
NeuralMVS: Bridging Multi-View Stereo and Novel
View Synthesis

Radu Alexandru Rosu
Autonomous Intelligent Systems

University of Bonn
Bonn, Germany

rosu@ais.uni-bonn.de

Sven Behnke
Autonomous Intelligent Systems

University of Bonn
Bonn, Germany

behnke@ais.uni-bonn.de

Abstract—Multi-View Stereo (MVS) is a core task in 3D
computer vision. With the surge of novel deep learning methods,
learned MVS achieves more complete depth maps than classical
approaches, but still relies on building a memory intensive dense
cost volume. Novel View Synthesis (NVS) is a parallel line of
research and has recently seen an increase in popularity with
Neural Radiance Field (NeRF) models, which optimize a per scene
radiance field. However, NeRF methods do not generalize to novel
scenes and are slow to train and test. We propose to bridge the
gap between these two methodologies with a novel network that
can recover 3D scene geometry as a distance function, together
with high-resolution color images. Our method uses only a sparse
set of images as input and can generalize well to novel scenes.
Additionally, we propose a coarse-to-fine sphere tracing approach
in order to significantly increase speed. We show on various
datasets that our method reaches comparable accuracy to per-
scene optimized methods while being able to generalize and
running significantly faster.

Index Terms—image-based, novel-view, multi-view

I. INTRODUCTION

Multi-view Stereo (MVS) recovers depth and geometry
from multiple images with known camera poses. This is
usually done with classical methods like COLMAP [1],
Gipuma [2], or MVE [3] by searching for correspondences
along epipolar lines. These algorithms lack learned com-
ponents and cannot cope with challenging conditions like
imperfect calibration, blurry or incomplete images, and heavy
occlusion [4], [5].

Recent Novel View Synthesis (NVS) methods like NeRF [6]
recover geometry as a byproduct of view synthesis. Geom-
etry is represented as a radiance field which is multi-view
consistent between all images. This has the advantage of
recovering more complete depth while being more robust to
imperfect images than classical methods. Main disadvantages
of NVS methods are the large processing time and a lack
of generalization. They require per-scene training which can
take up to several days. Additionally, inference speed is also
limited—often requiring multiple minutes to synthesize a full
image together with the corresponding depth.

More recent NVS approaches like pixelNeRF [7] and IBR-
Net [8] improve the reconstruction speed by having a training

This work has been funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence Strategy - EXC
2070 - 390732324.

phase which allows the model to generalize to novel scenes
and thus require only little per-scene fine-tuning. Inference is
still slow as the network needs to query the radiance field
multiple times during synthesis and requires a very dense
sampling of the view frustum.

In our approach, we leverage ideas from MVS and NVS and
combine them in a new learning-based method that generalizes
well to novel scenes and reaches comparable reconstructions
to per-scene optimized methods while requiring only a fraction
of the time.

First, our method accelerates the ray marching step by
differentiable sphere tracing. While ray marching requires
hundreds of samples per ray in order to achieve good accuracy,
sphere tracing can reach the object surface with only a few
iterations by predicting for each ray sample its jump towards
the next one.

Second, instead of tracing one ray per pixel, our approach
starts by tracing on a coarse image which is iteratively refined
until we reach the full resolution. This coarse-to-fine method
further alleviates the labor-intensive step of finding the 3D
surface of the object.

Third, we propose a new scheme for the selection of
conditioning views based on a Delaunay triangulation of the
input views. We find that this is more temporally stable than
methods based on proximity of viewing direction.

Fourth, we introduce a loss that encourages the network to
output a confidence map for the novel RGB-D view. These
confidence values align well with parts of the image that are
undersampled or occluded and may be used to inform further
reconstruction or refinement methods.

In summary, our contributions are:

• a new learning-based novel view synthesis method which
generalizes to unseen scenes,

• an efficient coarse-to-fine approach based on differen-
tiable sphere tracing to recover depth with few samples
conditioned on a set of input views, and

• a loss that encourages the network to output a confidence
map for each novel view produced.

