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Abstract—Autonomous robots that interact with their environ-
ment require a detailed semantic scene model. For this, volumet-
ric semantic maps are frequently used. The scene understanding
can further be improved by including object-level information
in the map. In this work, we extend a multi-view 3D semantic
mapping system consisting of a network of distributed smart
edge sensors with object-level information, to enable downstream
tasks that need object-level input. Objects are represented in the
map via their 3D mesh model or as an object-centric volumetric
sub-map that can model arbitrary object geometry when no
detailed 3D model is available. We propose a keypoint-based
approach to estimate object poses via PnP and refinement via ICP
alignment of the 3D object model with the observed point cloud
segments. Object instances are tracked to integrate observations
over time and to be robust against temporary occlusions. Our
method is evaluated on the public Behave dataset where it shows
pose estimation accuracy within a few centimeters and in real-
world experiments with the sensor network in a challenging
lab environment where multiple chairs and a table are tracked
through the scene online, in real time even under high occlusions.

Index Terms—Object-level mapping, semantic scene under-
standing, intelligent sensors and systems, distributed perception.

I. INTRODUCTION

Semantic scene understanding is an important prerequisite
for many autonomous robotic tasks, like object manipulation
or collision-free navigation. For this, the environment is cap-
tured with various sensors and a semantic map is created
from the interpreted measurements. In this work, we extend a
system for 3D semantic scene perception from prior work [1],
consisting of distributed smart edge sensors, with object-
level information. While the scene model from the previous
work only comprises an allocentric semantic map without any
information about object instances, we now represent objects
in the map via their 3D mesh model. If no detailed 3D model
is available, we create an object-centric volumetric sub-map
that can model arbitrary object geometry. For this, we fuse
the semantic percepts of four smart edge sensors with RGB-
D cameras. The sensor measurements are interpreted locally,
on-device, by deep convolutional neural networks (CNNs) and
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Fig. 1. Object-level 3D semantic mapping: (a) object detection and keypoint
estimation for the chair and table class; (b) semantic segmentation from an
exemplary smart edge sensor view (Cam 2); (c) 3D scene view with five chairs
and a table, represented by their resp. 3D mesh and colored by instance ID,
in the allocentric semantic map [1] together with human keypoint poses [7].

the semantic object-level information is streamed to a central
backend, where object detections from different views are
fused and tracked through an allocentric scene model. We em-
ploy a keypoint-based approach for object pose estimation [2]
using CNNs for keypoint detection trained only on synthetic
data obtained through randomized scene generation [3], [4].
Object poses are recovered from keypoint detections via a
variant of the PnP algorithm [5] in each camera view and
fused on the backend via weighted interpolation. We evaluate
our method on the public Behave dataset [6], containing
various scenes with human-object interactions, and in real-
world experiments with the sensor network in a challenging,
highly cluttered and dynamic lab environment.

Fig. 1 illustrates our approach, showing object detections,
keypoint estimation for the chair and table class, and semantic
segmentation from an exemplary smart edge sensor view
together with the fused 3D semantic scene model with five
chairs and a table represented by their respective 3D mesh
tracked in the allocentric semantic map. To summarize, the
main contributions of this paper are:
• A novel object-level 3D semantic mapping approach,

fusing semantic information from multiple smart cameras,
• a keypoint-based object pose estimation approach trained

solely on synthetic data, and
• quantitative evaluation of the pose estimation and geom-

etry representation accuracy on the public Behave dataset
and real-world experiments in a highly cluttered, dynamic
lab environment.
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II. RELATED WORK

Semantic Mapping: Different approaches exist in the
literature to create three-dimensional maps to be used for
localization and navigation of mobile robots. A common
approach are occupancy grid maps. Octomap [8], a widely-
used 3D occupancy mapping framework, uses an efficient
octree-based data structure to save occupancy probabilities
of the environment divided into discrete volume elements
(voxels). A second popular map representation are truncated
signed distance functions (TSDFs). A TSDF map saves the
distance to the closest surface in each voxel. Voxblox [9] is a
commonly-used framework for building TSDF-based maps.

