
November 18, 2019 14:36 WSPC/INSTRUCTION FILE ws-ijhr

International Journal of Humanoid Robotics
c© World Scientific Publishing Company

CAPTURE STEPS:

ROBUST WALKING FOR HUMANOID ROBOTS

MARCELL MISSURA

Humanoid Robots Lab, Institute for Computer Science VI, University of Bonn,
Endenicher Allee 19A, 53115 Bonn, Germany

missura@cs.uni-bonn.de

MAREN BENNEWITZ

Humanoid Robots Lab, Institute for Computer Science VI, University of Bonn,

Endenicher Allee 19A, 53115 Bonn, Germany

maren@cs.uni-bonn.de

SVEN BEHNKE

Autonomous Intelligent Systems, Institute for Computer Science VI, University of Bonn,

Endenicher Allee 19A, 53115 Bonn, Germany

behnke@cs.uni-bonn.de

Received Day Month Year
Revised Day Month Year

Accepted Day Month Year

Stable bipedal walking is a key prerequisite for humanoid robots to reach their poten-

tial of being versatile helpers in our everyday environments. Bipedal walking is, however,

a complex motion that requires the coordination of many degrees of freedom while it is
also inherently unstable and sensitive to disturbances. The balance of a walking biped

has to be constantly maintained. The most effective way of controlling balance are well

timed and placed recovery steps—capture steps—that absorb the expense momentum
gained from a push or a stumble. We present a bipedal gait generation framework that

utilizes step timing and foot placement techniques in order to recover the balance of a
biped even after strong disturbances. Our framework modifies the next footstep location
instantly when responding to a disturbance and generates controllable omnidirectional

walking using only very little sensing and computational power. We exploit the open-
loop stability of a central pattern generated gait to fit a linear inverted pendulum model

to the observed center of mass trajectory. Then, we use the fitted model to predict suit-

able footstep locations and timings in order to maintain balance while following a target
walking velocity. Our experiments show qualitative and statistical evidence of one of the
strongest push-recovery capabilities among humanoid robots to date.

Keywords: Bipedal walking; Push recovery; Humanoid robots; Linear inverted pendulum
model.

1

behnke
Schreibmaschine
Accepted for International Journal of Humanoid Robotics (IJHR), World Scientific, to appear 2020.

November 18, 2019 14:36 WSPC/INSTRUCTION FILE ws-ijhr

2 Missura, Bennewitz, Behnke

1. Introduction

Bipedal walking is an energy efficient and versatile means of locomotion suitable

for covering large distances in a wide variety of terrains. Its principle dynamics can

be likened to an inverted pendulum that is constantly falling and requires active

control in order to remain balanced—for example by stepping into the right place at

the right time. Undoubtedly, it would be of great benefit if we were able to replicate

a walking controller with human-like capabilities. Unfortunately, as easy as walking

comes to us humans, the design of walking controllers for bipedal robots has proven

to be rather challenging. The widespread state of the art covers basic walking on flat

surfaces in the absence of disturbances. Push recovery, walking on rough terrain,

and agile footstep control are active research topics. The dominant strategy to make

a robot walk is to abstract from the complex body and to represent its centroidal

momentum with the inverted pendulum model. In most cases, the mathematically

tractable Linear Inverted Pendulum Model is used to deduce controllers that steer

and balance the pendulum in a way that the Zero Moment Point—the assumed pivot

point of the inverted pendulum—stays within the boundaries of preset footsteps

that have been planned ahead. The trajectory of the point mass model is then

transformed into a whole-body walking motion by tracking the pendulum motion

with the pelvis, connecting the pendulum base locations with smooth swing foot

trajectories in Cartesian space, and computing the resulting motor commands using

inverse kinematics. This approach works, but has not yet achieved the versatility

and robustness of the human gait.

The bipedal walk generation technique presented here differs from the state of

the art in a number of aspects. Instead of designing a low-dimensional model and

forcing a robot to follow its motion, we first craft a central pattern-generated (CPG)

whole-body motion that can produce an open-loop stable gait. A low-dimensional

inverted pendulum model is then fitted to match the observed center of mass tra-

jectory of the open-loop motion. The fitted model can then be used to predict the

state of balance at the end of the step, and to compute the location and the timing

of a footstep that is expected to restore balance towards a stable limit cycle. Our

approach augments the CPG gait with balance control by modifying timing and

landing coordinates of footsteps in a non-intrusive way, leaving the execution of the

stepping motions up to the underlying pattern generator. The result is a robust

and controllable omnidirectional walk that does not derogate the natural dynamics

by forcing the center of mass onto a plane—a consequence when a low-dimensional

model is imposed on the robot as many other approaches do.

Our algorithm requires very little computational power and only basic sensory

equipment. Inertial sensors in the torso are used to estimate its attitude, and joint

position sensors are used to reconstruct the pose of the robot. No force or torque

sensors are required. A precise robot model is not required either, as masses, torques,

and forces are not involved in our computations. A rough kinematic model describ-

ing approximate link lengths suffices. We are also able to relax precision require-

November 18, 2019 14:36 WSPC/INSTRUCTION FILE ws-ijhr

Capture Steps 3

ments on the actuation level. We operate our robot in a compliant setting with

low-gain position-controlled actuators. Despite its low requirements, it achieves one

of the strongest push recovery capabilities among humanoid robots to date.

2. Related Work

Zero Moment Point (ZMP) preview control [Kajita et al., 2003] is the most popular

approach to bipedal walking. A number of pre-planned footsteps are used to define

a future ZMP reference trajectory. A continuous Center of Mass (CoM) trajectory

that minimizes the ZMP tracking error, the jerk of the CoM, and the deviation

from terminal conditions at the end of the preview horizon, is then generated by

solving a quadratic program [Wieber, 2006]. The optimization is computationally

expensive, but can be performed in real time. In theory, once a smooth and stable

model is computed, a robot closely following the motion of the model should be

stable, too. By using the ZMP preview control scheme, high quality robots [Kajita

et al., 2010, Park et al., 2005] can walk on flat ground as long as disturbances

are small. More advanced gait controllers from the ZMP preview family [Diedam

et al., 2008, Morisawa et al., 2010, Stephens and Atkeson, 2010] also consider foot

placement in addition to ZMP control by including the footstep locations in the

optimization process.

A sampling-based ZMP preview controller that includes adaptive foot-placement

has been proposed by Urata et al. [2011]. Instead of optimizing the CoM trajectory

for a single ZMP reference, a fast sampling method is used to generate a whole

set of lower quality ZMP/CoM trajectory pairs for three steps into the future.

Triggered by a disturbance, the algorithm selects and executes the best available

motion according to given optimization criteria. Resampling during execution of

the motion plan is not possible. This method was demonstrated to produce push

recovery capabilities on a real robot. Highly specialized hardware was used to meet

the speed and precision requirements.

Another interesting planning approach was presented by Kamioka et al. [2019]

where walking, running, and hopping are planned in parallel as alternative modes of

locomotion. The best plan is selected according to stability and energy consumption

criteria. Footstep locations and timing are computed by a gradient decent algorithm

during walking.

The capture point [Pratt et al., 2006] is an appealing indicator of balance. It

describes the location on the ground where a biped would need to step in order to

come to a complete stop. Englsberger et al. [2011] proposed the use of a capture

point trajectory as a reference input for gait generation, instead of the ZMP. The

capture point approach is much simpler and faster to compute than ZMP preview

control. A capture point based preview controller was demonstrated on Toro [Ott

et al., 2010] and on the Atlas robot to produce a walk of the same quality as the

classic ZMP preview controller.

A drawback of all of the aforementioned approaches is that the motion of a

November 18, 2019 14:36 WSPC/INSTRUCTION FILE ws-ijhr

4 Missura, Bennewitz, Behnke

low-dimensional model is computed first, and then the robot is forced to follow

its trajectory as closely as possible. This imposes precise position tracking require-

ments on the hardware in order to preserve the stability predicted by the model.

Furthermore, a low-dimensional model strongly simplifies the walking motion by

design. Following the model closely results in an unnatural, plane-restricted motion

of the pelvis—typically with extensive use of bent knees.

The inverse approach of starting with the motion before balance originates from

passive dynamic walking pioneered by McGeer [1990]. His experiments proved that

the passive dynamics of legs with freewheeling joints is sufficiently stable to walk

down a shallow slope. With a minimal amount of actuation to restore lost energy,

passive walking on level ground is also possible [Anderson et al., 2005, Collins

et al., 2001, Wisse and Frankenhuyzen, 2003]. The graceful motions of these bipedal

constructions strongly resemble the human walk and suggest that the core principle

of biological gaits may also be passive dynamics with minimal control effort.