The general pipeline of our method is shown in Fig. 1 and
the core components are detailed in Fig. 2.

behnke
Schreibmaschine
International Joint Conference on Neural Networks (IJCNN), Padova, Italy, July 2022.



Fig. 1. NeuralMVS processes multiple input views to synthesize a novel colored view with corresponding depth and gives an estimate for the output confidence.

II. RELATED WORK

Several methods for learned MVS have gained popularity
lately. MVSNet [5] proposes an end-to-end differentiable
model to learn depth inference from unstructured stereo.
Features are extracted from images and a dense cost volume
is built using samples at regular intervals. The volume is
regularized using 3D convolutions and then used to regress
a depth map. In contrast in our approach, we do not define
the depth samples a priori, but rather let the network learn
where to sample using a differentiable sphere tracer.

The work of Darmon et al. [9] further builds on MVSNet
and shows that depth can be recovered by using a color
reconstruction loss. Similarly, we only employ an RGB loss,
and do not supervise the depth map as in many settings an
accurate ground-truth may not be available.

Recently, NeRF [6] has gained popularity for synthesizing
highly-detailed novel views. NeRFs represent the scene as
a radiance field and optimize it using differentiable volume
rendering. The volume rendering step is computationally ex-
pensive since it samples the 3D space densely at regular
intervals. One main contribution of NeRF is the introduction of
the positional encoding in the context of NVS that enables the
model to learn high-frequency details. In order to recover the
3D surface precisely, Mildenhall et al. propose a hierarchical
sampling strategy that optimizes two NeRF models: one for
coarse samples and one for fine samples closer to the surface.
In our work, we leverage the positional encoding for our ray
marching step and propose sphere tracing as a method to
alleviate the regular sampling of NeRF.

Scene Representation Networks (SRN) [10] is another ap-
proach which uses sphere tracing for traversing the rays in
3D space. However, this method is only able to recover low-
frequency detail of the scene while we recover fine details by
directly conditioning our model on the image features.

Other methods like FaDIV-Syn [11] propose to recover
novel views of the scene without reconstructing depth by
warping input views into the target frame at a series of
predefined depth planes and letting the network learn how to
best render the novel view. In contrast, we infer both the depth
and the novel view jointly by explicitly letting the network
modify the depth planes which are used to project input views.

MVSNerf [12] is a general network that can recover ra-
diance fields conditioned on input views. They explicitly
construct a cost volume using sweeping planes. The cost

volume is processed by 3D convolutions into a neural encoding
volume and the local voxels features are used to output density
and color along the ray. A limitation of their work is that the
neural encoding volume is represented in the frustum of a
reference view. As a result, only the contents of the scene
that are visible from the reference view can be fine-tuned
and rendered in high detail. In contrast, our approach doesn’t
define a fixed cost volume and rather aggregates image features
from nearby view onto the casted rays. This allows us to model
arbitrary scenes while dynamically changing the input views.

PixelNeRF [7] achieves generalization by aggregating fea-
tures from nearby images onto the ray samples. The aggregated
image features together with positional encodings are passed to
a NeRF network that output final radiance and color. However,
the ray sampling strategy is the same as the original NeRF,
requiring hundreds of samples and slowing down inference.
In contrast, we let the network learn the spacing between
samples, greatly reducing their number and achieving higher
rendering speed.

Similarly to PixelNeRF, IBRNet [8] proposes to aggregate
image features onto the ray. Additionally, they use a ray
transformer that enables ray samples to attend to each other
and better reason about occlusions. In our method, the samples
along the ray can communicate front-to-back through the
usage of an LSTM that dynamically predicts the jump between
samples.

Local Light Field Fusion [13] recover novel-view by pro-
moting input views to a local light field representation and
blending them at the target view location. However, their
method is only demonstrated on front facing scenes due to
the multi-plane approach. Our method recovers both depth and
color and can render views from arbitrary scenes.