The above works, however, represent only geometry and
don’t contain any semantic information about the environment.
To extend geometric 3D maps with semantic information,
Stckler et al. [10] fuse probabilistic segmentations from mul-
tiple RGB-D camera perspectives into a voxel-based 3D Map.
MaskFusion [11] is an RGB-D simultaneous localization and
mapping (SLAM) system that can reconstruct and track mul-
tiple objects in a scene without knowing prior models of the
objects. The constructed map uses surface elements (Surfels)
to represent surfaces and Mask-RCNN [12] is used to obtain
semantic instance segmentation of the RGB images. MID-
Fusion [13] uses an octree-based TSDF-map to implement
RGB-D SLAM. On top of the scene geometry, RGB-color,
semantic classes, and a foreground probability are represented
in the map. Voxblox++ [14] uses both geometric and semantic
instance segmentation to build a semantic map with object-
level information for static scenes. With TSDF++ [15], Grin-
vald et al. proposed to create TSDF sub-volumes for object
instances. The object sub-volumes are included in an allocen-
tric volumetric map that can reference multiple objects at each
location. Thus, temporally occluded objects or surfaces remain
in the map and do not need to be reconstructed anew when
being visible again and dynamic scenes can be represented.
The above works use a single, moving camera while we
propose to fuse percepts from multiple static viewpoints.

Recently, Bultmann and Behnke [1] proposed an approach
for fusing semantic segmentations from multiple RGB-D smart
edge cameras to build an allocentric 3D semantic map. To-
gether with the semantic map, 3D human poses are estimated
in real time [7] and represented in the scene model. The
camera images are processed locally, on the smart edge sensor
boards, using embedded deep learning inference accelerators.
Only semantic information is streamed over a network to a
central backend. The raw images remain on the sensor board,
significantly reducing the required communication bandwidth
and providing scalability to a large number of sensor nodes.
The movement of dynamic objects is accounted for in the
scene model via ray-tracing, enabling to remove freed voxels.
The ray-tracing update, however, reacts gradually and slowly
to object movement and does not implement any instance-level
object representation. Hence, object trajectories in the scene
cannot be reconstructed.

In this work, we propose to represent objects in the map

by their 3D mesh model or as an object-centric volumetric
sub-map and robustly track their movement over time.

Keypoint-based Pose Estimation: For keypoint-based
pose estimation, first, distinct points on the respective object
model must be defined. These keypoints are then detected in
the camera image and the object pose is recovered via a variant
of the PnP algorithm [5]. The assignment of detected keypoints
to object instances is commonly implemented in two different
manners: bottom-up or top-down. Bottom-up approaches first
detect keypoints and then assign them to object instances [16].
Top-down approaches, on the other hand, first employ an
object detector and then estimate keypoints on the image crop
of each object [17]. While the top-down approaches have the
risk of early commitment due to errors in object detection and
scale badly with a higher number of detected objects, bottom-
up approaches can wrongly associate keypoints of different
object instances and have difficulties handling objects of small
scales. Often, top-down approaches show higher accuracy
but slower speed than bottom-up approaches [16]. Zappel
et al. [2] used the bottom-up OpenPose approach [16] for
keypoint detection on objects of the YCB-V dataset [18]. The
6 DoF object poses were recovered using the PnP-RANSAC
Algorithm [5], [19] to calculate the object’s translation and
rotation in the camera frame from 2D–3D correspondences of
keypoints on rigid objects. Bultmann and Behnke [1], [7] used
a top-down approach for human pose estimation on embedded
smart edge sensors employing the CNN architecture of Xiao
et al. [17] with an efficient MobileNet V3 [20] backbone.
3D human poses are recovered from 2D keypoint detections
via multi-view triangulation. In this work, we adopt the top-
down approach for object keypoint detection on embedded
smart edge sensors and implement object pose estimation via
the PnP-RANSAC Algorithm. Pose estimates from multiple
sensor views are fused via weighted interpolation.

