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Abstract— Grasping objects of different shapes and sizes—a
foundational, effortless skill for humans—remains a challenging
task in robotics. Although model-based approaches can predict
stable grasp configurations for known object models, they
struggle to generalize to novel objects and often operate in
a non-interactive open-loop manner. In this work, we present
a reinforcement learning framework that learns the interactive
grasping of various geometrically distinct real-world objects by
continuously controlling an anthropomorphic robotic hand. We
explore several explicit representations of object geometry as in-
put to the policy. Moreover, we propose to inform the policy im-
plicitly through signed distances and show that this is naturally
suited to guide the search through a shaped reward component.
Finally, we demonstrate that the proposed framework is able
to learn even in more challenging conditions, such as targeted
grasping from a cluttered bin. Necessary pre-grasping behaviors
such as object reorientation and utilization of environmental
constraints emerge in this case. Videos of learned interactive
policies are available at https://maltemosbach.github.
io/geometry_aware_grasping_policies.

I. INTRODUCTION

Grasping is a fundamental capability and the basis for al-
most all complex manipulation skills, such as pick-and-place
or tool use [1]. Consequently, object grasping is of great
practical relevance and remains an active area of research.
Classical approaches have tackled grasping via analytical,
model-based planning and control under the assumption of
accurate state estimates and a given dynamics model [2], [3].
Recently, reinforcement learning (RL) has grown in popular-
ity for grasping [4], [5] and object manipulation [6], [7], due
to its ability to autonomously discover useful behaviors. The
rise of massively parallelized physics simulation [8] and the
resulting speedup in RL training has led to a leap in the
problem complexity for which proficient controllers can be
learned, as evidenced by dexterous in-hand manipulation [9]
as well as agile and robust quadruped locomotion [10], [11].
Policies are trained in thousands of environments in parallel
from low-dimensional environment states, such as joint or
object positions. Surprisingly, skillful in-hand manipulation
of geometrically distinct objects can be achieved solely
through data-driven learning without access to shape or
tactile information [9].

However, in-hand manipulation is so far only concerned
with objects of relatively constant size. Objects encountered
in grasping and bin-picking scenarios might vary consider-
ably in their extent. It is therefore crucial for a policy to
generalize across variations in object shape and size. The
effect of object representation on a policy’s robustness to
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Fig. 1: A single policy learns to grasp objects of vastly dif-
ferent shapes, weights and sizes: (a) Screwdriver that can be
readily picked up; (b) Larger cracker box, impossible to grasp
from the initial configuration. The policy, nevertheless, learns
to lift the object through dexterous pre-grasp manipulation
that brings the box into an upright position; (c) Red cup is
retrieved from a cluttered container, even as it interacts with
other objects and the bin.

variations in shape and size has not been thoroughly in-
vestigated, though. Moreover, in-hand manipulation provides
dense rewards, as the hand is constantly manipulating and
moving the object, achieving states that are closer to or
further away from a desired pose. In contrast, object grasping
allows the agent to move the hand freely in space. Hence,
the majority of random exploration does not change the state
of an object and therefore does not provide useful feedback.

In this work, we investigate whether the representation of
objects via their center-of-mass is sufficient for our problem,
or whether representations that explicitly or implicitly encode
object shape can lead to more capable policies. While
visual perception, e.g., via RGB-D images, provides detailed
information about object geometry, we attempt to find more
concise representations. This is motivated because i) learning
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directly from high-dimensional visual input is more challeng-
ing, leading to greatly increased sample complexity, and ii)
rendering visual observations in many parallelized environ-
ments quickly fills GPU memory, reducing the number of
simulations that can be run in parallel and thus undermining
the very benefit of massively parallelized training. To avoid
these issues, we investigate popular explicit representations
of 3D geometries for their performance in RL. Furthermore,
we utilize the signed distance function (SDF) to implicitly
inform an agent about an object’s shape. We address the
sparse reward problem by proposing a novel geometry-aware
shaped reward that can achieve the desired reduction of the
search space, without biasing the solutions that are found.