III. METHOD

Given a set of source views, our method synthesizes depth
and color image for a novel target view pose. The core idea is
to recover a depth map for the target view such that warping
source views onto it results in an image that matches the
target as close as possible. Our method can thus be viewed
as two jointly trained networks where the first one recovers
the geometry of the scene and a second network which uses
that geometry as a proxy onto which the source views are
projected to recover the novel view.



Fig. 2. High-level features from the input view images are aggregated onto each ray sample. For each ray, a recursive network predicts the jump towards the
next sample (red arrow). This process is repeated for a fixed number of iterations. At the last ray iteration, the final aggregated features are passed through a
rendering network in order to predict the novel view RGB map. The network is only supervised with an RGB loss.

A. View Selection Strategy

In order to select the best suited source views to create
the target view, various schemes have been proposed. Most of
them are based on spatial proximity and view direction [1], [3].
However, we observe that these methods tend to fail choosing
the most informative views when images are taken with non-
uniform spacing. As shown in Fig. 3, we may not be able to
reconstruct the whole novel view for the target position (yellow
dot) depending on scene geometry when choosing the right
three views (blue dots) in case of large occlusions. Choosing
based on proximity can force the network to extrapolate data
from the source views while—ideally—we would want to
network to interpolate the data in order to achieve smooth
transitions and handle occlusions.

Therefore, we propose to choose the ”working set” based on
the Delaunay triangulation of the view positions. This ensures
both a better coverage of the nearby view space and allows
for an easy way to compute weightings for the views by using
barycentric coordinates. Since we construct the triangulation
in 2D while the camera positions are in 3D, we first need to
determine which view configuration is present in the scene.
We distinguish between two types: hemisphere sampling in
which the views are placed in the upper hemisphere around
the scene and fronto-parallel sampling where they are mostly
planar in front of the scene.

For the case of hemisphere sampling, we stereographically
project the camera positions onto the 2D plane where we
perform the triangulation and then lift the result back to 3D.
For fronto-parallel sampling, we orthographically project the
camera positions onto the common plane defined by all views.

After triangulation, the closest triangle to the target view
position is selected and the corresponding images form the
working set. These three images are also assigned a weight bi
which corresponds to the barycentric coordinate of the target
view w.r.t. the triangle. Fig. 3 (right) shows selected view
positions with our approach on the previous example.

b1

b2 b3

Proximity Delaunay

Fig. 3. Given a novel view (orange) we need to choose a working set from
all the views in the dataset (blue). Proximity-based view selection can lead to
significant occlusion as the working set only views the scene from the right.
Our Delaunay-based approach selects the views that belong to the closest
triangle, ensuring scene viewing from different sides.

Finally, we use a shared U-Net model to extract feature
maps Fi ∈ RHi×Wi×d for each image Ii in the working set.

To be noted that we only consider a working set of three im-
ages. A generalization to more images would require changing
the view selection strategy and is left for future work.

B. Geometry

To recover the scene geometry, we shoot rays from each
pixel of the target view and find the intersection of the ray with
the scene surface. NeRF-like models accomplish this by densely
sampling the ray at predefined intervals. Hence, most samples
lay in empty space, slowing down processing. In contrast,
we draw inspiration from Scene Representation Networks
(SRN) [10] and propose to use a differentiable sphere tracer
which predicts for each sample on the ray a jump towards
the next sample. This effectively enables the network to learn
and adapt the step-size, which greatly improves the sample
efficiency and speed.

We parametrize each ray from the target view as follows:

r(t) = o+ td, (1)

where t is the distance along the ray, o is the origin of the
camera in world coordinates, and d is the normalized direction
of the ray. We initialize t to be a small value such that ray
marching starts close to the camera. At each ray marching



Fig. 4. Depth estimation for the novel view starts on a coarse scale and is initialized to a constant value close to the camera. The network iteratively refines
the current estimate using input view features and upscales the depth until the full resolution is reached.

step, the position of the sample x = r(t) is obtained in world
coordinates. The ray sample is projected into each source
view Ii from where local features fi ∈ Rd are extracted
using bilinear interpolation. The local features fi from the
source images are aggregated into a final feature by computing
their weighted mean µ and variance v using the barycentric
weights.