III. METHOD

Our method for object-level semantic mapping uses multi-
view data from N smart edge sensors with RGB-D cameras.
The sensor hardware comprises an Nvidia Jetson NX em-
bedded compute board and an Intel RealSense D455 RGB-
D camera, as introduced in [1]. The camera poses in world
coordinates are assumed to be calibrated beforehand [21].
Fig. 2 gives an overview of our proposed pipeline for object-
level mapping. In each sensor view, point clouds for the con-
sidered object classes are extracted via semantic segmentation
of the RGB image and projection of the depth data [1]. The
object point clouds are then geometrically segmented via the
Euclidean cluster algorithm and a statistical outlier filter [22]
to obtain a point cloud segment per detected object instance.
Simultaneously, object keypoint detection is performed on the
RGB images and 6 DoF object poses are recovered via the
PnP-RANSAC Algorithm [2] using 2D–3D correspondences
between detected image keypoints and 3D object model key-
points. We assume 3D models of the considered object classes
to be available as prior information on the sensor boards and
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Fig. 2. Overview of the object-level mapping pipeline: Smart edge sensors generate semantically and geometrically segmented point clouds. Simultaneously,
3D object poses are estimated via PnP using 2D keypoint detections. With the results, we calculate information about each observed instance. On the backend,
observations from multiple views are fused and objects are tracked over time.

the backend. The keypoint-based pose estimates are then asso-
ciated to point cloud segments via the closest distance between
object keypoints and their nearest neighbor in the respective
point cloud segment. The pose estimate is further refined via
ICP alignment of the object model, initialized with the PnP
pose estimate, with the corresponding point cloud segment.
Various semantic object properties are calculated from the
associated point cloud segments and keypoint detections.

The semantic object information is streamed to a central
backend, where the observations from multiple smart edge
sensors are fused. We discern two different cases, depending
on the available network bandwidth and the used object
representation in the scene model: The transmitted object
information always comprises the pose estimate, the mean
distance between object keypoints and nearest neighbors in the
associated point cloud segment, and the statistical distribution
of the points in the cluster, visualized as a covariance ellipsoid
anchored at the object model origin. Objects are represented
in this case by a 3D keypoint skeleton with an associated point
distribution ellipsoid or by their 3D mesh model.

If a 3D mesh model is not available, objects are represented
by an object-centric volumetric sub-map, which can model
arbitrary geometric shapes. For this, the point cloud segments
are additionally transmitted to the backend, requiring higher
network bandwidth (cf. Sec. IV-B).

A tracking module enables to robustly follow object trajec-
tories through the scene and a clean-up step removes object
hypotheses that moved out of view or were falsely initialized
from noisy measurements.

A. Keypoint-based Object Pose Estimation

For keypoint-based pose estimation, keypoint locations need
to be defined at distinct points of the object model. We perform
keypoint estimation for the chair and table object classes in
this work and aim to represent different types of chairs and
tables with the defined keypoints. For this, we define Lchair =
6 keypoints on chairs: four keypoints on the corners of the
seating and two keypoints at the top of the backrest of a chair.
These keypoints can be consistently defined for most types of

Fig. 3. Frames from two training scenes with corresponding ground truth
keypoint annotations for the table or chair class, respectively. Background
textures and object models are randomly selected.

chairs and have less variance in appearance and geometry than,
e.g., armrests or legs of chairs. Similarly, we define Ltable =
8 keypoints on tables: four keypoints on the corners of the
tabletop and four on the points of the table legs (cf. Fig. 3).

We train a deep neural network for keypoint detection on
RGB images for chairs and tables, respectively, using the
network architecture of Xiao et al. [17] with a MobileNet V3
backbone [20] that proved efficient on embedded hardware in
prior works [1], [7]. As we follow a top-down approach for
keypoint estimation, an object detector is required prior to the
keypoint estimation step, to provide bounding boxes used to
extract the input object crops. For this, we employ a MobileDet
detector [23] trained on the COCO dataset [24], as in [1].