We observe that with these representations, existing RL
algorithms are able to learn resilient grasping controllers that
automatically exhibit pre-grasp manipulation and regrasping
behaviors. This allows applying the proposed framework to
the more challenging task of targeted picking from a cluttered
bin. Notably, even without representation of the context, i.e.,
other objects and the bin, we are able to learn proficient
grasping policies for this scenario. In summary, we make
the following contributions:

• A study of explicit shape representations for object
manipulation. We investigate different representations
of object shape with respect to their RL performance.

• Implicit representation via SDFs is applied to RL of
grasping, which has, to the best of our knowledge, not
been done in any prior work. From this representation,
we infer a geometry-aware reward component encour-
aging the agent to make contact with an object.

• Picking from cluttered bins is learned without informa-
tion about the context. We demonstrate that proficient
policies can be trained even for this unstructured setting.

II. RELATED WORK

The field of robotic grasping has been an active area of
research for many decades. Despite these sustained efforts,
the problem remains largely unsolved [12]. Approaches to
robotic grasping are typically categorized into analytical and
data-driven methods. The former, often also referred to as
classical approaches to grasping, is concerned with finding
suitable grasp poses for an object, where a kinematically
feasible path can then be planned to execute the picking
action. The quality of possible grasp poses is assessed
through mechanical and geometric conditions, such as force
closure or form closure [13]. Data-driven methods have been
gaining prominence for robotic grasping due to significant
increases in performance as more data and computation
becomes available. These subsume approaches for learning-
based grasp-synthesis, where only the final grasp pose is
learned [14], [15], as well as dexterous manipulation, which
typically involves continuous control of the end-effector.
Most recent works use reinforcement learning to generate
such interactive policies. Rajeswaran et al. [7] combine
model-free RL with human demonstrations to learn dexterous
manipulation tasks. DQN is used by Deng et al. [16] to learn
a policy that picks objects from clutter using a combination

(a) Center of mass (COM) (b) Bounding box (BBox)

(c) Superquadric (SQ) (d) Point cloud (PC)

Fig. 2: We examine four explicit representations of object
geometry that differ in dimensionality and expressiveness.

of a suction cup and two-fingered gripper. Quillen et al. [17]
conduct an empirical evaluation of off-policy model-free RL
for vision-based grasping with a parallel gripper.

While the representation of object geometry is a prevalent
topic in computer vision, few works address it explicitly
in the context of RL. Huang et al. [18] study the effect
of geometry-awareness for RL of in-hand reorientation and
show that a generalist, multi-object policy can be learned
that outperforms the single-object baselines. Kumar et al. [1]
represent different objects through their bounding boxes.
They show that tactile perception is able to compensate for
information lost by this approximation as well as measure-
ment noise. In a recent study, Wu et al. [19] use both, an
imitation learning and a geometric representation learning
objective, to train grasping and manipulation policies from
point clouds. However, their framework relies on category-
specific grasping demonstrations.

Recent work by Cai et al. [20] utilizes the truncated
SDF (TSDF) for contact point detection. They demonstrate
visual grasping from a cluttered bin with a two-fingered
gripper. Breyer et al. [21] propose a volumetric grasping
network that operates directly on a TSDF representation of
a cluttered scene and outputs grasp poses and qualities. To
the best of our knowledge, no prior work has explored the
signed distance function for its potential in RL for object
manipulation.

In this work, we perform a comparative study of explicit
object representations for RL-based grasping. Further, we
propose to implicitly represent object geometry through
the SDF, with leads to succinct states amenable to large-
scale optimization and which naturally lend themselves to
rewarding behaviors useful for object grasping.

III. METHOD

We formalize the task of grasping an object as a Markov
decision process M = (S,A, R, P, γ), where S and A



(a) Detailed triangular mesh of
an object

(b) SDF representation of the
object saved as a voxel grid

Fig. 3: We precompute voxelized SDFs for object meshes to
enable fast lookups of distances during training.

are the state and action space, respectively. The transition
function P : S ×A×S → R+ represents the probability of
transitioning to the next state st+1 ∈ S when taking action
at ∈ A in the current state st ∈ S. R : S × A → R is a
reward function and 0 ≤ γ < 1 is a discount factor.