CPG walking adds actuation, but no control of balance. However, a small basin of

attraction around the upright pose allows for controllable, open-loop stable walking.

Interestingly, in the competitive environment of RoboCup, where humanoid robots

play soccer, CPG walking is the dominant approach. Perhaps the most advanced

RoboCup gait was presented for the Nao standard platform by Graf et al. [2009].

Based on the solution of a system of linear pendulum equations, the timing and

trajectory of the pendulum motion is adjusted online in order to land the swing

foot as closely as possible to a desired step size.

The DARwIn-OP platform [Ha et al., 2013] comes with a fast and reliable walk

that has been described by Yi et al. [2011]. The core gait has a strong similarity with

ZMP preview control. Future footstep locations are placed in a queue as reference.

However, instead of the expensive CoM trajectory optimization that includes jerk

minimization, the CoM trajectory is generated open-loop and in closed form using

simple Linear Inverted Pendulum Model equations that do not limit the jerk.

By modeling virtual forces that keep the robot upright and pull it in the de-

sired direction of locomotion, Pratt et al. [2001] created the Virtual Model Control

approach. The virtual forces are mapped to torques of the actuators such that the

same trunk motion is produced as the forces would. With this method, the two-

dimensional robot Spring Flamingo showed a fluid and natural looking walk that

was robust enough to reject small disturbances and to walk up and down on slopes.

The work presented here has its origins in [Missura and Behnke, 2011], where

first lateral stability was investigated with the conclusion that controling the step

timing is effective at recovering the lateral oscillation after a push from the side.

Then, the concept was extended to the sagittal direction in simulation [Missura

and Behnke, 2013b] and implemented on a real robot [Missura and Behnke, 2014].

Onboard learning of the sagittal step size has also been investigated [Missura and

Behnke, 2015] to a degree where a robot was able to learn to absorb a strong push

after only a few failed steps.

November 18, 2019 14:36 WSPC/INSTRUCTION FILE ws-ijhr

Capture Steps 5

3. Capture Step Framework

V̌

A , T

q̂ , θ̂

Footstep Control

y

Motion Generator

State Estimation Bipedal Robot

c ,λ q

y

x

Fig. 1: Overview of the Capture Step Framework. The State Estimation component

(bottom left) reconstructs the tilted pose of the robot using the measured joint

angles q̂ and the torso inclination θ̂. From the reconstructed pose, the state of

the center of mass c and the support foot indicator λ are gained. The Footstep

Control module (top left) uses the center of mass state c and the support foot

indicator λ to compute the swing amplitudeA and the timing T of the next footstep

in order to track the desired walking velocity V̌ while maintaining balance. The

Motion Generator (top right) executes a timed whole-body stepping motion with

the commanded step size and generates the joint position targets q.

The bipedal gait generation method presented here is called Capture Step Frame-

work. Figure 1 illustrates the components of the framework organized in the circular

layout of a control loop. The robot itself is part of the loop. It receives motor tar-

gets from the control software and provides sensor data about its internal state.

The three main software components are: State Estimation, Footstep Control, and

Motion Generation.

The input into the control loop is a target velocity parameter V̌ ∈ [−1, 1]3 that

controls the sagittal, the lateral, and the rotational velocity of the gait. The target

velocity determines the size of the steps the robot should produce. The framework

attempts to realize the commanded velocity as good as it can, but it may deviate

from it in order to maintain balance. Alternatively, it is possible to use a reference

step size as input instead of the velocity in order to command the robot to follow a

footstep plan [Missura, 2016].

November 18, 2019 14:36 WSPC/INSTRUCTION FILE ws-ijhr

6 Missura, Bennewitz, Behnke

The Motion Generator is a CPG that generates whole-body stepping motions

composed of superimposed leg-lifting and leg-swinging motion primitives. The mo-

tion primitives are parameterized in a way that the footstep location at the end of

the step can be controlled by the swing amplitude parameterA ∈ R3 in the sagittal,

lateral, and rotational directions. The timing of the steps is controlled by the step

time parameter T . In the end, the whole-body motion trajectory is conveniently

expressed as a signal of joint angles q that are passed on to the robot. The robot

tracks the joint angles using PD-controlled servo motors.

Using the joint angles q̂ and the torso inclination θ̂ as measured by the sensors

of the robot, the State Estimation module reconstructs the tilted whole-body pose.

From the reconstructed pose, the motion of a fixed point on the body frame is

tracked and used as a low-dimensional representation of balance. The coordinates

and velocities of this fixed point—hereafter referred to as the Center of Mass (CoM)

state c = (cx, ċx, cy, ċy)—are determined in the sagittal (x, forward) and the lateral

(y, sideward) directions with respect to the coordinate frame of the support foot

with the sign λ ∈ {−1, 1}. We assign -1 to the left foot and 1 to the right foot.

The CoM state vector c, the sign λ of the support foot, and the desired veloc-

ity V̌ , are the inputs into the Footstep Control module, where a Linear Inverted

Pendulum Model (LIPM) is used to compute the swing amplitude A and the time

T of the next footstep in order to keep the center of mass balanced while obeying

the desired velocity V̌ as closely as possible. The swing amplitude A ∈ R3 and the

step time T become the inputs of the Motion Generator module.

One iteration of the control software loop requires 0.12 ms to compute on a

single 1.3 GHz core and thus can be operated with a high frequency. We are using

an update frequency of 100 Hz.

In the following, we introduce the modules of the Capture Step Framework

shown in Figure 1 in detail.

4. Motion Generator

The nonzero size of the support polygon of a humanoid robot allows for some passive

stability that can be exploited to implement stable walking with an open-loop CPG.

The NimbRo CPG gait was originally proposed by Behnke [2006] and extended by

Missura and Behnke [2013a] and Missura [2016]. Using oscillating motion patterns

for the legs and the arms, the CPG generates an omnidirectional gait that allows

a humanoid robot to step in the sagittal, lateral, and rotational directions. The

step sizes in all three directions, and the step timing, can be modified quickly and

independently during walking, which gives rise to a relatively agile and controllable

gait.

4.1. Abstract Kinematic Interface

The motion patterns of the CPG are embedded in the parameter space of a kine-

matic abstraction layer that we named Leg Interface. The Leg Interface exhibits

November 18, 2019 14:36 WSPC/INSTRUCTION FILE ws-ijhr

Capture Steps 7

η

ϕLeg

ϕFoot

Fig. 2: The Leg Interface encapsulates leg pose control with three abstract param-

eters: the leg extension η, the leg angle φLeg, and the foot angle φFoot.

three abstract parameters to control the pose of a leg—the leg extension η, the leg

angle φLeg, and the foot angle φFoot. The meaning of the parameters is illustrated

in Figure 2. The leg extension η ∈ [0, 1] allows the leg to be extended and retracted

like a prismatic joint. The leg angle φLeg = (φRollLeg , φ
Pitch
Leg , φY awLeg) determines the ro-

tation of the leg with respect to the trunk in the roll, pitch, and yaw directions.

The foot angle parameter φFoot =
(
φRollFoot, φ

Pitch
Foot

)
is used to determine the rota-

tion of the foot with respect to the trunk. Formally, the Leg Interface is a function(
φHip, φKnee, φAnkle

)
= L

(
η, φLeg, φFoot

)
that encapsulates the mapping of the

abstract parameters to joint angles φHip = (φRollHip , φ
Pitch
Hip , φY awHip) for the hip joint,

φKnee for the knee joint, and φAnkle = (φRollAnkle, φ
Pitch
Ankle) for the ankle joint using the

equations [
φ′
Pitch
Leg

φ′
Roll
Leg

]
= R(−φY awLeg)

[
φPitchLeg

φRollLeg

]
, (1)

ζ = arccos(1− η), (2)(
φY awHip , φ

Roll
Hip , φ

Pitch
Hip

)
=
(
φY awLeg , φ

′ Roll
Leg , φ

′ Pitch
Leg − ζ

)
(3)

φKnee = 2ζ, (4)(
φPitchAnkle, φ

Roll
Ankle

)
=
(
φPitchFoot − φ′

Pitch
Leg − ζ, φRollFoot − φ′

Roll
Leg

)
, (5)

where R(−φY awLeg) is a rotation by the negative leg yaw. Note that the motion ab-

straction layer is essentially model free. Unlike for inverse kinematics, the actual

sizes of the body segments do not need to be known.