To avoid costly manual annotation of training data and to
facilitate generalization to different object classes, we only
use synthetic training images for the keypoint estimation. We
employ the sl-cutscenes framework [4], an extension of the
stillleben framework [3], for randomized photorealistic indoor
scene generation with physically interacting objects. We create
a dataset of ∼13k training and ∼2.5k validation images per
object class where between three and six randomly selected
chairs or tables move around a room with randomly selected
textures and background objects. Fig. 3 shows samples of the
generated training images.

The detected object keypoints are used in a second step
to recover the object’s translation and rotation in the camera
coordinates via the PnP-RANSAC algorithm, as proposed by
Zappel et. al [2]. For this, we assume a 3D model of the
specific type of chair or table visible in the respective scene
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Fig. 4. 2D keypoint detections and corresponding 3D poses calculated with PnP-RANSAC and ICP refinement. Top-row: keypoint detections in four different
perspectives of a scene from the Behave dataset [6]. Bottom-row: object pose estimation and associated point cloud segments. For (a)–(c), the method was
able to estimate a pose for the object, while no valid pose estimate and data association could be obtained for perspective (d) due to the high occlusion.

to be available and exploit the correspondences between 2D
image keypoint and keypoints defined on the 3D object model.
A 3D object skeleton in camera coordinates is then obtained
by transforming the object model keypoints with the estimated
PnP pose. As we consider chairs and tables standing or moving
on the ground plane, the PnP pose estimate is further projected
to the ground plane (xy-plane in allocentric coordinates), to
obtain a stable and plausible object pose, compensating for
noise or outliers in the keypoint detections.

In parallel to the keypoint detection on RGB images,
point cloud segments of the observed objects are obtained
from the depth data via semantic and geometric segmentation
(cf. Fig. 2). To fuse the keypoint-based pose estimate with
the point cloud observations, 3D object skeletons are assigned
to point cloud segments in a data association step. For each
frame, we obtain a set of 3D keypoint skeletons K and a set of
point cloud segments S of the corresponding semantic class.
For each segment sj ∈ S , we find the corresponding object
skeleton ki ∈ K with the minimum average distance between
3D object keypoints xl,ki

and their nearest neighbor in the
respective point cloud segment yl,sj :

dkps-segm (ki, sj) =
1

L

L∑
l=1

∥∥xl,ki
− yl,sj

∥∥ , (1)

kmin = arg min
∀ki∈K

(dkps-segm (ki, sj)) . (2)

Data association is performed in a greedy manner, starting
with the largest point cloud segment, and associations are
valid only when the obtained average keypoint to nearest point
cloud neighbor distance dkps-segm(kmin, sj) is below a threshold
τdist. Segments and keypoint detections without a valid data
association are discarded.

Lastly, to further improve the estimated object pose, the
keypoint-based PnP pose estimate is refined via ICP alignment
with the point cloud data. The object model point cloud,
sampled from the 3D object mesh model and initialized with
the PnP pose, is aligned with the associated observed point
cloud segment, resulting in the final object pose estimate.

The semantic object information, comprising the refined
pose estimate, the data association distance dkps-segm(kmin, sj),
and the statistical distribution of the points in the cluster, is
then streamed to a central backend, where object observations
from multiple sensor perspectives are synchronized and fused.
If the sub-map representation is chosen on the backend (cf.
Sec. III-B), the associated point cloud segments are addi-
tionally transmitted to the backend, significantly increasing
the used network bandwidth (cf. Sec. IV-B). Fig. 4 shows
object keypoint detections and resulting pose estimates with
associated point cloud segments for an exemplary scene of the
Behave dataset [6] with the chair object class.

B. Multi-view Object-level Semantic Mapping

A central backend receives semantic object pose and shape
information from multiple smart edge sensor views. The
data streams are software-synchronized according to their
timestamps. Fused object pose estimates are obtained by
i) transforming the object pose estimates of individual cameras
to allocentric coordinates, using the known extrinsic camera
calibration, and ii) weighted interpolation between the sensor
views. The interpolation weights are inversely proportional to
the data association distance (Eq. 1), giving the highest confi-
dence to perspectives where the keypoint-based pose estimate
is most consistent with the point cloud segments. Spherical
linear interpolation of quaternions is used for the orientations.