Our goal is to learn a policy πθ that can grasp a large
number N of geometrically diverse objects. This induces a
multi-task problem, the goal of which can be formalized as
optimizing the expected sum of discounted rewards over all
N objects:

Eπθ

[
N∑
i=1

T−1∑
t=0

γtR(st, πθ(st))

]
. (1)

As we will show, naive optimization for this objective
without incorporating object-specific information can be sur-
prisingly successful if sufficient amounts of experience can
be generated. There is, however, one major drawback to this
approach. As the policy cannot distinguish different objects
from each other, a common, universally effective strategy
must be learned [18]. This puts an upper limit to the dexterity
that can emerge during optimization. Instead, we aim to learn
a policy that adapts to the different objects it encounters and
is able to employ specialized, geometry-aware strategies to
grasp them. Thus, we investigate representations of object
shape for their performance in RL of grasping policies.

A. Explicit Representation of Object Geometry

The explicit representations of an object’s geometry we
explore in this work are depicted in Figure 2.

1) Center of Mass: The naive representation of objects
via their center of mass position or 6D pose is prevalent
in reinforcement learning of single-object manipulation poli-
cies [18], [22]. We employ this representation as a geometry-
agnostic baseline.

2) Bounding Box: 3D bounding boxes represent the
cuboid hull in which an object lies. We extract the oriented
bounding box along the three principal axes of a given mesh.
While prior work [1] has studied the effect of bounding box
representations for grasping, this has only been investigated
for contextual RL. To provide a succinct observation to the
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Fig. 4: Policy architecture. ht is the hand pose, qt are the
joint positions of the hand, and ot is the object representation
at time step t. When the object is represented as a point
cloud (PC), we preprocess the input via a PointNet-like archi-
tecture [27] to generate a permutation invariant embedding
first. The three-layer fully connected neural network outputs
actions at that are changes to the 6 DoF hand pose and to
the five controllable DoF of an anthropomorphic hand.

policy, we represent the bounding box via its central pose
and extent.

3) Superquadric: Superquadrics go beyond the standard
3D cuboid representation. They are an 11-dimensional para-
metric family of shapes able to represent cubes, cylinders,
spheres, etc. [23]. Due to their capacity to represent a variety
of shapes with very few parameters, superquadrics have been
used as object representations for manipulation [24], [25]
and shape parsing [26]. We are, however, not aware of prior
work using superquadrics in the context of RL. The section
III-B outlines how we recover superquadric parameters for
an object.

4) Point Cloud: Point clouds are a natural representation
of 3D objects as they can be created by laser scanners or
RGB-D cameras. However, they are irregular in the sense
that there is no natural ordering of the points. To respect the
permutation invariance of the input, we preprocess a point
cloud with a PointNet-like [27] architecture before feeding
the embedding into the MLP policy. We perform experiments
for point clouds of different sizes, sampling 32, 128, and 512
points on the mesh surface, respectively.

B. Superquadric Recovery

Accurate recovery of superquadrics is a difficult problem.
Liu et al. [28] have recently proposed a robust algorithm
for fitting superquadrics to point clouds. They formulate the
recovery of superquadrics as a maximum likelihood estima-
tion problem and propose a variation of the expectation-
maximization algorithm that exploits the geometric features
of superquadrics to solve it. Their approach is called Expec-
tation, Maximization, and Switching (EMS). While excellent



(a) Solution found by the origi-
nal EMS algorithm

(b) Solution found using our
regularization

Fig. 5: We regularize the recovery of superquadrics by min-
imizing the distance of the points lying on the superquadric
surface to the object mesh. The color indicates the distance
of each point from the mesh.