The parameter space of the Leg Interface offers an intuitive way to encode motion

components that a robot would naturally perform during walking. For example,

lifting the leg at the beginning of the swing phase, and stretching it shortly before

the heel strike, can be achieved using the leg extension parameter η. Swinging the

November 18, 2019 14:36 WSPC/INSTRUCTION FILE ws-ijhr

8 Missura, Bennewitz, Behnke

leg to the front and back is achieved by modulating the pitch angle parameter φPitchLeg

with an oscillating signal.

4.2. CPG Gait

π/-π 0 π/-π 0 π/-π 0 π/-π

Motion phase

Leg extension Leg angle

Fig. 3: The main ingredients of the gait motion are rhythmical leg lifting (top) and

a leg swing motion (bottom). The solid vertical lines indicate the expected times of

support exchange. The dashed vertical lines indicate the swing start and swing end

timings. The patterns for the left leg shown in faint color are phase shifted by π.

The walking motion generated by the CPG can be subdivided into motion prim-

itives that produce Leg Interface parameters. The final motion pattern is composed

as the sum of the outputs of all motion primitives. The most important motion

primitives for leg lifting and leg swinging are shown in Figure 3 and will be in-

troduced shortly. For a complete list of all involved motion primitives, we refer to

[Missura, 2016].

The oscillation of the motion signal is driven by a motion phase µ ∈ [−π, π).

The motion phase is incremented in every iteration of the main control loop

µt+1 = µt + δµ, where the increment δµ = ρν
T is computed from the remaining

motion phase

ν =

{
−µ, if µ ≤ 0

π − µ, otherwise,
(6)

the commanded step time T , and the main control loop iteration period ρ = 0.01 s.

The amplitude of the leg lifting and leg swinging patterns is determined by

the swing amplitude vector A = (Ax, Ay, Aψ) with parameters for the roll, pitch,

and yaw directions. The swing amplitude and the step time are computed by the

Footstep Control module that will be presented in detail in Section 6.

November 18, 2019 14:36 WSPC/INSTRUCTION FILE ws-ijhr

Capture Steps 9

4.2.1. Leg Lifting

The leg lifting primitive is an alternating shortening of the legs. As shown in Figure 3

on the top, the leg lifting primitive activates the leg extension parameter with a

sinusoidal function

η(µ,A) =

{
sin(µ) (K1 +K3 ||A||∞) , if µ ≤ 0

sin(µ) (K2 +K4 ||A||∞) , otherwise
(7)

that depends on the motion phase µ ∈ [−π, π) and the swing amplitude A. Notably,

the leg lifting primitive makes a distinction between a support phase—when the

motion phase µ ≤ 0 and the foot is on the ground—and a swing phase—when the

motion phase µ > 0 and the foot is in the air. During the support phase, a small

push is applied against the ground. During the swing phase, the foot is lifted up into

the air and can be swung. The configuration parameters K1 and K2 describe the

push height during the support phase and the step height during the swing phase,

respectively. The configuration variables K3 and K4 intensify the push and the lift

depending on the L∞ norm of the swing vector A, i.e., the foot is lifted higher the

faster the robot is walking. The support exchange is expected to occur at motion

phases µ = 0 and µ = ±π.

The same function is used to generate the motion for both legs by computing

η(µr,A) for the right leg with µr = µ and η(µl,A) for the left leg with a phase

shifted

µl =

{
µ+ π, if µ ≤ 0

µ− π, otherwise.
(8)

4.2.2. Leg Swing

To swing the leg in any direction, we use the leg swing pattern shown on the

bottom of Figure 3. The leg is swung forwards with a sinusoidal motion and pushed

backwards with a linear motion during its support phase. The forward swing is not

perfectly embedded into the motion phase. Swing phase configuration parameters

Kµ0
and Kµ1

are used to delay the start of the swing and to rush the finish of

the swing to happen earlier than the nominal support exchange at motion phase

µ = ±π. Essentially, the shortened swing accounts for an implicit double support

time where the weight of the robot shifts from one leg to the other.

To generate the leg swing pattern, we first compute a motion phase dependent

unit swing oscillator

ζ(µ) =

2(µ+2π−Kµ1)
2π−Kµ1+Kµ0

− 1, if − π ≤ µ < Kµ0

cos

(
π(µ−Kµ0)
Kµ1−Kµ0

)
, if Kµ0

≤ µ < Kµ1

2(µ−Kµ1)
2π−Kµ1+Kµ0

− 1, if Kµ1
≤ µ < π,

(9)

November 18, 2019 14:36 WSPC/INSTRUCTION FILE ws-ijhr

10 Missura, Bennewitz, Behnke

which incorporates the sinusoidal forward swing, the linear swing during the support

phase, and the swing timing parametersKµ0
andKµ1

. Then, we use the swing vector

A to modulate the amplitude of the unit swing oscillator in the roll, pitch, and yaw

directions, and compute the leg angle parameters with the equations

φRollLeg (λ, ν,A) = −ζ(ν)AxK5 − λmax{|Ax|K6, |Aψ|K7}, (10)

φPitchLeg (λ, ν,A) = ζ(ν)AyK8, (11)

φY awLeg (λ, ν,A) = ζ(ν)AψK9 − λ|Aψ|K10. (12)

where λ ∈ {−1, 1} denotes the sign of the leg (left or right) the pattern is generated

for. The leg swing equations (10-12) differ in the three directions. In the pitch

direction, the legs swing fully from front to back. The maximum swing amplitude for

forward walking and backward walking is configured using the step size parameter

K8. In the roll direction, however, the legs would collide. Therefore, leg roll angle

offsets K6 and K7 are added proportionally to the roll and yaw swing amplitude

Ax and Aψ, causing the legs to spread out when walking in the lateral direction,

and when the robot is turning. In the yaw direction, an amplitude-dependent yaw

angle offset can be configured using the parameter K10. As with the leg lifting, the

swing pattern is computed for both legs with the same function.

4.2.3. Arm Motion

The arm motion is generated in an analogous fashion. Similar to the Leg Inter-

face, an Arm Interface provides an abstract actuator space where the length of the

arm and the angle of the arm can be manipulated independently. The arms are

swung with the same swing pattern as the legs, but antagonistically to the legs,

i.e., the right arm swings forward when the left leg does, and the left arm swings

forward when the right leg does. The role of the arm motion is to counteract the

rotation about the vertical axis that would otherwise be induced by the inertia of

the swinging leg.

4.3. CPG Gait Performance

The demonstration videoa shows a number of different humanoid robots that this

CPG walk has been used on. All of these robots walked well on a flat floor and

demonstrated outstanding performance in RoboCup soccer games.

5. State Estimation

The State Estimation module (shown on the bottom left in Figure 1) reconstructs

the tilted whole-body pose of the robot for the purpose of extracting the CoM state

c and the support leg sign λ ∈ [−1, 1]. To this end, it uses a kinematic model and

ahttps://youtu.be/HESyHEPNdd8

November 18, 2019 14:36 WSPC/INSTRUCTION FILE ws-ijhr

Capture Steps 11

sensory information obtained from the robot. The obtained sensor values are the

joint angles q̂ as measured by motor encoders, and the angle θ̂ of the trunk as

reported by the IMU.

5.1. Tilted Whole-Body Pose Reconstruction

Neck

Shoulder

Elbow

Hip

Knee

Ankle

Yaw

Roll

Pitch

Fig. 4: A generic kinematic chain that applies to most humanoid robots.

The kinematic model we use for the pose reconstruction is illustrated in Figure 4.

It is a generic humanoid kinematic chain that we use for different robots. The lengths

of the links of the skeleton were not adjusted to the measurements of the specific

robot we used in our experiments since the absolute values for the lengths do not

matter, only their relation to each other.

For the pose reconstruction, the measured joint angles q̂ are applied to set the

kinematic model in pose with a forward kinematics algorithm. Once in pose, the

entire kinematic model is rotated around the center of the current support foot

such that the trunk attitude equals the roll and pitch angles θ̂ = (θ̂roll, θ̂pitch)

measured from the robot. We consciously neglected the fact that the robot would

rotate about one of the edges of the support foot, and not about the center of the

foot. This eliminates the need to determine the edge to rotate about, and disposes

of a potential source of jitter at the cost of a negligible error.

