate learning and
inference. Similarly, MeSLAM [26] utilizes coupled neural
field blocks to achieve scalability. Müller et al. [18] introduce
multiresolution hash encoding, which considerably improved
training speed and network generalization capabilities, but it is
not easily applicable to unbounded scenes. In contrast, Nice-
SLAM [27] implements a grid structure that enables mid-
size environment mapping, but it is inefficient for open space
scenes.

Studies including [24], [26], [27] sample points along the
rays and aggregate predictions at these sampled points to
derive a loss for training neural fields. However, this approach
can be computationally inefficient for open-space environ-
ments. In contrast, we consider a probabilistic interpretation
of the mapping task (Sec. III-A) and derive direct optimization
to avoid computationally expensive volume rendering. Our
method utilizes octree-based feature grids [28], making it
suitable for open-space environments.

Active research on gradient-based pose optimization is
conducted in works [29], [30]. BARF [19] proposes coarse-to-
fine pose optimization, which facilitates neural field training
with imprecise camera poses. However, this method assumes
the instant availability of all data and is designed for specific
positional encoding [31]. Pure localization in neural fields is

also studied, as seen in [32], [33], which focus on Monte Carlo
localization [34] in implicit maps.

Large-scale neural rendering reconstruction is addressed in
[17], [35], but these approaches are not easily adaptable to
SLAM. Moreover, approaches based on [14] suffer from arti-
facts in the reconstructed 3D geometry. To address this issue,
Azinović et al. [36] propose to directly predict a truncated
signed distance function (TSDF). Zhong et al. [37] combine
an efficient octree structure with the prediction of TSDF to
achieve a precise large-scale 3D reconstruction.

The work most similar to ours is SHINE-Mapping [37],
which introduces a mapping-with-known-poses method. We
use it as a baseline to estimate the mapping quality of our
approach. In contrast to related works, our method enables
large-scale implicit mapping and hierarchical pose estimation
in neural fields. It handles sequential 3D LiDAR data and does
not require ground-truth poses, making it suitable for practical
robotic applications.

III. METHOD

This section describes the components of our method. We
first introduce a probabilistic interpretation of the proposed
approach. Then we describe the proposed neural network
architecture in depth. Finally, we present the details of our
pose estimation in a hierarchical, coarse-to-fine manner.

Fig. 2 illustrates the core components of our method. The
proposed network architecture is trained to represent the map
with varying levels of detail using 3D LiDAR data as input.

Based on the previous pose estimations, we optimize the
current sensor pose through gradient flow defined by loss
between current LiDAR measurements and the learned implicit
map. As a result, our approach performs simultaneous pose
estimation and implicit mapping based on sequential LiDAR
data.

A. Mapping
Information about the environment is obtained from mea-

surements of noisy sensors. We consider the environment to
be a probability density function (PDF) of the measured noisy
values. We employ a neural field-based model to approximate
the PDF of the environment. To learn the model, we minimize
the KL divergence between the approximated and real PDFs,
denoted q(x,w) and p(x), respectively. Minimizing DKL is
equivalent to minimizing cross-entropy [38] and maximizing
the log-likelihood of q(x,w):

min
w

DKL

(
p(x)

q(x,w)

)
∼ max

w

1

N

N∑
i=1

log(q(xi, w)), (1)

where w represents the weights of the neural field model,
x is a 3D spatial coordinate and N is the number of sampled
points.

We assume that the sensor measurements y(xi) have nor-
mally distributed noise with mean µ and variance σ2. Then
the measured environment has normally distributed PDF:

q(xi, w|µ, σ) =
1

σ
√
2π

e−
(y(xi)−µ)2

2σ2 . (2)



Fig. 2. Overview of the proposed approach. Our method utilizes neural fields consisting of learnable F -dimensional features stored in the corners of an
octree-based structure. Each trainable octree level is associated with tiny MLP networks. During the forward pass, the LiDAR measurements are transformed to
world coordinates using an initial transformation Ti−1. The features of the voxel corners are then weighted based on the relative position of the sampled point
xi (red) from the measurements. These weighted features are concatenated and fed to the corresponding MLP. The predictions of all layers are accumulated
to generate the final occupancy probability ȳi for the sampled points. During the backward pass, the gradient values are backpropagated to optimize the
transformation Ti−1 toward Ti in two ways: directly through measurements yi and hierarchically though ȳi (Sec. III-C).