results can be obtained for objects whose shape is approxi-
mately within the geometric scope of superquadrics, objects
outside this domain can produce misleading solutions. This
can be seen in the top row of Figure 6. While the cuboid
object is recovered very well, the other objects lead to
unsatisfactory results. This is because the solutions are found
solely by optimizing the probability p(xi;θ) of points on the
mesh surface xi under the superquadric parameters θ. As can
be seen for the second object, although a large region of the
superquadric is far from the bowl, all points on the mesh
surface are very close to the surface of the superquadric,
which defines optimality in this case. While the authors
propose to use an additional term in the loss function ex-
pressing a preference for superquadrics with smaller surface
area, we have found that this negatively affects performance
on objects that could otherwise be recovered accurately, as
it biases the solution towards spherical parameterizations.
Instead, we introduce a second loss term that minimizes
the distance of points on the superquadric surface from the
original mesh surface. The regularization effect can be seen
in Figure 5. Figure 6 highlights the difference our adaption
makes for recovering superquadrics on the YCB objects.
It can be seen that the representation of the cuboid object
remains accurate, while the approximations of objects that
cannot be fitted precisely converge to more representative
superquadric parameterizations.

C. Implicit SDF Representation

In addition to the explicit representations mentioned
above, complex geometries can also be represented implic-
itly. A signed distance function is a continuous mapping
ϕ(x) : R3 → R that projects a 3D point x to its distance to a
surface, where the sign indicates whether the point is inside
(−) or outside (+) the surface. To make this information
available to a RL policy, we evaluate the SDF on a small set
of points. Specifically, we query the distance to the object
surface at the fingertip positions of the robot hand, result-
ing in a 5-dimensional observation (d(xft

1 ,δO), ..., d(xft
5 ,δO)) ,

where xft
i is the position of the i-th fingertip and δO is the

Fig. 6: Superquadrics recovered for YCB objects: Top:
Original EMS algorithm; Bottom: Our regularized version.

object surface. Hence, the agent can perceive the distance
of its fingers to the object surface and is thus implicitly
informed about the geometry it is interacting with.

Computing the signed distance of a set of points to a
high-fidelity mesh is expensive [29], however, and would be
required in every environment at every step of the simulation.
To nevertheless make this observation type feasible for
massively parallel reinforcement learning, we precompute
a discrete voxel-based representation of the SDF for all
object meshes (see Figure 3). Specifically, we create a
200×200×200 grid filling the space [−0.5m, 0.5m]3 around
the object center. This creates a spatial resolution of 5 mm,
which we found to be sufficient in our experiments. When
query points lie outside the volume of the voxel-grid, we
return the result from the closest voxel. With this approach,
the lookup of signed distances to the robot fingertips takes
only 0.31 ms for all 16,384 parallel environments, leading to
negligible impact on the overall training performance. SDF
voxel-grids computed once for an object mesh are stored
permanently to enable fast reloading in future training runs.

D. SDF-based Reward Shaping

Using our SDF-based observation of the distance between
end-effector and object, we introduce a reward term that
incentives the agent to make maximum contact with whatever
object it interacts with. Specifically, we reward minimizing
the distance of the fingertips to the object surface:

rsdf =
1

dt + ϵsdf
, (2)

where dt =
∑

i d(x
ft
i , δO) and ϵsdf is a constant. We

hypothesize that this will help reducing the search space
for the policy, while being unbiased and object-independent,
since no particular position or orientation is imposed for
grasping an object, only that the agent should make contact.

E. Policy Optimization

We use proximal policy optimization (PPO) [30] to learn
the agents, since the algorithm has been show to converge ro-
bustly on problems with high-dimensional action spaces, and



TABLE I: Variations in lifting success rates for different representations of object geometry. For point clouds, the number
after the dash indicates the number of points sampled on the object surface.

Object Success rate

COM SDF BBox SQ PC-32 PC-128 PC-512

007 tuna fish can 0.99± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

013 apple 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

029 plate 0.74± 0.14 0.95± 0.0 0.93± 0.02 0.95± 0.04 0.5± 0.39 0.94± 0.03 0.94± 0.04

032 knife 0.77± 0.07 0.81± 0.07 0.96± 0.02 0.85± 0.1 0.71± 0.02 0.9± 0.02 0.79± 0.06

053 mini soccer ball 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

062 dice 0.65± 0.3 0.85± 0.08 0.95± 0.02 0.94± 0.01 0.55± 0.07 0.86± 0.0 0.6± 0.12

065-a cups 0.99± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

072-a toy airplane 0.93± 0.02 0.99± 0.01 0.99± 0.01 0.97± 0.03 0.95± 0.01 0.99± 0.0 0.96± 0.02