5.2. Center of Mass State Estimation

Using the reconstructed pose, we extract the position of the center point in be-

tween the hip joints with respect to a footstep frame. The footstep frame is set to

the ground projection of the new support foot in the moment of a detected support

November 18, 2019 14:36 WSPC/INSTRUCTION FILE ws-ijhr

12 Missura, Bennewitz, Behnke

exchange. Support exchange detection is discussed in Section 5.3. The ground pro-

jected support frame is horizontally aligned with the floor, but preserves the yaw

orientation of the new support foot. During the step, the footstep frame remains

fixed until the next support exchange occurs. With respect to the footstep frame,

we compute the coordinates of the ground projected center point between the hip

joints and obtain the CoM state c = (cx, ċx, cy, ċy). The values of the derivatives ċx
and ċy have to be determined by numerical differentiation and are hence prone to

noise.

5.3. Support Foot Estimation

The support foot estimation is a continuous process that can be initialized with

either the right or the left foot. If after the pose reconstruction outlined above the

vertical coordinate of the swing foot has a value lower than the vertical coordinate

of the support foot, the roles of the feet are switched and the sign λ ∈ {−1, 1} of

the support foot is set to either λ = −1 for the left foot, or λ = 1 for the right

foot. In this moment, the support frame is relocated to the ground projection of the

new support foot. In order to avoid erratic changes of the support foot sign when

both feet are on the ground, after every change of the support role, we require the

vertical distance between the feet to exceed 5 mm before another support exchange

is allowed to occur. Note that this support foot detection method is based on the

assumption that the floor is horizontal and flat, and at least one foot touches the

ground at all times. Based on these assumptions, support foot detection is possible

without foot pressure or ankle torque sensors, but the method does not scale to

non-planar surfaces.

5.4. Experimental Validation

Figure 5 shows CoM positions and velocities in the sagittal and lateral directions

as estimated with the tilted kinematic pose reconstruction method during walking.

Real robot data is shown in the top row, simulated data is shown in the bottom row.

It is obvious that the velocity estimates are rather noisy, especially in the moment

of the support exchange. The Capture Step controller includes a predictive filter

presented in Section 6.3 for the smoothing of the CoM state. Most importantly,

the CoM data of the real robot resembles the motion of the simulated pendulum in

both the sagittal and the lateral directions.

6. Footstep Control

The Footstep Control module (shown on the top left in Figure 1) implements

balance-preserving gait control functions using the CoM state c = (cx, ċx, cy, ċy)

and the support leg sign λ ∈ {−1, 1}. The outputs of the Footstep Control are the

swing amplitude A = (Ax, Ay, Aψ) and the step time T—the remaining time until

the next support exchange. In its core, the Footstep Control generates a reference

November 18, 2019 14:36 WSPC/INSTRUCTION FILE ws-ijhr

Capture Steps 13

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.5 1 1.5 2 2.5 3

x
[m

],
vx

 [m
/s

]

Time [s]

Robot

vx
x

-0.9

-0.6

-0.3

 0

 0.3

 0.6

 0.9

 0 0.5 1 1.5 2 2.5 3

y
[m

],
vy

 [m
/s

]

Time [s]

Robot

vy
y

-0.25

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 0 0.5 1 1.5 2 2.5 3

x
[m

],
vx

 [m
/s

]

Time [s]

LIPM

vx
x

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 0.5 1 1.5 2 2.5 3

y
[m

],
vy

 [m
/s

]

Time [s]

LIPM

vy
y

Fig. 5: Center of Mass data in the sagittal (left column) and the lateral (right

column) directions. In the top row, real robot data is shown. In the bottom row,

the trajectory of a simulated Linear Inverted Pendulum Model is shown. A strong

resemblance between the real robot and the simulated model can be seen.

trajectory for the CoM. The reference trajectory is the limit cycle that the CoM

would follow under perfect conditions when executing stepping motions with the

commanded velocity V̌ . The reference trajectory is gained by having the robot walk

with the open-loop CPG gait and approximating the observed CoM trajectory with

a parameterized Linear Inverted Pendulum Model. Robust and controllable walk-

ing performance is achieved by driving the CoM towards the reference trajectory

by means of Zero Moment Point (ZMP), step timing, and foot placement control

strategies.

The footstep control function is given in Algorithm 6.1. Three main

computation steps can be identified within FootstepControl(V̌ , c, λ):

ReferenceTrajectory(V̌ , λ) computes a target state s that represents the ideal

CoM trajectory, PredictiveFilter(c, λ) smooths the CoM state input and over-

comes latency by means of prediction, and BalanceControl(s, c, λ) computes

the ZMP Z, the swing amplitude A, and the step time T , which drive the CoM

state c towards the target state s. Note that only the swing amplitude A and the

step timing T are returned by FootstepControl(V̌ , c, λ) since the CPG does

not need the ZMP for the generation of the stepping motion.

November 18, 2019 14:36 WSPC/INSTRUCTION FILE ws-ijhr

14 Missura, Bennewitz, Behnke

Algorithm 6.1 Footstep Control

Input: Desired velocity V̌ . Command input

Input: CoM state c, support foot λ . From the State Estimation

Output: Step parameters (A, T) . Swing amplitude and timing

1: function FootstepControl(V̌ , c, λ)

2: s ← ReferenceTrajectory(V̌ , λ)

3: (c, λ) ← PredictiveFilter(c, λ)

4: (Z,A, T) ← BalanceControl(s, c, λ)

5: return (A, T)

6: end function

In the following, we first introduce the Linear Inverted Pendulum Model—the

mathematical model that represents the principle dynamics of bipedal walking.

After that, we discuss each step of Algorithm 6.1 in detail.

6.1. Linear Inverted Pendulum Model

6.1.1. One-dimensional Model

The Linear Inverted Pendulum Model (LIPM) was originally proposed by Kajita

et al. [2001]. It is a linearized version of an inverted pendulum and resembles a

bipedal walker standing on one support leg, falling away from the pendulum base.

Figure 6a illustrates a one-dimensional LIPM. The quantity of interest is the hori-

zontal displacement x of the CoM with respect to the pendulum base. The pendulum

base, the pivot point of the pendulum, the ZMP, and the Center of Pressure (CoP)

are all different names for the same concept.

The LIPM describes the motion of the CoM using the differential equation

ẍ = C2x (13)

for some constant C. Typically, a value of C =
√
g/h is used where g = 9.81 m/s2

is the gravitational constant and h is the assumed constant height of the center

of mass. The LIPM suffers from inaccuracies due to its oversimplicity and should

be corrected [Martinez et al., 2018]. In our approach, we identify the value of C

experimentally to fit the LIPM as closely as possible to the observed behavior of an

individual robot.

The simple LIPM differential equation (13) has a closed form solution. For an

initial state (x0, ẋ0), the location and the velocity of the future state at time t are

computed by

x(t, x0, ẋ0) = x0 cosh(Ct) +
ẋ0
C

sinh(Ct), (14)

ẋ(t, x0, ẋ0) = x0C sinh(Ct) + ẋ0 cosh(Ct). (15)

November 18, 2019 14:36 WSPC/INSTRUCTION FILE ws-ijhr

Capture Steps 15

ZMP

CoM

x

h

(a) 1D

c=(cx , ċx , cy , ċy)

CoM

ZMP

x

y

Z

c '

(b) 2D with ZMP offset

Fig. 6: (a) The one-dimensional Linear Inverted Pendulum Model with pendulum

height h and Center of Mass coordinate x. (b) Using the orthogonal superposition of

two Linear Inverted Pendulum Models, the Center of Mass motion is approximated

in a two-dimensional plane. A small Zero Moment Point offset Z can be used for

limited influence on the motion of the Center of Mass c.

The time t when the CoM reaches a future location x, or velocity ẋ, is given by

tpos(x, x0, ẋ0) =
1

C
ln

(
x

c1
±

√
x2

c21
− c2
c1

)
, (16)

tvel(ẋ, x0, ẋ0) =
1

C
ln

(
ẋ

c1C
±

√
ẋ2

c21C
2

+
c2
c1

)
, (17)

where c1 = x0 + ẋ0

C and c2 = x0− ẋ0

C . Unless the pendulum is disturbed by external

forces, the orbital energy

E(x, ẋ) =
1

2

(
ẋ2 − C2x2

)
(18)

remains constant along a trajectory.

6.1.2. Two-dimensional Model with ZMP

We model a two-dimensional CoM motion using two uncoupled LIPM equations[
ẍ

ÿ

]
=

[
C2 0

0 C2

] [
x

y

]
. (19)

The x dimension describes the sagittal motion and the y dimension describes the

lateral motion. Additionally, we extend this passive model with ZMP control as

illustrated in Figure 6b. The origin of the coordinate frame is located underneath

the ankle joint of the support foot. A small ZMP offset Z = (Zx, Zy) can relocate

the pendulum base within the foot and influence the future motion of the CoM.