Substituting Eq. 2 into Eq. 1, the likelihood maximization
becomes a root mean square error minimization (RMSE)
problem:

Lmap =
1

N

N∑
i=1

(y(xi)− ȳ(xi))
2, (3)

where ȳ(xi) represents the prediction of the model at coordi-
nate xi and y(xi) represents the mean µ of the measurements.
We choose the signed distance function (SDF) as the envi-
ronment representation. We acquire environment observations
y(xi) by sampling points around LiDAR point clouds and
approximating y(xi) as the distance to the closest point in
the LiDAR measurements. Both y(xi) and ȳ(xi) are direct
values of xi obtained without volume rendering.

B. Network Architecture

We employ learnable F -dimensional features that are fed
to MLPs as our neural field representation. These features are
stored in corners of an octree structure (Fig. 2). Although
the final reconstruction is a dense SDF, the octree sparsely
stores learnable features only for the voxels where LiDAR
measurements were observed. We use different octree levels
and explicitly train them to learn coarse, mid-level and fine
representations of the environment.

First, each layer is independent and has its own MLP neural
network. The level’s learnable features, combined with spatial
coordinates of a queried point (Sec. III-C), serve as input to
the network that infers the occupancy probability for the point.
The combined features are concatenated, which, based on our
observations, yields better prediction quality compared to the
mean and sum input reductions.

Second, each MLP is explicitly guided to represent only its
level details during mapping. To achieve this, we deactivate
all layers except the coarsest one for the first iterations of

Eq. 3 optimization. Then, we activate finer levels and their
corresponding MLPs one by one, with an equal iteration
interval. The predictions from the newly activated levels are
added to the coarser ones, guiding the learning of the finer
details. We follow this technique for each mapping step.

Finally, we sum the predictions from all levels to obtain
both low- and high-frequency details on the final map. Fig. 3
demonstrates the difference between the coarse-level predic-
tion and the final prediction. The coarse level represents rough
geometry, while the finer levels capture high-frequency details,
resulting in improved map quality when combined together.
With the proposed technique, predictions of the finer levels are
guided to complement the coarser ones without redundantly
learning the geometry representations of the previous levels.

We observed that finer octree levels are resistant to catas-
trophic forgetting if the input measurements are dense and
the close measurements have sufficient density. Moreover,
the close measurements overlap with the environment which
is already mapped from the past observations. Therefore,
we address catastrophic forgetting differently for close and
far LiDAR measurements. For the far points, we tackle the
problem regularizing the learnable levels’ features similar to
Zhong et al. [37]:

Lk,reg = γk
∑

Ω(wt − wt−1), (4)

where wt and wt−1 represent the current and previously
converged levels’ features, respectively, Ω are importance
weights proposed by [37], and γk is a level-k regularization
weight introduced in our work. We propose higher weights γk
for coarse levels to prevent forgetting of the whole geometry
and smaller weights for the finer levels to allow updating of
details.

For close measurements, we regularize outer octree voxels
by sparsely reconstructing the points sampled at the fine



TABLE I
LOCALIZATION QUALITY ESTIMATION ON KITTI DATASET

Method
KITTI Seq. 00 (3711 m) Seq. 05 (2202 m) Seq. 03 (567 m) Seq. 07 (693 m)

ATE [m] ATE [%] ATE [m] ATE [%] ATE [m] ATE [%] ATE [m] ATE [%]
ICP 37.55 1.04 11.80 0.53 5.06 0.89 7.68 1.11

KISS-ICP 6.28 0.17 1.94 0.09 3.35 0.59 0.758 0.11
Ours 4.87 0.13 4.07 0.18 1.47 0.26 0.87 0.13

Fig. 3. The coarse and final representations learned by our proposed
approach, reconstructed using the Marching Cubes algorithm. (a) shows the
representation learned solely by the coarse level MLP, while (b) displays the
final representation that includes high-frequency features from the finer levels.

level and then adding them to the measurements as replay
data, thus employing the hierarchical structure of our implicit
representation. Our final loss for joint training of the levels’
features and MLPs becomes:

L = Lmap +
∑
k

Lk,reg. (5)

We observe that due to the sparse nature of the octree
architecture, we can extend it to additional domains without
drastically increasing the consumed memory. To generate
Fig. 1, we extended the dimensions of the input with encoded
semantic labels, increased the size of the features stored in the
corners of the octree, and optimized the model to reconstruct
encoded semantic labels together with the geometry using the
same Eq. 3.