The aggregated features are also concatenated with the posi-
tional encoding of the ray samples which helps the network to
recover high-frequency depth. Hence, the aggregated feature
for each ray is defined as:

g = [µ,v, γ(x)] , (2)

where γ(.) is a positional encoding mapping the position
into a higher-dimensional space [6].

Before computing the jump towards the next sample, an
important consideration is that a single point sample does not
contain sufficient information for an accurate jump prediction.
Many real-world scenarios have objects with poor texture or
ambiguous depth. If each ray sample independently predicts
its own jumps, the final depth map will end up being noisy.
We argue here that having knowledge of how the neighbouring
rays behave is crucial for resolving ambiguities. Therefore, we
add a series of 3×3 convolutions after the feature aggregation
step in order to better constrain the features of each ray. To be
noted that the per-pixel embeddings from U-Net capture only
information from one particular view while convolving on the
ray features also reasons about the multi-view features from
the working set of images.

Finally, the ray features are passed through an LSTM that
predicts the displacement δ along the ray which is used to
update our depth ti+1 = ti+δ. This process is iterated a fixed
number of times (we use 18 in our experiments) and the final
ray sample is considered to be on the surface of the object.
This is in stark contrast to NeRF-like models which require
samples in the order of hundreds.

Since time consumption increases with the number of ray
marching iterations and the number of rays we traverse, we
propose to alleviate this problem by employing a coarse-
to-fine scheme. Instead of creating rays for each pixel of
the target view of size H × W , we first ray march from
a downsampled version at quarter resolution. After several
ray marching steps, the computed depth map is upsampled

Fig. 5. Results from the Realistic Synthetic dataset [6]. Our network
captures both high-frequency detail and view-dependent effects like specular
reflections.

bilinearly to half resolution and the ray marching continues.
This process, shown in Fig. 4, iterates until the final full
resolution is reached. We observe that this scheme works well
since locally-close pixels tend to march together and therefore
their depth can be recovered by marching them as a whole.
We use three levels of hierarchical depth, each with 10, 5, and
3 ray march steps, respectively.

C. Color

We obtain per-pixel color by projecting the final ray-
marched surface into the three input views and bilinearly
sampling both color ci and local features fi which are concate-
nated together in ki = [ci, fi]. Instead of aggregating ki using
the barycentric weights, we observed that it is beneficial to
allow the network to predict the weights. Therefore, similar to
IBRNet [8], we first compute µ and v using the barycentric
weights in order to capture global information. Afterwards,
we concatenate these aggregated features with each per-frame
feature vector ki. Each concatenated feature is fed into a small



Fig. 6. The confidence predicted by the network is low near depth disconti-
nuities where occlusion occur and therefore errors are likely.

MLP to integrate both local and global information and predict
multi-view aware feature k′i and blending weights wi ∈ [0, 1].
We pool k′i into mean and variance by using the weights wi

and map the resulting vector to RGB color using another MLP.
We denote the final RGB image with Ĩ.

The color loss is computed as the `1-loss between the
recovered RGB and the ground-truth color. This loss implicitly
biases the geometry to lie on the true scene surface since the
correct depth produces consistent input view features and the
color prediction becomes possible. This allows the network to
learn unsupervised depth and be applicable to datasets with
only RGB images.

The reader should further note that we output a full RGB
map in one pass of our network. In contrast, NeRF-like methods
output a limited number of pixels at a time since their ray-
marching step is more expensive and therefore requires to run
the network multiple times to complete the full image. This
allows our method to use more complex losses like perceptual
losses which need to operate on the full image.

D. Loss with Confidence Estimation

Apart from predicting a correct novel view, it is also
valuable to predict a confidence for each pixel. This allows to
reason about possible occlusions or regions which are outside
the frustum of the input views. In essence, the network can
hallucinate detail when needed but it should be aware of
this hallucination. The confidence is not used directly in our
network but it is a useful output for downstream tasks like
depth fusion.