If we assume that the ZMP offset remains constant, we can incorporate the ZMP

offset Z into the equations (14) and (15) in a trivial manner and formulate a two-

dimensional LIPM predictor function c′ = LipmPredict(c, Z, t) that predicts

November 18, 2019 14:36 WSPC/INSTRUCTION FILE ws-ijhr

16 Missura, Bennewitz, Behnke

the future CoM state c′ at time t, given the current CoM state c at time t = 0 and

the ZMP offset Z, with the equations

c′x = x(t, cx − Zx, ċx) + Zx,

ċ′x = ẋ(t, cx − Zx, ċx),

c′y = x(t, yx − Zy, ċy) + Zy,

ċ′y = ẋ(t, cy − Zy, ċx). (20)

6.2. Reference Trajectory Generation

ZMP

CoM

t

x

σ

σ

σ

σ

(a) Sagittal Motion

ω
δ

α

δ

α

α

ω

t

y

ZMP

CoM

δ

α

α

(b) Lateral Motion

Fig. 7: The Center of Mass reference trajectory is composed of (a) a sagittal motion

and (b) a lateral motion. Four configuration parameters define the maximum sagittal

Center of Mass displacement σ, the lateral apex distance α, and the minimal and

maximal support exchange locations δ and ω. The support exchange is modeled as

an instantaneous relocation of the pendulum base such that in the moment of the

support exchange, the Center of Mass is in the center between the pivot points.

The gait generation cycle leans on the computation of a nominal trajectory that

describes the ideal motion of the CoM. The shape of the nominal trajectory is

determined by the desired walking velocity V̌ , the pendulum constant C (Eq. 13),

and configuration parameters named α, δ, ω, and σ. It does not depend on the

current state of the CoM.

Figure 7 illustrates the schematics of the nominal trajectory and the meaning

of the parameters. In the sagittal direction, the point mass crosses the base of the

pendulum once in every step. The parameter σ defines the displacement of the CoM

with respect to the foot when walking forward with the maximum velocity V̌x = 1.

The CoM displacement is zero when the robot is walking in place and negative

when the robot walks backwards.

In the lateral direction, the point mass oscillates between two supports and never

crosses the base of the pendulum. The distance between the pivot point and the apex

November 18, 2019 14:36 WSPC/INSTRUCTION FILE ws-ijhr

Capture Steps 17

of the trajectory is denoted by α. The lateral CoM velocity is zero in this point. The

support exchange occurs when the lateral CoM location is within a range bounded

by δ and ω. When walking in place, the support exchange occurs at distance δ.

When walking with a non-zero lateral velocity, the walker first takes a long step

with the leading leg and the support exchange occurs at a location up to the upper

bound ω where the lateral walking velocity V̌y = 1. The leading step is followed

by a shorter trailing step where the support exchange always occurs at distance δ,

independent of the size of the leading step. The values of the reference trajectory

parameters α, δ, ω, and σ, and the pendulum constant C, can be determined using

data collected from a robot walking with the open-loop CPG.

The pendulum base is assumed to stay stationary during a step, and to instantly

relocate in the moment of the support exchange in a way that the position of the

CoM at the end of the step is in the center between the old and the new pendulum

bases. A double support phase is not included in our nominal trajectory model.

Assuming that in the ideal case the motion of the CoM follows the laws of the

LIPM on a constant-energy orbit, a single state s = (sx, ṡx, sy, ṡy) is sufficient to

represent the nominal trajectory. We choose the nominal state s to be the end-of-

step CoM state, i.e., the CoM state in the moment of the next support exchange.

The nominal lateral support exchange location is

ξy =

{
λ
(
δ + |V̌y| (ω − δ)

)
, if λ = sgn(V̌y)

λδ, otherwise.
(21)

We differentiate between the leading step case, where the lateral support exchange

location ξy is between δ and ω, and the trailing step case, where the lateral support

exchange always occurs at distance δ. The sagittal support exchange location is

trivially given by

ξx = V̌xσ. (22)

The complete nominal support exchange state can now be computed as

s =

sx
ṡx
sy
ṡy

 =

ξx

C ξx csch (Cτ)

ξy

λC
√
ξ2y − α2

 . (23)

τ = tpos(ξy, λα, 0) (Eq. 16) is thereby the time it takes for the CoM to travel from

the lateral apex α to the lateral support exchange coordinate ξy. The nominal state

s is expressed in coordinates relative to the current support foot. The computation

of the nominal state s using Eq. (23) is equivalent to the s = ReferenceTrajec-

tory(V̌ , λ) computation step in line 2 of the Footstep Control algorithm 6.1.

Along with the nominal support exchange state, we also compute the nominal

step time Ť , the time we expect a step to take in the ideal case. We set Ť = 2τ when-

ever a support exchange occurs, and decrement it by ρ = 0.01s in every iteration of

the control loop.

November 18, 2019 14:36 WSPC/INSTRUCTION FILE ws-ijhr

18 Missura, Bennewitz, Behnke

6.3. Predictive Filter

txlmxrx

ρ

Fig. 8: Predictive Filter. This filter removes noise by blending between a measured

Center of Mass state rx and an expected state mx. The filter also predicts a short-

term future state tx to compensate for latency.

In a real hardware environment, the sensor noise and the latency in the control

loop can have a significantly derogating effect on the performance of the system. We

use a Predictive Filter as shown in Figure 8 to remove noise from the CoM state

estimate and to compensate for the latency by making a short-term prediction

with the LIPM. The three building blocks of the filter are denoted rx, mx, and

tx. The rx block is the CoM state computed from the raw sensor input by the

State Estimation. The second building block named mx is a model state. In every

iteration of the main control loop, the mx state is simulated using the LIPM by

the time period ρ = 0.01 s of one iteration of the control loop. The simulated state

is then linearly interpolated with the rx state using a blending factor b ∈ [0, 1]

mx = b rx+ (1− b)mx. (24)

In this manner, the rx-mx loop forms a noise filter that blends between an expected

state according to the LIPM and a raw input state estimated from the sensor in-

put. The tx block contains the mx state predicted by the latency l = 0.054 s,

again using the LIPM equations. It is the tx CoM state that is presented to the

BalanceControl computation step of the Footstep Control algorithm 6.1. Effec-

tively, the footstep controller does not compute the step parameters for the state

that was last measured, but for the state the robot is estimated to be in by the time

the motors execute the commands.

The blending factor b = fsfd is the product of two noise suppression functions

fs and fd. The step noise suppression function

fs = 1− exp

(
−max{ts − ε, 0}2

2ε2

)
(25)

is zero for a short time after the support exchange, and rises smoothly as ts—

the time since the last support exchange—increases with time. ε = 0.07 tunes the

duration of the step noise suppression. The second function

fd = k‖rx−mx‖ (26)

November 18, 2019 14:36 WSPC/INSTRUCTION FILE ws-ijhr

Capture Steps 19

suppresses blending when the rx and mx states are close. k = 0.5 is a gain. This

way, the gait controller has a tendency towards following an open-loop trajectory

when the state of the system develops as expected and avoids the possibly destabi-

lizing effects of sensor noise.

6.4. Balance Control

c

Z

s
S '

x
y

c '

Fig. 9: The balance controller computes a Zero Moment Point offsetZ that steers the

Center of Mass c towards the nominal support exchange state s. The Zero Moment

Point is not always effective in reaching the nominal state, but the achievable end-

of-step state c′ can be predicted. The location of the next footstep S′ is computed

with respect to the achievable state c′.

The next computation step of the Footstep Control algorithm 6.1 is the

(Z,A, T) = BalanceControl(s, c, λ) function in line 4. Given the nominal tar-

get state s, the filtered and latency-compensated CoM state c, and the sign λ

of the support leg, the balance control function computes the ZMP offset Z, the

swing amplitude A, and the step time T parameters that make the robot track the

commanded velocity V̌ while maintaining balance.

The concept of the balance controller is illustrated in Figure 9. The balance

controller computes a ZMP offset Z that steers the CoM c towards the nominal

location s. Since the ZMP is physically bound to remain inside the support polygon,

it has only limited effect and the nominal state is not guaranteed to be reached, but

after the time T for the support exchange is chosen, the balance controller predicts

the achievable end-of-step state c′ and uses it to compute the step coordinates S′

expressed relative to c′. Finally, the swing amplitude A is derived from the step

coordinates S′. For the computation of the aforementioned quantities, the following

formulae are derived from the LIPM.