C. Pose Estimation

We perform simultaneous localization by optimizing the
sensor pose in the neural fields. Having approximation q(x,w)
of the environment and current measurements y(xi), we opti-
mize the sensor pose Ti which is used to project measurements
from the sensor’s local coordinates to the global coordinates.
According to Eq. 3, it can be done through both y(xi) and
ȳ(xi) but the path to Ti through the measurements y(xi) is
more straightforward than through model prediction ȳ(xi).
The meaning of such optimization is to find the position of
the sensor where its observations correspond to the mapped
environment q(x,w) with the smallest RMSE. We use the
previously estimated pose Ti−1 as the initial one for each new
optimization step.

During the forward pass, we weigh the features of each
octree level according to the relative position of the sampled
point x within its voxel before feeding them to the network:

zj = hj ·
∏

(1− xs − ⌊xs⌋), (6)

where zj represents the weighted j-corner features, hj are the
corner’s F -dimensional features, and xs is the sampled point
position scaled to the level’s grid resolution.

The weighted features of the same voxel are concatenated
and fed into the corresponding MLP model, as shown in Fig. 2.
With this structure, we propagate the gradient to the sensor
pose directly through y(xi).

We additionally employ the proposed hierarchical architec-
ture (Sec. III-B) and perform coarse-to-fine pose estimation.
We first perform a coarse pose estimation through the coarse
level and then gradually activate the finer levels to refine the
pose through more detailed maps. According to our observa-
tions, pose optimization is more stable when performed in such
a coarse-to-fine manner. Our final pose estimation consists of
the direct (Fig. 2: green line) and coarse-to-fine optimizations
(Fig. 2: red lines) performed concurrently.

IV. EXPERIMENTS

We evaluated the accuracy of the proposed hierarchical
pose estimation in the KITTI dataset [12], which contains
outdoor LiDAR sequences of different lengths. To assess the
localization accuracy, we use the absolute trajectory error
(ATE). We also measure the influence of pose estimation on
mapping quality using the synthetic MaiCity dataset [39].

Throughout the experiments, we used unified parameters for
localization and mapping. We set the feature dimension F = 3
and use 3 octree levels with learnable features. All tiny MLPs
have 2 hidden layers with 32 neurons each.

Our approach takes 50 iterations for mapping. For pose esti-
mation, we set 80 iteration: 20 iterations for coarse estimation,
20 iterations with the middle level activated, and the remaining
40 iterations with all levels activated.

A. Pose Estimation

The aim of this experiment is to verify that the pro-
posed approach can effectively perform continuous localiza-
tion throughout the whole sequence with decent and stable
accuracy. We compare its performance with point-to-plane
ICP [40] and state-of-the-art KISS-ICP [1]. The parameters
of these methods are fixed for all sequences.

The results are presented in Tab. I. The proposed approach
is superior to ICP and comparable to the state-of-the-art



TABLE II
MAPPING QUALITY RESUTLS ON THE MAICITY DATASET

Method
MaiCity Seq. 00 (700 m) Seq. 01 (100 m)

Acc. Comp. C-L11 C-L22 Acc. Comp. C-L11 C-L22

SHINE (GT) 0.28 0.12 0.20 0.30 0.26 0.07 0.17 0.26
SHINE (ICP) 5.92 0.46 3.19 5.90 0.35 0.20 0.28 0.36

Ours 1.0 0.29 0.65 1.2 0.11 0.07 0.09 0.17
1 Chamfer-L1 distance.
2 Chamfer-L2 distance.

Fig. 4. Estimated trajectories of the proposed approach on the KITTI dataset.
The colorbar visualizes the distance between the poses of the estimated and
ground truth trajectories.

KISS-ICP. Based on the experimental results, our method can
provide consistent localization results for both short (Seq. 03
and Seq. 07) and long sequences (Seq. 00 and Seq. 05).