In order to predict a confidence map, we draw inspiration
from the work of Wagner et al. [14] which attempt to recover
fine-grained explanations from classification networks. The
input to their classification network is a pixel-wise blend be-
tween the image and a zero image. The loss function attempts
to set as many pixels as possible to zero without affecting the
classification accuracy. Hence, non-zero pixels are the ones
that the network deems important for classification.

In our approach, we choose a similar scheme by defining
our loss as a blend between the predicted Ĩ and the ground-
truth image I. The blend uses the confidence map Q which
encourages it to be as close as possible to 1 such that most
of the pixels are chosen from the predicted image. Then our
image loss with confidence estimation is defined as:

L =
∥∥∥I− (

Ĩ ·Q+ I · (1−Q)
)∥∥∥

1
+ λ ‖1−Q‖2 . (3)

Fig. 7. Comparison of novel views on the test set of DTU. The model didn’t
use any per-scene optimization and was trained only on the training set of
DTU showing that it can generalize to novel views and novel objects.

IV. RESULTS

A. Datasets

We evaluate our method on three datasets. DTU [15] con-
tains real images of various objects and is targeted towards
evaluation of MVS methods. We use the train and test splits
as defined by PixelNeRF [7]: 88 scenes for training and
15 for testing at a resolution of 400 × 300. We use this
dataset to test the generalization capabilities of our method.
The objects in the test set are different from the ones in the
training set, so if the network is able to recover novel views of
these novel objects, we can conclude that it learned a general
reconstruction method. Results of the generalization to novel
objects and novel views can be seen in Fig. 7.

Realistic Synthetic 360◦ [6] contains synthetic images of
objects from the upper hemisphere. The dataset contains eight
scenes with images at 800 × 800 resolution. The objects
exhibit several view-dependent effects like specular reflections
which must be captured correctly by the network for properly
rendering the target view. Results of our network’s prediction
on this dataset can be seen in Fig. 5.

Real Forward-Facing [16] consists of real images of large
scenes scanned with a camera in a forward-facing manner. The
dataset contains eight scenes with image size of 1008× 756.
We use the train and test split as defined by [8]: every 8th
image is selected for testing.

B. Evaluation

We train our method on the three datasets and distinguish
between with and without per-scene optimization. In the case
of no scene optimization, we train a generalizable model on
the DTU dataset [15] and evaluate on the synthetic [6], a real
dataset [16], and the novel scenes from DTU. Tab. I shows that
our network generalizes to the novel views despite the drastic
change in scale and object types. We also train our model with
per-scene images similar to NeRF and show that it performs
comparable to other generalizable models like MVSNeRF [12]
while being significantly faster.

In Fig. 8 we compare our per-scene optimized model with
the other baselines. We observe that our model can recover
more detail especially in highly specular areas. However, our
method also exhibits more errors near occlusion boundaries.
This is to be expected as our method is imaged-based and
therefore areas which are occluded in all source images cannot
be reliably reconstructed.



Fig. 8. Comparison of test-set views of the synthetic dataset. Our method can recover sharp detail together with view-dependent effects. However, because
our method is image-based, it struggles with occlusions and thin objects like the drum stands.

TABLE I
COMPARISON OF DIFFERENT METHODS ON MULTIPLE REAL AND SYNTHETIC DATASETS. RESULTS WITH † CORRESPOND TO NERF MODEL TRAINED FOR

9.5H AS EVALUATED BY MVSNERF [12].