073-g lego duplo 0.9± 0.01 0.97± 0.01 0.99± 0.0 0.96± 0.02 0.95± 0.01 0.99± 0.0 0.98± 0.01

077 rubiks cube 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

All 78 YCB objects 0.95± 0.02 0.96± 0.01 0.97± 0.01 0.96± 0.02 0.92± 0.03 0.97± 0.0 0.95± 0.02

make use of the high-performance implementation provided
by Makoviichuk and Makoviychuk [31]. We run 16,384
parallel environments to collect data. After every 32 steps,
we update the policy for 5 epochs on the rollout data with a
batch size of 32,768. All experiments are run on a single
NVIDIA RTX A6000 GPU with 48GB of memory. The
policy is computed by a three-layer fully connected neural
network, as detailed in Figure 4.

IV. EXPERIMENTAL SETUP

We use NVIDIA Isaac Gym [8] as our physics simulator.
The robot consists of a UR5e arm and the Schunk SIH hand,
which features 11 joints, the actuation of which is coupled,
leading to five controllable degrees of freedom (DoF).

A. Observations, Actions, and Rewards

Observations consist of the current pose of the robot hand
and its joint positions as well as a representation of the
object. For targeted picking from cluttered bins, ot represents
the observation of the target object only. Hence, we do not
inform the policy about other objects or the walls of the bin.
In this scenario, a random object in the bin is selected as the
target at the beginning of each episode.

The agent controls the robot via 11-dimensional actions,
representing the desired change in position and rotation of
the hand pose and the controllable DoF positions of the
hand. From the desired pose of the robot hand, we compute
the UR5e joint position targets using the Jacobian transpose
method. The action frequency is 30 Hz.

An episode terminates when the object falls off the table,
is lifted to the target height, or the policy runs out of time
after 300 actions taken. We use the following reward function

to train the lifting policies:

r(st, at) = c1
1

|h−∆ht|+ ϵh
+c21(∆ht ≥ h)+c3rsdf (3)

where ∆ht is the height an object has been lifted by, relative
to its starting position, and h is the target value for ∆ht.
The first two reward terms incentivize the policy to lift the
object up, while the last term reduces the search space by
encouraging the agent to make contact with the object. We
set h to 0.2 m for our experiments and weigh the terms with
c1 = 0.5, c2 = 5000, and c3 = 1, where ϵh = 0.02 and
ϵsdf = 0.025. We evaluate the success of a policy rollout by
whether an object was raised by h, whereupon the episode
terminates. We report the mean and standard deviation of
three seeds for all experiments.

B. Object Dataset

We consider the problem of grasping and lifting objects of
variable shape and size. To this end, we evaluate our policies
on all 78 YCB object models [32] for which laser scans
exist. The weights of all objects are set to realistic values and
their inertia tensors are computed from the geometry in Isaac
Gym. The objects are spawned in random poses and then
dropped onto a table to create realistic initial configurations.

V. RESULTS

We evaluate the impact of geometry-awareness and the
type of object representation on the performance of RL-
based grasping policies. Further, we analyze the effect of
our geometry-aware shaped reward on the learning behavior.
Finally, because we observe that PPO is able to learn robust
grasping policies that naturally exhibit useful behaviors such
as pre-grasp manipulation and re-grasping, we test whether



TABLE II: Sample efficiency of different object represen-
tations measured by the number of environment steps (in
million) and the runtime in minutes required to reach success
rate thresholds.

Object
repr.

90 % 95 %

Steps Runtime [min] Steps Runtime [min]

COM 149± 30 47± 9 550± 161 116± 34
SDF 134± 5 72± 3 276± 51 152± 28

BBox 165± 8 69± 3 274± 44 127± 23
SQ 178± 18 58± 6 436± 52 220± 26

PC-32 196± 15 52± 4 474± 170 178± 63
PC-128 173± 4 47± 2 232± 1 65± 1
PC-512 219± 19 62± 6 277± 12 87± 4

our method can be straightforwardly applied to picking
objects from cluttered bins.