Fig. 4 shows our estimated trajectories and ground truth data
for each sequence. We observe that the estimated trajectory
usually follows the ground truth precisely. Further analysis
reveals that the majority of residuals come from inaccuracy in
orientation optimization around the pitch angle.

The proposed approach possesses good capabilities to han-
dle places previously visited. For instance, trajectories in
Seq. 00 and Seq. 05 shown in Fig. 4 have higher accuracy
(darker color) when the place is visited more than once. Thus,
our method can successfully re-localize itself and decrease
localization error when operating in re-visited environments.
We illustrate this in Fig. 5 which shows a street traversed
twice in the same direction. The corresponding trajectories are
colored in different colors. The blue trajectory corresponds to
the second traversal and it converges to the first visit that is
shown in green.

Fig. 5. Revisiting of previously mapped area. The map is initialized during
the first visit of the region (green). During the second traversal (blue), the path
successfully converges to the path taken during the first visit. Both traversals
have the same motion direction.

B. Mapping

This experiment verifies the quality of the map in short
and long sequences of the MaiCity dataset [39]. We compare
the proposed approach against SHINE-Mapping [37], which is
similar to our mapping. The comparison results in terms of ac-
curacy (Acc.), completeness (Comp.), and Chamfer distances
(C-L1, C-L2) are presented in Tab. II.

We feed the LiDAR data to algorithms in a sequential
manner since future measurements are unknown in the case
of real-time operation. SHINE-Mapping is a pure mapping
approach; thus it uses ground truth poses to infer a map. For
comparison, we use SHINE-Mapping with ground truth poses
(the best scenario) and poses estimated by the ICP method.

According to Tab. II, for the short Seq. 01 our approach
achieves more accurate mapping results compared to both
variants of SHINE-Mapping. This occurs because SHINE-
Mapping is a reconstruction approach that demonstrates the
best results when all measurements are available at the same
time, while our approach is initially designed to handle se-
quential data at each time step and benefits from hierarchical
optimizations. As expected, the reconstruction quality of our
method is slightly worse than SHINE-Mapping with ground



truth poses for the long Seq. 00, but the accuracy values of both
methods are still close. The increased mapping error in the
longer sequence is caused by an accumulated localization error
that slowly deforms the map. However, the mapping accuracy
of our method has similar values in both short and long
sequences. All these highlights the stability of the proposed
pose estimation throughout sequences with various length.

Based on the experimental results, both SHINE-Mapping
and our method are capable of providing an accurate map.
However, SHINE-mapping quality depends on the localiza-
tion accuracy estimated by third-party algorithms, while the
proposed approach has stable built-in localization.

C. Real-Time Operation Discussion

The efficiency of our approach depends primarily on the
size of the environment, the number of optimization steps per
mapping and tracking, and the amount of data in the current
measurement. We estimate the time efficiency on a laptop with
an embedded NVIDIA GeForce RTX 3070 Ti and 16 GB of
RAM memory, noting that modern autonomous robots can
have even more powerful computational resources. For large
KITTI sequences (approx. 4000 m), we use the fine level is
13th level of the octree with a resolution of 0.25 meters. In
such conditions, our approach can operate at a frequency of
3 fps. For smaller environments (approx. 50 m), we achieve the
frequency of 5 fps by using the 10th level as the finest level,
with a resolution of 0.05 m.

Performance can be further increased by adjusting the
parameters for each specific case. Efficient operation was
achieved thanks to the sparse octree structure, depth-guided
training, and the avoidance of costly volume rendering.

V. CONCLUSION

In this work, we present a pipeline for simultaneous map-
ping and pose estimation in structured implicit representations.
The proposed neural network architecture, which includes the
training of features in the octree corners on different levels
and following hierarchical pose optimization, is the core for
achieving a large-scale yet detailed map without ground-truth
poses. Our approach works with real-world LiDAR data stream
data and operates at 3-5 frames per second.

We perform an evaluation of the proposed approach on
public datasets. It shows that our method is capable of simul-
taneous localization while preserving high mapping quality
for large-scale environments. The localization accuracy veri-
fied in the KITTI dataset is on par with the state-of-the-art
performance demonstrated by KISS-ICP.

To validate mapping quality, we compare our method with a
state-of-the-art reconstruction baseline approach on the MaiC-
ity dataset. Experimental results show that our mapping is
superior when sequential LiDAR data is utilized.
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