Method Setting DTU [15] Realistic Synthetic 360◦ [6] Real Forward-Facing [16]
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

pixelNeRF [7]
No per-scene
optimization

24.14 0.887 0.224 4.36 0.46 0.44 11.266 0.388 0.757
IBRNet [8] 25.84 0.902 0.213 19.43 0.841 0.231 16.70 0.566 0.498
MVSNeRF [12] 25.17 0.911 0.185 22.67 0.90 0.21 17.56 0.691 0.381
Ours 26.376 0.896 0.184 20.070 0.687 0.242 18.909 0.643 0.372

NeRF [6] Per-scene
optimization

23.70† 0.893† 0.247† 31.01 0.947 0.081 26.50 0.811 0.250
MVSNeRF [12] 29.30 0.959 0.101 27.21 0.945 0.227 26.25 0.907 0.139
Ours 28.093 0.913 0.165 28.425 0.952 0.070 25.206 0.803 0.218

C. Performance
Previous methods are unable to process the full image at

once due to the high computational demand per ray and thus
need to run several times with different ray batches to complete
the image. We set the ray batches to the maximum size that
fits in the memory of an NVIDIA GeForce RTX 3090 and
measure the time for rendering a novel view with a resolution
of 800×800 pixels. Tab. II shows that our method renders the
full image in one forward pass and requires significantly less
time than all previous approaches.

D. Ablation Study
We perform an ablation study of the different components

of our network. We train on the Lego scene from the synthetic
dataset and observe how the network performance is affected.

We first remove the positional encoding from the ray
marching. This decreases the depth quality significantly as the
network is unable to recover high-frequency details.

Disabling Delaunay for view selection and using a
proximity-based method that takes the three closest frames as
the working set shows also a slight decrease in performance.

TABLE II
COMPUTATION TIME AND MAXIMUM RAYS PER BATCH FOR A 800× 800

IMAGE.

Method Time Rays
MVSNeRF [12] 5.2 s 110 k
NeRF [6] 6.4 s 120 k
IBRNet [8] 31 s 8 k
pixelNeRF [7] 164 s 300 k

Ours 0.16 s full(640 k)

TABLE III
ABLATION STUDY

Setting PSNR↑ SSIM↑ LPIPS↓
No position encoding 25.692 0.899 0.082
No Delaunay 26.764 0.919 0.075
Fewer ray marches 27.522 0.933 0.058
Only 1× 1 convolutions 26.224 0.912 0.075
Complete model 27.918 0.937 0.056



Fig. 9. Failure cases: Our method fails in the case of occlusion like the ceiling
detail or the image borders.

By default, we use three levels of depth refinement, each
with 10, 5, and 3 ray march steps, respectively. We reduce
the number of ray march steps to 5, 3, and 1 and observe a
slight decrease in performance. The required number of ray
marching steps is heavily dependent on the scene complexity
with simple scene requiring less steps.

Finally, we change the 3 × 3 convolutions in the ray
marcher to 1 × 1 in order to simulate propagating each ray
independently with no spatial awareness of the neighbouring
rays, similar to other NVS methods. We observe a significant
decrease in accuracy, as the rays can no longer leverage spatial
information to resolve ambiguities.

E. Implementation Details

The feature extraction network is a U-Net model [17] which
outputs per-pixel a 64 dimensional vector. The features from
the three images are aggregated and then passed through two
convolutional layers of 3×3 which output 64 channels. Finally,
the LSTM that predicts the sample jump has a hidden size of
32. The color estimation is implemented as an MLP with 3
layers and a hidden size of 64. The network is optimized using
Adam [18] with a learning rate of 1× 10−4.

F. Limitations

One limitation of our method is that it is based on ray-
marching instead of volumetric rendering and therefore cannot
model transparent objects. A switch to a front-to-back additive
blending of radiance could alleviate this issue.

Another limitation is that our method is image-based and
therefore cannot recover detail in occluded regions as seen
in Fig. 9.

Finally, the depth can be ambiguous in the case of no texture
since the network can recover correct color even if the depth
is noisy. This could be alleviated by using more input views
or with stronger priors.