(a) (b)

Fig. 5. Fusion of keypoint poses and point cloud variance: (a) fused keypoint
skeleton and the point cloud variance from smart edge sensor observations
(cf. Fig. 4); (b) object mesh transformed with the fused pose estimate. Merged
point cloud segments are shown as a reference in (a).

(a) (b)

Fig. 6. Sub-map update with fused point cloud data: The point measurements
of the merged point cluster (a) are integrated into a volumetric sub-map (b).
Simultaneously, the sub-map is updated with the estimated object pose.

The point segment distribution variance parameters are aver-
aged using the same interpolation weights. Observations from
at least one sensor view are required for a valid object instance.
The fusion of multiple perspectives increases the robustness
and accuracy of the pose and shape estimation. Fig. 5 shows
the fused pose estimate using the individual poses from the
three valid perspectives of Fig. 4.

If the sub-map representation is used for objects in the
allocentric map, an object-centric sub-volume is maintained
for each object instance, using a sparse voxel grid data
structure, similar to the allocentric semantic map [1]. Its size
and resolution are chosen according to the represented object,
independent of the resolution of the allocentric map. We use a
voxel edge length of 5 cm in our experiments. To initialize and
update the object sub-map, the point cloud segments associated
to the detected object instances are additionally transmitted
to the backend. In a first step, point cloud segments from
individual views are transformed to allocentric coordinates,
using the camera extrinsics, and concatenated to form a
merged object point cluster. The merged object point cluster is
then transformed into local object coordinates using the fused
object pose estimate and integrated into the object-centric sub-
map. Each point measurement increments the occupancy count

(a)

(b)

(c)

(d)

Fig. 7. 2D keypoint detections for table class from two perspectives of Behave
dataset (a, b); fused 3D pose represented through (c) mesh or (d) submap.

of its corresponding voxel. Once the occupancy is above a
threshold τocc, the voxel is considered occupied. The updated
local sub-map is displayed at the estimated object pose in
the allocentric scene model. Fig. 6 illustrates the sub-map
update with the fused point cloud cluster from the three valid
perspectives of Fig. 4. Fig. 7 shows 2D keypoint detections
and fused 3D pose estimate for a sample scene of the Behave
dataset with the table object class.

Object instances are tracked over time on the backend via
data association using a constant velocity model. The position
of known objects is predicted using a moving average velocity,
computed over a fixed time window of past positions, and
the passed time ∆t since the last synchronized frame-set was
received from the sensors. For each observed object instance,
the nearest neighbor from the tracked object hypotheses is
used, using their predicted position. Data associations are valid
only if the distance between observation and corresponding
track is below a threshold τtrack. For observations with no valid
association, new tracking hypotheses are initialized. In a clean-
up step, object hypotheses that have not been observed for a
longer time are removed.

IV. EVALUATION

We evaluate our approach on parts of the public Behave
dataset [6]. The dataset comprises 321 video sequences total-
ing ∼15k frames, captured from four Kinect RGB-D cameras
at a frame rate of 1 Hz. In the different scenarios, eight
different persons interact with 20 different objects in five
different environments. For each frame, annotations of the
camera poses, 2D object and person segmentation masks, and
pseudo-ground-truth object poses are available.

A. Accuracy of Pose and Geometry Estimation

We evaluate the accuracy of the proposed keypoint-based
pose estimation with ICP refinement on five sequences of



TABLE I
POSE EVALUATION FOR SCENARIOS WITH GROUND-TRUTH

SEGMENTATION: TRANSLATION ERROR (CM) AND ROTATION ERROR (◦).