A. Role of Object Representation

In the following, we discuss the role of object repre-
sentations in learning grasping policies. We compare the
performance that the different representations achieve during
training both in terms of sample efficiency and final per-
formance to capture the strengths and weaknesses of both
succinct and expressive representations.

Table I reports the final test success rate, both overall and
for specific objects, after training for a total of 500 epochs,
where each epoch consists of 32 steps in 16,384 parallel envi-
ronments. It can be seen that the geometry-independent poli-
cies provide a very strong baseline, even for grasping objects
with significantly different shapes and sizes. Nevertheless,
we were able to demonstrate a performance advantage from
geometry awareness. Especially for very small objects, such
as the dice, or objects far from cubic shape, such as the plate
or knife, geometry-awareness enables learning of specific
grasping strategies. While observations of the distance of the
fingertips from the object surface learn more quickly, their
final performance falls short of that reached via bounding
boxes or point clouds. Bounding box representations showed
strong final performance while maintaining high convergence
speed. They introduce the geometric information necessary to
learn a proficient object-specific policy for the studied task.
Superquadrics reach a final performance just short of the
bounding box policies. It should be noted that superquadrics
subsume the cuboid representation of objects via bounding
boxes. While they are in principle strictly more expressive,
using superquadrics introduces the added challenge of fitting
them to a given object mesh. While they are able to fit many
common objects precisely, superquadric representations may
be misleading for objects that cannot be approximated well.
Despite our efforts to ensure that meaningful superquadric
parameterizations were recovered for all objects, the resulting
policies performed worse overall than the bounding box
policies. For point cloud-based observations, we encountered
a strong dependence of performance on the number of
sampled points. For only 32 points, this observation type
did not benefit the policy and actually leads to a reduction

Fig. 7: Performance gains of geometry-aware (BBox) policy
over the COM baseline. While there are little to no im-
provements for cubic or spherical objects of average extent,
significant performance improvements can be achieved for
objects of irregular shape and size. Visualization inspired by
Huang et al. [18].

in final performance, compared to the geometry-independent
baseline. As more points are sampled, training performance
improves, but speed of convergence goes down. We found
the best trade-off to be at 128 points sampled per object,
resulting in a policy that converges quickly and to the shared
highest overall performance.

Table II reports the number of samples required for the
policies to achieve an average success rate of 90 % or 95 %
across all objects during training. It can be seen, that the pro-
posed implicit representation of object geometry via signed
distances reaches the success rate threshold of 90 % first.
The representation of object via 128 sampled points already
outperforms all others when it comes to reaching a success
rate of 95 %. Learning from point clouds with only 32 sam-
ples does not adequately capture object geometry, resulting
in unstable training performance and thus significantly worse
performance compared to the other point cloud runs. While
the geometry-agnostic representation by the object’s center
of mass is able to reach the first threshold quickly, improving
performance above 90 % becomes challenging, given the
limited information available.

While the gains achieved by incorporating object shape
may seem minor in terms of the success rate average
across the entire object set, it is important to note that the
COM baseline works very well for the majority of objects
studied. The most interesting comparisons can be made for
objects of irregular shape and size. We find that geometry-
awareness provides significant improvements for these object
types where a universal, object-independent strategy fails.
Figure 7 shows this performance gain for specific objects.
It highlights the correlation of performance gained through
shape-awareness and object irregularity. The dice, for which
the biggest improvement can be made is the smallest object
in the entire dataset. The fork and knife, which also profit



Fig. 8: Average success rate achieved during training with
different reward functions.

significantly from shape-awareness, have some of the largest
aspect ratio of their extent along the three principal axes.

B. SDF-based Reward Shaping

Next, we benchmark our proposed SDF-based reward
component against two ablations. The comparative training
performance is shown in Figure 8.