V. CONCLUSION

We proposed a network that jointly resolves scene geometry
and novel view synthesis from multi-view datasets and is
supervised only by image reconstruction loss. We represent
the scene geometry as a distance function which we ray march
using sphere tracing. Sphere tracing alleviates the memory

constraints faced by other methods and allows us to render
high resolution images in one forward pass and is thus much
faster than previous methods. We further improve the speed
by proposing a hierarchical depth refinement which estimates
depth in a coarse-to-fine manner.

Finally, we show the generalization capabilities of our
network by evaluating on datasets with different scale and
object configurations for which we obtain competitive results
but with significantly higher frame rates.

REFERENCES

[1] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm, “Pixel-
wise view selection for unstructured multi-view stereo,” in European
Conference on Computer Vision (ECCV), 2016.

[2] S. Galliani, K. Lasinger, and K. Schindler, “Massively parallel multiview
stereopsis by surface normal diffusion,” in IEEE International Confer-
ence on Computer Vision (ICCV), 2015.

[3] M. Goesele, N. Snavely, B. Curless, H. Hoppe, and S. M. Seitz,
“Multi-view stereo for community photo collections,” in IEEE 11th
International Conference on Computer Vision (ICCV), 2007.

[4] H. Laga, “A survey on deep learning architectures for image-based depth
reconstruction,” arXiv preprint arXiv:1906.06113, 2019.

[5] Y. Yao, Z. Luo, S. Li, T. Fang, and L. Quan, “MVSNet: Depth
inference for unstructured multi-view stereo,” in European Conference
on Computer Vision (ECCV), 2018, pp. 767–783.

[6] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “NeRF: Representing scenes as neural radiance fields for
view synthesis,” in European Conference on Computer Vision (ECCV),
2020.

[7] A. Yu, V. Ye, M. Tancik, and A. Kanazawa, “pixelNeRF: Neural radiance
fields from one or few images,” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2021.

[8] Q. Wang, Z. Wang, K. Genova, P. Srinivasan, H. Zhou, J. T. Barron,
R. Martin-Brualla, N. Snavely, and T. Funkhouser, “IBRNet: Learning
multi-view image-based rendering,” in IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2021.

[9] F. Darmon, B. Bascle, J. Devaux, P. Monasse, and M. Aubry, “Deep
multi-view stereo gone wild,” International Conference on 3D Vision,
2021.

[10] V. Sitzmann, M. Zollhöfer, and G. Wetzstein, “Scene representation
networks: Continuous 3D-structure-aware neural scene representations,”
in Advances in Neural Information Processing Systems (NeurIPS), 2019.

[11] A. Rochow, M. Schwarz, M. Weinmann, and S. Behnke, “FaDIV-Syn:
Fast depth-independent view synthesis,” in Proceedings of Robotics:
Science and Systems (RSS), 2022.

[12] A. Chen, Z. Xu, F. Zhao, X. Zhang, F. Xiang, J. Yu, and H. Su,
“MVSNeRF: Fast generalizable radiance field reconstruction from multi-
view stereo,” arXiv:2103.15595, 2021.

[13] B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. K. Kalantari, R. Ra-
mamoorthi, R. Ng, and A. Kar, “Local light field fusion: Practical view
synthesis with prescriptive sampling guidelines,” ACM Transactions on
Graphics (TOG), vol. 38, no. 4, pp. 1–14, 2019.

[14] J. Wagner, J. M. Köhler, T. Gindele, L. Hetzel, J. T. Wiedemer,
and S. Behnke, “Interpretable and fine-grained visual explanations for
convolutional neural networks,” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019, pp. 9097–9107.

[15] H. Aanæs, R. R. Jensen, G. Vogiatzis, E. Tola, and A. B. Dahl,
“Large-scale data for multiple-view stereopsis,” International Journal
of Computer Vision, vol. 120, pp. 153–168, 2016.

[16] B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. K. Kalantari, R. Ra-
mamoorthi, R. Ng, and A. Kar, “Local light field fusion: Practical view
synthesis with prescriptive sampling guidelines,” ACM Transactions on
Graphics (TOG), vol. 38, no. 4, pp. 29:1–29:14, 2019.

[17] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234–241.

[18] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.