Scenario Type Etrans σtrans Erot σrot

chairblack
hand

PnP only 5.87 3.60 4.48 3.98
PnP + ICP (local) 3.40 3.08 3.33 2.78

PnP + ICP (backend) 2.88 3.11 3.52 2.92

chairblack
sit

PnP only 5.23 2.46 5.64 6.97
PnP + ICP (local) 5.03 2.70 5.74 6.95

PnP + ICP (backend) 6.16 2.38 6.24 6.78

chairwood
hand

PnP only 10.79 6.21 10.09 11.14
PnP + ICP (local) 6.37 4.68 8.23 11.37

PnP + ICP (backend) 6.35 4.73 6.16 8.73

chairwood
sit

PnP only 13.17 5.03 7.14 6.23
PnP + ICP (local) 5.50 1.31 5.44 5.98

PnP + ICP (backend) 5.30 1.53 5.38 5.73

tablesquare
move

PnP only 12.56 7.81 17.51 11.65
PnP + ICP (local) 7.82 8.29 3.37 3.69

PnP + ICP (backend) 8.01 8.19 3.93 6.08

TABLE II
POSE EVALUATION FOR SCENARIOS WITH ONLINE SEGMENTATION AND

DETECTION: TRANSLATION ERROR (CM) AND ROT. ERROR (◦).

Scenario Type Etrans σtrans Erot σrot

chairblack
hand

PnP only 7.48 9.22 7.27 8.49
PnP + ICP (local) 6.99 8.23 6.50 10.05

PnP + ICP (backend) 7.42 7.93 6.75 9.53

chairblack
sit

PnP only 8.09 6.49 11.34 13.02
PnP + ICP (local) 7.54 6.48 8.71 8.58

PnP + ICP (backend) 8.18 6.53 10.79 11.34

chairwood
hand

PnP only 9.05 6.05 10.52 15.37
PnP + ICP (local) 6.47 4.42 10.51 15.16

PnP + ICP (backend) 7.36 4.04 8.32 14.09

chairwood
sit

PnP only 5.42 3.40 8.52 4.63
PnP + ICP (local) 5.38 3.04 6.96 3.37

PnP + ICP (backend) 5.50 3.17 6.29 2.56

tablesquare
move

PnP only 15.76 11.12 18.34 11.39
PnP + ICP (local) 8.65 6.85 6.83 8.95

PnP + ICP (backend) 8.95 6.51 7.52 9.19

the Behave dataset, comprising ∼1k frames, containing in-
teractions of a person with two different chair and one table
models. We use the 3D mesh models of the chairs and
table provided by the dataset as the basis for the PnP pose
estimate. We calculate translation and orientation error w.r.t.
to the pseudo-ground-truth object poses from the dataset,
using the quaternion geodesic distance for the orientation, and
compare the PnP-only raw pose estimate with the proposed
ICP refinement in Tab. I and Tab. II. We discern two different
options for the pose refinement via ICP alignment: refinement
locally on the sensor boards, as described in Sec. III-A, and
refinement with the merged point cluster on the backend. The
latter requires transmitting the point cloud segments.

Tab. I reports the mean and standard deviation of the
pose error when using the ground-truth point cloud segments
and object boxes from the dataset as input to our keypoint
estimation CNNs. The evaluation thus focuses on the keypoint-
based pose estimation part, excluding other error sources

(a)

(b)

Fig. 8. Mesh backprojected into the camera images: The object model mesh
(a) transformed with the estimated object pose is rendered in each camera
view (b). The mesh is a 3D scan of the used object. Therefore, even fine
elements align well.

(a)

(b)

Fig. 9. Sub-map backprojected into the camera images: Each voxel of the sub-
map (a) is backprojected into the individual camera views (b). Because of the
discrete resolution, fine elements like the legs are not accurately represented.

present in real-world input data. The ICP-based pose refine-
ment significantly improves the translation error in all cases
and the orientation error in all but one scenario. There are only
little differences in accuracy between the refinement locally on
the sensor board and on the backend.

Tab. II reports the mean and standard deviation of the pose
error when using online segmentation and object detection
together with our keypoint estimation CNNs and thus evaluates
the method’s performance in real-world conditions. The ICP-
based refinement again significantly decreases both translation
and orientation errors in all scenarios. The ICP-refinement
locally on the sensor boards consistently performs better
w.r.t. the translation error than refinement on the backend.
Therefore, we decide to use the local ICP refinement for
further evaluation and real-world experiments. Furthermore,
in this case, the transmission of the point cloud segments
is not necessary, when no volumetric sub-maps are needed,
significantly decreasing the required network bandwidth (cf.
Sec. IV-B).