6.4.1. Lateral Zero Moment Point Offset

By our design, the role of the lateral ZMP Zy is to help maintaining the nominal

frequency of the lateral CoM oscillation. We achieve this by computing the lateral

ZMP Zy such that it accelerates the CoM to reach the lateral support exchange loca-

tion sy at the nominal step time Ť . Using the current CoM state c = (cx, ċx, cy, ċy),

November 18, 2019 14:36 WSPC/INSTRUCTION FILE ws-ijhr

20 Missura, Bennewitz, Behnke

the nominal support exchange location s = (sx, ṡx, sy, ṡy), and the nominal step

time Ť in Eq. (14), we set sy = x(Ť , cy − Zy, ċy) + Zy and solve for Zy. We obtain

Zy =
cy cosh(CŤ) +

ċy
C sinh(CŤ)− sy

cosh(CŤ)− 1
. (27)

Zy then has to be bounded to a reasonable range [Zminy , Zmaxy], for example the

width of the foot. The target lateral velocity ṡy at the support exchange location

is neglected, but a possible error in the lateral velocity at the support exchange

location is corrected later on by the choice of the lateral step size.

6.4.2. Step Time

y

x

s

c

(a)

y

x

s

c

cx
max

(b)

y

x

s

c

(c)

y

x

s

c

(d)

Fig. 10: The balance controller estimates the remaining time of the step as the time

when (a) the Center of Mass c reaches the lateral coordinate of the target location

s. Special cases, such as (b) reaching the sagittal limit cmaxx first, (c) never reaching

the lateral coordinate, or (d) crossing the support foot, are handled explicitly.

The next step parameter to compute is the step time T . Motivated by the

observed sensitivity of the lateral oscillation to disturbances as demonstrated in

videob, we assume the lateral oscillation to be the main determinant of the step

time. The best time for the support exchange is when the CoM reaches the nominal

lateral support exchange location sy. In this position, the robot can be expected

to be upright and to have sufficient lateral momentum to transfer its weight to the

other leg. The ideal case is illustrated in Figure 10a. During a typical step, the

CoM travels towards the support leg, changes direction at the apex, and eventually

reaches the nominal support exchange location sy. Using the LIPM time-of-location

equation (16) including the influence of the lateral ZMP Zy, the time to reach sy
is given by T (sy) = tpos(sy−Zy, cy−Zy, ċy). There are, however, special cases that

must be considered. Figure 10b shows the case, where a sagittal limit cmaxx is reached

before sy, beyond which an increase of the stride length would also compromise bal-

ance. The time to reach cmaxx is given by T (cmaxx) = tpos(c
max
x , cx, ċx). Figure 10c

shows a case where the support exchange location sy is never reached. A strong

bhttps://youtu.be/l9uvBD9zmsw

November 18, 2019 14:36 WSPC/INSTRUCTION FILE ws-ijhr

Capture Steps 21

disturbance can cause the CoM to never come across the support exchange coordi-

nate. Situations where the support exchange location has been crossed in the past

without a step having occurred also belong to this category. Case (c) can be de-

tected when T (sy) does not compute a positive value. In that case, if a positive time

tvel(0, cy−Zy, ċy) can be determined using the LIPM time-of-velocity equation (17)

with a target velocity of zero, then an irregular lateral apex is still to be encoun-

tered in the future. The irregular apex is the closest point to the lateral support

exchange location, and the time to reach this apex can be used as a sensible step

time. Otherwise, we set the step time to zero and the balance controller recom-

mends an immediate step, which drives the step motion generator at its maximum

permitted frequency towards the next support transition. Finally, Figure 10d shows

the critical case where the CoM is estimated to tip over the support foot, indicated

by a positive lateral orbital energy E(cy, ċy) (Eq. 18). In this case, we use a large

constant step time of T = 2 seconds to slow the stepping motion down and hope

that the CoM will return after all. If the robot does tip over, a recovery step cannot

reasonably be taken and the robot will fall.

All cases considered, the step time parameter T is given by

T =

T (cmaxx), if T (cmaxx) < T (sy),

T (sy), if T (sy) > 0 ∧ T (sy) <∞,
tvel(0, cy−zy, ċy), if tvel(0, cy−zy, ċy) > 0 ∧ T (sy) =∞,
2, if E(cy, ċy) > 0,

0, otherwise.

(28)

The step parameters computed in the following depend on the step time T.

6.4.3. Sagittal Zero Moment Point Offset

In the sagittal direction, we compute the ZMP such that the sagittal support ex-

change location sx is reached at the step time T . We compute the sagittal ZMP

offset as

Zx =
cx cosh(CT) + ċx

C sinh(CT)− sx
cosh(CT)− 1

(29)

and bound it to the range [Zminx , Zmaxx]. Note that in the sagittal direction, we aim

for the CoM to arrive at the sagittal support exchange location at the predicted

step time T unlike in the lateral direction, where we aimed for the nominal step

time Ť .

6.4.4. Footstep Location

The choice of the next footstep coordinates has a strong influence on the future

trajectory of the CoM. Our concept to determine a suitable footstep location is

based on prediction. Given the current CoM state c and the bounded ZMP offset Z

November 18, 2019 14:36 WSPC/INSTRUCTION FILE ws-ijhr

22 Missura, Bennewitz, Behnke

computed in equations (27) and (29), we estimate the achievable end-of-step state

c′ = LipmPredict(c, Z, T) (Eq. 20) that will be reached by the already chosen

step time T . After a disturbance, the achievable state can significantly deviate from

the nominal state s.

In the following, we compute the sagittal and lateral coordinates of the footstep

S′ =
(
S′x, S

′
y

)
expressed relative to the coordinates of the predicted end-of-step

state c′. Due to their conceptually distinct behavior, we use different strategies for

the sagittal and the lateral directions. In the sagittal direction, we simply use our

step symmetry assumption where the CoM is in the center between the feet in the

moment of the support exchange and set

S′x = c′x. (30)

The lateral step size S′y is computed such that the CoM will pass the apex of the

next step at a distance α, i.e., the orbital energy E(S′y, ċ
′
y) (Eq. (18)) right after the

support exchange should equal the constant energy level of the lateral step apex

E(α, 0). Solving the equation E(S′y, ċ
′
y) = E(α, 0) for S′y yields the lateral step size

S′y = λ

√
ċ′2y
C2

+ α2, (31)

where λ ∈ {−1, 1} is the sign of the support leg prior to the step.

The conversion of the step size to the swing amplitude A is straight forward.

Ax =
S′x
2
σ, (32)

Ay =

S′
y

2 − δ
ω − δ

, (33)

Aψ = V̌ψ. (34)

The rotational swing amplitude Aψ is not considered to be relevant for balance and

is simply passed through from the commanded rotational velocity.

The now complete step parameters (A, T) are passed on to the Motion Generator

module to command the robot to step to the computed location at the right time.

The ZMP is not passed on to the Motion Generator. As the swing vector A and the

step time T are implicit results of the computed ZMP offset, and the two quantities

are physically linked, the execution of the commanded step should in theory place

the ZMP roughly in the right location under the foot.

7. Experiments

To demonstrate the effectiveness of the introduced gait controller, we provide video

materialc where the controllability and the disturbance rejection capabilities of the

robot can be seen. We also present a systematic evaluation of a large number of

pushes that our robot NimbRo-OP2 was subjected to.

chttps://youtu.be/yOQql5eSjn8

November 18, 2019 14:36 WSPC/INSTRUCTION FILE ws-ijhr

Capture Steps 23

7.1. NimbRo-OP2 Robot

(a) The Robot

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.5 1 1.5 2 2.5 3

Jo
in

t A
ng

le
 [r

ad
]

Time [s]

knee tx knee rx hip tx hip rx

touch down

(b) Compliant Actuation

Fig. 11: (a) The NimbRo-OP2 robot. (b) Commanded (tx) and measured (rx) joint

angles of the right knee and the right hip during walking. The latency and the

deviation of the actuators from the commanded position are quite large, but the

shock of the touch-down at the end of the step is automatically absorbed.

The NimbRo-OP2 robot [Ficht et al., 2017] that we used to validate our bipedal

gait controller is an open-source hardware platform. The robot is 134.5 cm tall

and weighs 17.5 kg. It has a 3D printed Polyamide exoskeleton and uses Robotis

Dynamixel MX-106R servo motors as actuators. It features an Intel NUC PC with

an Intel Core i7-7567U 3.5-4.0 GHz CPU and 4 GB RAM for onboard processing.