Not rewarding the policy based on the position of its
end-effector relative to the object, i.e. setting c3 = 0 in
Eq. 3, leads to a drastic deterioration in performance, as
most transitions do not receive a meaningful reward signal,
which hinders learning progress. In a second ablation, we
replace the distance of the fingers to the object surface by
their distance to its center of mass. This represents a naive
formulation of our contact-inducing reward. The results show
that this leads to accelerated learning, since the agent is
encouraged to move its hand close to the object. However,
this simplification introduces bias in how to grasp an object,
motivating the policy to always reach for the center of mass.
Especially for larger or more irregularly shaped objects,
this strategy becomes infeasible. Consequently, the COM-
based reward shaping performs inferior to our proposed SDF-
based reward both in terms of sample efficiency and final
performance. Thus, we can confirm that the novel SDF-
based reward induces the desired effect of guiding the search
effectively, while being agnostic to how an object is grasped
by the policy. This leads to faster convergence and improved
final performance when grasping the YCB objects.

C. Application to Cluttered Bin-Picking

To analyze whether the interactive policies can utilize pre-
grasp manipulation and regrasping to solve more demanding
tasks, we apply our method to targeted picking from cluttered
bins. To initialize a scenario, we drop five randomly chosen
YCB objects into a bin. The agent is tasked to retrieve a
specific object from this cluttered bin. We provide the policy
with the same information as for the unobstructed grasping
of objects lying on the table. Hence, only proprioceptive
measurements of the robot’s state and the state of the target

Fig. 9: Strategies learned for targeted bin picking: (a) The
agent lifts the tiny airplane part by sliding it up the near
wall; (b) The tomato soup can is initially in a position that
is difficult to reach. Through continuous manipulation, the
policy succeeds in bringing it into an upright pose from
which it can be grasped.

object are included in the observation. We represent the target
object via its bounding box, since stong performance was
obtained for this low-dimensional observation type in the
single object case. The trained policy achieves a success
rate of 0.85 ± 0.02, averaged over all objects. When we
increase task difficulty by dropping ten random objects in
the bin, the same policy still achieves a success rate of
0.81± 0.04, underlining the robustness of the strategies that
have been learned. Interesting behaviors that emerged in
this setting are shown Figure 9. They include extended pre-
grasp interactions to reorient objects and the utilization of
environmental constraints, such as the bin walls.

Naturally, the policy cannot reach quite the same perfor-
mance as for the single object case. Nevertheless, the results
show that our method is able to learn a proficient controller
even for this challenging setting. This approach can serve as
a strong baseline for future work on targeted picking from
cluttered bins that explicitly takes the context into account.

VI. CONCLUSIONS AND DISCUSSION

Our work showed that regular on-policy optimization
can train a single agent that is able to grasp various ge-
ometrically diverse objects. We confirm that learning with
shape-independent observations can bring about a univer-
sal strategy that achieves strong performance. Nevertheless,
simple geometry-conditioned observations can boost the per-
formance significantly for objects of irregular shape and
size, leading to more generally capable policies. Basic ob-
servations such as bounding boxes proved sufficient for this
task and offered a strong trade-off between expressiveness
and compactness in our experiments. Point clouds showed
very strong training performance when the right number of
surface points is sampled. While a higher number of sampled
points requires increased training times, combining rein-
forcement learning with a pre-trained point-cloud encoder
might alleviate this issue and presents an interesting avenue
for future work. Since the learned agents exhibit robust
interactive grasping strategies, we evaluated the performance
of our framework for the unstructured scenario of retrieving a
specific object from a cluttered bin. Even without any context



information we were able to learn proficient interactive
policies for this task that reorient objects and utilize envi-
ronmental constraints. Our framework can therefore serve as
a proficient baseline for future work that explicitly considers
object interactions and environment representations. Robust
inference of succinct object descriptions from data available
in the real world, such as RGB-D images, remains an open
problem and is left to future work.

Furthermore, we introduced a novel geometry-aware re-
ward function that benefits both the speed of convergence as
well as final performance of the interactive grasping policies.
Minimizing the distance between the end-effector and object
surface proved to be an essential addition, as it effectively
guides the search without imposing limitations on the specific
grasping strategy the policy finds. We demonstrated that
signed distances required to evaluate this reward can be
approximated efficiently, making it readily applicable for
high-performance RL. Hence, this formulation of the reward
can potentially be a valuable addition for reinforcement
learning of grasping policies in general, for example, for
different gripper morphologies or to promote stable grasps
when using tools.
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