We further evaluate the pose and geometry estimation accu-
racy by calculating the Intersection over Union (IoU) between
the estimated object models reprojected into the individual
camera views and the respective ground-truth segmentation
mask from the dataset annotations. The reprojection of the 3D
object model into the camera views is illustrated in Fig. 8



t = 0 t = 12 s t = 38 s

Fig. 10. Scenario 1: Two persons interacting with five chairs and a table, colored by instance ID, in our cluttered lab environment. Four chairs and the table
are being moved. The purple chair is standing still.

TABLE III
IOU SCORES FOR SCENARIOS WITH GROUND TRUTH SEGMENTATION AND

PNP + ICP REFINEMENT ON SENSOR BOARDS.

Cam 1 Cam 2 Cam 3 Cam 4 Total

Scenario Type EIoU σ EIoU σ EIoU σ EIoU σ EIoU

chairblack
hand

Mesh 0.77 0.08 0.81 0.08 0.78 0.08 0.57 0.08 0.73
Submap 0.61 0.07 0.68 0.09 0.57 0.09 0.54 0.08 0.60

chairblack
sit

Mesh 0.39 0.16 0.55 0.19 0.50 0.13 0.57 0.13 0.50
Submap 0.42 0.12 0.33 0.16 0.46 0.10 0.65 0.09 0.47

chairwood
hand

Mesh 0.62 0.1 0.65 0.09 0.62 0.07 0.69 0.10 0.61
Submap 0.66 0.11 0.63 0.14 0.68 0.12 0.67 0.12 0.66

chairwood
sit

Mesh 0.57 0.13 0.56 0.07 0.57 0.09 0.64 0.16 0.59
Submap 0.61 0.10 0.56 0.11 0.61 0.08 0.54 0.11 0.58

tablesquare
move

Mesh 0.75 0.13 0.75 0.11 0.69 0.11 0.53 0.09 0.68
Submap 0.72 0.14 0.74 0.15 0.78 0.15 0.65 0.15 0.72

TABLE IV
IOU SCORES FOR SCENARIOS WITH ONLINE SEGMENTATION AND
DETECTION AND PNP + ICP REFINEMENT ON SENSOR BOARDS.

Cam 1 Cam 2 Cam 3 Cam 4 Total

Scenario Type EIoU σ EIoU σ EIoU σ EIoU σ EIoU

chairblack
hand

Mesh 0.70 0.10 0.75 0.09 0.68 0.11 0.56 0.11 0.67
Submap 0.55 0.10 0.64 0.08 0.54 0.10 0.56 0.09 0.57

chairblack
sit

Mesh 0.48 0.26 0.50 0.26 0.53 0.27 0.52 0.16 0.51
Submap 0.43 0.13 0.32 0.16 0.41 0.16 0.61 0.11 0.44

chairwood
hand

Mesh 0.56 0.10 0.57 0.11 0.61 0.09 0.65 0.12 0.59
Submap 0.51 0.09 0.49 0.10 0.55 0.08 0.58 0.09 0.53

chairwood
sit

Mesh 0.56 0.14 0.61 0.08 0.55 0.10 0.60 0.12 0.58
Submap 0.43 0.16 0.43 0.10 0.31 0.11 0.33 0.14 0.38

tablesquare
move

Mesh 0.68 0.13 0.68 0.12 0.67 0.09 0.46 0.11 0.62
Submap 0.60 0.10 0.61 0.11 0.69 0.10 0.58 0.14 0.62

and Fig. 9 for the object model mesh and volumetric sub-
map representations, respectively. As the 3D object mesh
originates from an offline 3D scan of the object, it represents
fine structures, such as armrests or legs in high detail. The fine
structures of the chair align well with the images of all four
camera perspectives in Fig. 8, showing high accuracy of the
estimated object pose. The sub-map, on the other hand, has
a discrete spatial resolution and cannot accurately represent

the chair legs. Furthermore, it is affected by noisy point cloud
measurements.