The legs of the robot were constructed with a parallel kinematics structure as shown

in Figure 11a. The parallel linkages in the thigh and in the shank mechanically force

the knee joint to stay parallel to the trunk, and the foot plate to remain parallel

to the knee joint. This construction lacks the ankle pitch degree of freedom, but

provides additional passive stability. Using the walk described in this work, the

NimbRo-OP2 robot won the RoboCup soccer competitions in 2019 where it used

capture steps to maintain its balance during soccer gamesd and excelled in the

Technical Challengese.

The actuators support a compliant setting where the position controller can be

configured with a low gain. This results in a relatively compliant actuator behavior

with a soft feel at the cost of imprecise position tracking. Figure 11b shows the com-

manded (tx) and measured (rx) motion trajectories of the knee and hip joints in the

right leg during walking. The latency and the deviations between the commanded

and the received positions are quite evident, but also the automatic absorption of

the floor impact can be seen.

dhttps://youtu.be/ITe-seb4PsA
ehttps://youtu.be/4aVTt2iSry4

November 18, 2019 14:36 WSPC/INSTRUCTION FILE ws-ijhr

24 Missura, Bennewitz, Behnke

7.2. Walking Push Recovery Experiment

In a push recovery experiment, we explored the effectiveness of the analytic

capture step controller by subjecting the robot to a large number of pushes from

the front, from the back, from the left, and from the right. The pushes were applied

by hand with varying strength. We made sure to include strong enough pushes in

each direction that were beyond the capabilities of the capture step controller in

order to explore its limitations. In total, we applied 58 pushes while the robot was

walking in open-loop mode without capture step control out of which the robot fell

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1 -0.5 0 0.5 1

S
a

g
itt

a
l C

o
M

 V
e

lo
ci

ty
 x. [

m
/s

]

Sagittal CoM Position x [m]

Open Loop

unstable
stable

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1 -0.5 0 0.5 1

S
a

g
itt

a
l C

o
M

 V
e

lo
ci

ty
 x. [

m
/s

]

Sagittal CoM Position x [m]

Feedback

unstable
stable

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1 -0.5 0 0.5 1

L
a

te
ra

l C
o

M
 V

e
lo

ci
ty

 y. [
m

/s
]

Lateral CoM Position y [m]

Open Loop

unstable
stable

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1 -0.5 0 0.5 1

L
a

te
ra

l C
o

M
 V

e
lo

ci
ty

 y. [
m

/s
]

Lateral CoM Position y [m]

Feedback

unstable
stable

Fig. 12: Stability analysis. Sagittal (top) and lateral (bottom) phase plots with

data collected during an open loop (left) and a closed loop (right) push-recovery

experiment. Stable regions are marked in dark blue color, unstable regions where

the robot falls are marked in light red.

November 18, 2019 14:36 WSPC/INSTRUCTION FILE ws-ijhr

Capture Steps 25

22 times. Then we applied another 97 pushes to the robot with the capture step

controller enabled and the robot fell 18 times. Note that the falls to number of

pushes ratio is not a good indicator of stability as the strength of the pushes varied

between the open-loop and the closed-loop sessions. Stronger pushes were applied

to drive the active controller to its limits. It is rather an indicator for the fact that

the experiments were performed in a range of disturbances that includes pushes

strong enough to push the robot over.

Figure 12 shows an evaluation in the sagittal and the lateral phase spaces of the

center of mass. We can observe stable regions where the robot would not fall even

when walking with the open-loop motion generator, but these regions are much

larger when the capture step controller is active. The existence of a stable region

of the open-loop step generator is best explained by the non-zero size of the feet

and the stiff ankle joint. Light pushes drive the center of mass away from the center

position, but as long as the center of mass does not leave the edge of the foot, it

has a good chance of returning to the gait limit cycle.

A photo strip of a selected push from the back is shown in Figure 13. The sagittal

ZMP, the sagittal CoM position, and the swig amplitude Ax during the recovery

of this push are shown in Figure 14. The push happened in an unlucky moment

shortly after the support exchange where the noise suppression ignores the sensor

input for a short while. We can observe how the ZMP moves into the heel after the

push to accelerate the robot forward and it remains there for two steps while the

robot keeps accelerating, as shown by the rising step amplitude Ax. The first step

is not enough to capture the escaping CoM shown by the blue line. Only with the

Fig. 13: From top left to bottom right: NimbRo-OP2 performing capture steps after

a push.

November 18, 2019 14:36 WSPC/INSTRUCTION FILE ws-ijhr

26 Missura, Bennewitz, Behnke

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

V
x,

 C
oM

x
[m

],
Z

m
p

x
[m

]

Time [s]

ZMPx [m]
CoMx [m]

Vx

push

Fig. 14: Center of Mass, Zero Moment Point, and swing amplitude data recorded

with NimbRo-OP2 after a sagittal push. Support exchange moments are indicated

by thin vertical lines. The thick vertical bar marks the time of the push.

second step the robot manages to move the center of mass behind the foot. During

the third step, the ZMP is in the toe and the robot decelerates. It takes a few more

steps to settle the CoM close enough to zero where no more step size modification

is needed.

7.3. Dynaped Videos

In earlier work, we evaluated the same capture step controller with our robot Dy-

naped [Missura and Behnke, 2014]. The videof shows reliable and controllable walk-

ing skills with strong disturbance rejection capabilities. Dynaped was not only dis-

turbed by pushes during walking, but also by placing a hand under its feet, and

by forcing collisions with a static obstacle. In the experiment shown in videog, we

mounted smaller feet of human-like proportions on Dynaped, and after refitting the

parameters, we reproduced omnidirectional walking capabilities of similar quality

or even better than before. We also managed to produce a few quite extreme cases

of push recovery, as shown towards the end of the video.

8. Conclusion

We introduced a new approach to robust bipedal walking with push recovery capa-

bilities. The core concept of the gait controller is to use a CPG to generate open-loop

stepping motions that can be controlled in terms of step size and timing. Using this

control interface allows the implementation of a low-dimensional balance controller

that is derived analytically with the help of a Linear Inverted Pendulum Model that

was specifically fitted to the open-loop motion of the robot.

fhttp://youtu.be/PoTBWV1mOlY
ghttp://youtu.be/GU53yomxrxE

November 18, 2019 14:36 WSPC/INSTRUCTION FILE ws-ijhr

REFERENCES 27

In spite of the imprecision and the latency caused by the compliant setting of

the actuators, we are able to demonstrate robust and controllable omnidirectional

walking on a real robot with strong push recovery capabilities. We are able to ac-

complish this without using a precise dynamic model of the robot, without detecting

foot contact, and without means of measuring or enforcing the model-suggested lo-

cation of the Zero Moment Point. We have substantiated this claim with systematic

statistical experiments and video examples.

The architecture of the Capture Step Framework gives rise to potential beyond

the concepts that have been explored so far. The manageable level of complexity

leaves sufficient room to be extended with additional functionalities such as balance-

restoring actions using the trunk or the arms. The separation of motion and balance

should make machine learning tasks easier where either only the motion generator,

or only the balance controller could be trained separately from each other. The

reduced dimensionality of the learning tasks, and starting with a robot that can

already walk, could help leveraging online learning algorithms to optimize the pa-

rameters of the motion patterns and to learn to control the balance of the robot.

Existing methods [Felis and Mombaur, 2013] are often impractical to be applied on

a real robot due to the number of repetitions they require. The fast computation

times of the presented controller could be leveraged to implement balance-aware

footstep planning.

Acknowledgements

This work has been partially funded by grant BE 2556/13-1 of German Research

Foundation (DFG). We thank Grzegorz Ficht for supporting the experiments with

software for the NimbRo-OP2 robot.

References

S. O. Anderson, M. Wisse, C. G. Atkeson, J. K. Hodgins, G. J. Zeglin, and B. Moyer.

Powered Bipeds Based on Passive Dynamic Principles. In IEEE-RAS Int. Conf.

on Humanoid Robots (Humanoids), 2005.

Sven Behnke. Online trajectory generation for omnidirectional biped walking. In

IEEE Int. Conf. on Robotics and Automation (ICRA), pages 1597–1603, 2006.

Steven H. Collins, Martijn Wisse, and Andy Ruina. A Three-Dimensional Passive-

Dynamic Walking Robot with Two Legs and Knees. International Journal of

Robotics Research, pages 607–615, 2001.

H. Diedam, D. Dimitrov, P.-B. Wieber, K. Mombaur, and M. Diehl. Online Walking

Gait Generation with Adaptive Foot Positioning Through Linear Model Predic-

tive Control. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),

2008.