Tab. III and Tab. IV report quantitative results of the
IoU evaluation, using ground-truth and online point cloud
segments and object detections as input, respectively, and
compare the mesh and sub-map object representations. For
a fair comparison between mesh and sub-map, the annotated
image segmentation masks are extended with a 10×10 dilation
kernel to match the discrete 5 cm spatial resolution of the
sub-maps. With ground-truth point cloud segment inputs, the
mesh-based object representation performs better than the
sub-maps in three of five scenarios, averaged over the four
cameras. With online segmentation and detection inputs, the
mesh-based representation performs better or equal in all five
scenarios. The IoU is slightly lower in the real-world scenarios,
accounting for the higher noise in the input data.

B. Real-world Experiments

We further demonstrate the performance of our proposed
method in real-world scenarios in a highly-cluttered, dynamic
environment in three different scenarios. Here, we employ
offline 3D scans of the office chairs and table present in the
environment as object models. Object pose estimation and
geometry update are calculated online, in real time.

Scene Perception in three Scenarios: In Scenario 1, two
persons interact with five chairs and a table in our cluttered lab
environment, as shown in Fig. 10. Point measurements of the
tracked objects are not included in the allocentric map of the
static geometry. The chairs and table are represented by their
respective prior 3D mesh model transformed to the estimated
pose. The movement of the objects through the scene is tracked
online, in real time.

In Scenario 2 (Fig. 11), a person is sitting on a chair,
occluding it partially. The estimated object models remain
stable also under high occlusion and interactions between
persons and objects are explained in a physically plausible
manner.

In Scenario 3 (Fig. 12), a chair is being moved while being
occluded by a sitting person. The movement of the object
through the scene can be tracked by our proposed approach
even under high occlusions.



(a) Mesh (b) Sub-map

Fig. 11. Scenario 2: A chair being occluded by a sitting person. The pose
estimate and geometry representation remain stable under high occlusion and
interaction between person and object is explained in a physically plausible
manner by the scene model.

(a) Mesh (b) Sub-map

Fig. 12. Scenario 3: The yellow chair is being moved (from top-row to
bottom) while being occluded by a sitting person. The object movement can
be tracked consistently despite the occlusion.

Network Bandwidth: We evaluate the required commu-
nication bandwidth for the different object representations.
Object detection and tracking run at an update rate of 1 Hz in
our sensor network. The semantic object properties, consisting
of object pose, point segment variance, and data association
score amount to only 84 Bytes per detected object instance,
requiring very low network bandwidth. The object model and
keypoint definitions are a-priori known on both backend and

sensors and need not be transmitted during online operation.
The required network bandwidth significantly rises when using
the sub-map representation, as raw point cloud segments are
transmitted from sensors to backend for each detected object.
A point cloud segment of an average size of 250 points
amounts to ∼9 kB of transmitted data.

V. CONCLUSIONS

In this work, we extended a framework for multi-view allo-
centric semantic mapping by a smart edge sensor network [1]
with object-level information, using different object represen-
tations. Our method enables pose estimation and tracking of
dynamic objects through the static scene geometry. Objects
thereby are represented via an a-priori known 3D mesh model
or a volumetric sub-map that is learned online. Viewpoints
of multiple static smart edge sensors are fused on a central
backend. Only a few semantic object properties, such as
estimated pose and point measurement distribution variances
are transmitted from the sensors to the backend, requiring
little network bandwidth. Only when volumetric sub-maps
are required on the backend, the raw point cloud segments
associated to object instances are additionally transmitted,
significantly increasing the network traffic.

The object pose estimation follows a two-stage approach
of keypoint detection and PnP pose estimation. Poses are
further refined using associated point cloud segments via
ICP alignment. As the keypoint detection CNNs are trained
only on synthetic data, the method can easily be extended to
different object classes. We quantitatively evaluate the pose
estimation accuracy of our approach on the public Behave
dataset, showing pose errors below 9 cm and 9° with online
input data processing using lightweight CNN architectures
efficient on the embedded sensor hardware. We demonstrate
the application of our method in a cluttered real-world lab
environment, where multiple chairs and a table are tracked
through the scene online, in real time even under high occlu-
sions.
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