J. Englsberger, C. Ott, M. A. Roa, A. Albu-Schäffer, and G. Hirzinger. Bipedal

Walking Control Based on Capture Point Dynamics. In IEEE/RSJ Int. Conf.

on Intelligent Robots and Systems (IROS), 2011.

November 18, 2019 14:36 WSPC/INSTRUCTION FILE ws-ijhr

28 REFERENCES

Martin Felis and Katja Mombaur. Modeling and optimization of human walking.

In Modeling, Simulation and Optimization of Bipedal Walking, volume 18 of Cog-

nitive Systems Monographs, pages 31–42. Springer Berlin Heidelberg, 2013. ISBN

978-3-642-36367-2.

Grzegorz Ficht, Philipp Allgeuer, Hafez Farazi, and Sven Behnke. Nimbro-op2:

Grown-up 3d printed open humanoid platform for research. In Proc. of the

IEEE/RAS Int. Conf. on Humanoid Robots (Humanoids), 2017.

Colin Graf, Alexander Härtl, Thomas Röfer, and Tim Laue. A Robust Closed-Loop

Gait for the Standard Platform League Humanoid. In Workshop on Humanoid

Soccer Robots, 2009.

Inyong Ha, Yusuke Tamura, and Hajime Asama. Development of open platform

humanoid robot darwin-op. Advanced Robotics, 27(3):223–232, 2013.

S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, and K. Yokoi. Biped

Walking Pattern Generation by Using Preview Control of Zero-Moment Point.

In IEEE Int. Conf. on Robotics and Automation (ICRA), 2003.

S. Kajita, M. Morisawa, K. Miura, S. Nakaoka, K. Harada, K. Kaneko, F. Kanehiro,

and K. Yokoi. Biped Walking Stabilization Based on Linear Inverted Pendulum

Tracking. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),

2010.

Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kazuhito Yokoi, and Hirohisa

Hirukawa. The 3D linear inverted pendulum mode: a simple modeling for a

bipedwalking pattern generation. In IEEE/RSJ Int. Conf. on Intelligent Robots

and Systems (IROS), 2001.

Takumi Kamioka, Hiroyuki Kaneko, Mitsuhide Kuroda, Chiaki Tanaka, Shinya

Shirokura, Masanori Takeda, and Takahide Yoshiike. Push recovery strategy

of dynamic gait transition between walking, running and hopping. I. J. Hu-

manoid Robotics, 16(3):1940001, 2019. doi: 10.1142/S0219843619400012. URL

https://doi.org/10.1142/S0219843619400012

.

Santiago Martinez, Juan Miguel Garca-Haro, Juan Victores, Alberto

JARDN HUETE, and Carlos Balaguer. Experimental robot model adjustments

based on force-torque sensor information. Sensors (Basel, Switzerland), 18, 03

2018. doi: 10.3390/s18030836.

Tad McGeer. Passive Dynamic Walking. International Journal of Robotics Re-

search, 1990.

Marcell Missura. Analytic and Learned Footstep Control for Robust Bipedal Walk-

ing. PhD thesis, University of Bonn, 2016.

Marcell Missura and Sven Behnke. Lateral capture steps for bipedal walking. In

IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), 2011.

Marcell Missura and Sven Behnke. Self-Stable Omnidirectional Walking with Com-

pliant Joints. In Workshop on Humanoid Soccer Robots, Atlanta, USA, 2013a.

Marcell Missura and Sven Behnke. Omnidirectional Capture Steps for Bipedal Walk-

ing. In IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), 2013b.

November 18, 2019 14:36 WSPC/INSTRUCTION FILE ws-ijhr

REFERENCES 29

Marcell Missura and Sven Behnke. Balanced walking with capture steps. In

RoboCup 2014: Robot Soccer World Cup XVIII (to appear). Springer, 2014.

Marcell Missura and Sven Behnke. Online Learning of Bipedal Push Recovery. In

IEEE Int. Conf. on Robotics and Automation (ICRA), 2015.

Mitsuharu Morisawa, Fumio Kanehiro, Kenji Kaneko, Nicolas Mansard, Joan Sola,

Eiichi Yoshida, Kazuhito Yokoi, and Jean-Paul Laumond. Combining suppression

of the disturbance and reactive stepping for recovering balance. In IEEE/RSJ Int.

Conf. on Intelligent Robots and Systems (IROS), pages 3150–3156, 2010.

Christian Ott, Christoph Baumgrtner, Johannes Mayr, Matthias Fuchs, Robert

Burger, Dongheui Lee, Oliver Eiberger, Alin Albu-Schffer, Markus Grebenstein,

and Gerd Hirzinger. Development of a biped robot with torque controlled joints. In

IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), pages 167–173, 2010.

ISBN 978-1-4244-8688-5.

I.-W. Park, J.-Y. Kim, J. Lee, and J.-H. Oh. Mechanical Design of Humanoid

Robot Platform KHR-3 (KAIST Humanoid Robot 3: HUBO). In IEEE-RAS Int.

Conf. on Humanoid Robots (Humanoids), 2005.

Jerry Pratt, Chee-Meng Chew, Ann Torres, Peter Dilworth, and Gill Pratt. Virtual

Model Control: An Intuitive Approach for Bipedal Locomotion. The International

Journal of Robotics Research, 20(2):129–143, 2001.

Jerry E. Pratt, John Carff, Sergey V. Drakunov, and Ambarish Goswami. Capture

point: A step toward humanoid push recovery. In IEEE-RAS Int. Conf. on Hu-

manoid Robots (Humanoids), pages 200–207. IEEE, 2006. ISBN 1-4244-0200-X.

B. J. Stephens and C. G. Atkeson. Push Recovery by Stepping for Humanoid Robots

with Force Controlled Joints. In IEEE-RAS Int. Conf. on Humanoid Robots

(Humanoids), 2010.

J. Urata, K. Nishiwaki, Y. Nakanishi, K. Okada, S. Kagami, and M. Inaba. Online

Decision of Foot Placement Using Singular LQ Preview Regulation. In IEEE-

RAS Int. Conf. on Humanoid Robots (Humanoids), 2011.

Pierre-Brice Wieber. Trajectory Free Linear Model Predictive Control for Stable

Walking in the Presence of Strong Perturbations. In IEEE-RAS Int. Conf. on

Humanoid Robots (Humanoids), 2006.

Martijn Wisse and J. Van Frankenhuyzen. Design and Construction of MIKE; a

2D Autonomous Biped Based on Passive Dynamic Walking. In International

Symposium of Adaptive Motion and Animals and Machines, 2003.

Seung-Joon Yi, Byoung-Tak Zhang, Dennis Hong, and Daniel D. Lee. Online Learn-

ing of a Full Body Push Recovery Controller for Omnidirectional Walking. In

IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), 2011.

November 18, 2019 14:36 WSPC/INSTRUCTION FILE ws-ijhr

30 REFERENCES

Marcell Missura is a postdoc researcher and teaching assis-

tant at the Humanoid Robots Lab of the University of Bonn

in Germany. He obtained his PhD from the University of Bonn

in computer science in 2016 for his work on bipedal walking

with push recovery capabilities. Marcell has earned six world

champion titles and three times the Louis Vuitton Best Hu-

manoid Award in the international RoboCup competitions.

His research topics include motion planning in dynamic environments and robust

bipedal walking for humanoid robots.

Maren Bennewitz is professor for Computer Science at the

University of Bonn, Germany, and head of the Humanoid Robots

Lab. She received her Ph.D. in Computer Science from the Uni-

versity of Freiburg in 2004. Before she moved to Bonn in 2014,

she was a Postdoc and assistant professor at the University of

Freiburg. The focus of her research lies on robots acting in hu-

man environments. In the last few years, she has been developing

several innovative solutions for robotic systems co-existing and

interacting with humans. Among them are techniques for efficient navigation with

humanoid and wheeled robots as well as for reliably detecting and tracking humans

from sensor data and analyzing their motions.

Sven Behnke is full professor for Autonomous Intelligent

Systems at Rheinische Friedrich-Wilhelms-Universität Bonn.

He received his M.S. degree in Computer Science in 1997

from Martin-Luther-University, Halle-Wittenberg, and his Ph.D.

degree in 2002 from Freie Universität Berlin. In 2003, he

worked as a postdoc at the International Computer Science

Institute, Berkeley. From 2004 to 2008, he headed the Hu–

manoid Robots group at Albert-Ludwigs-Universität, Freiburg. His research inter-

ests include cognitive robotics, computer vision, and machine learning.

