Published at International Joint Conference on Neural Networks (IJCNN), 2015

Recurrent Convolutional Neural Networks for
Object-Class Segmentation of RGB-D Video

Mircea Serban Pavel, Hannes Schulz, and Sven Behnke
Universitdt Bonn
Computer Science Institute VI
Friedrich-Ebert-Allee 144
53113 Bonn

pavel@cs.uni-bonn.de, schulzh@ais.uni-bonn.de, behnkelcs.uni-bonn.de

Abstract—ODbject-class segmentation is a computer vision task
which requires labeling each pixel of an image with the class
of the object it belongs to. Deep convolutional neural networks
(DNN) are able to learn and exploit local spatial correlations
required for this task. They are, however, restricted by their
small, fixed-sized filters, which limits their ability to learn long-
range dependencies. Recurrent Neural Networks (RNN), on the
other hand, do not suffer from this restriction. Their iterative
interpretation allows them to model long-range dependencies by
propagating activity. This property might be especially useful
when labeling video sequences, where both spatial and temporal
long-range dependencies occur. In this work, we propose novel
RNN architectures for object-class segmentation. We investigate
three ways to consider past and future context in the prediction
process by comparing networks that process the frames one by
one with networks that have access to the whole sequence. We
evaluate our models on the challenging NYU Depth v2 dataset
for object-class segmentation and obtain competitive results.

I. INTRODUCTION

Current deep neural network architectures achieve superior
performance on a number of computer vision tasks, such as
image classification, object detection and object-class segmen-
tation. Most of these tasks focus on extracting information
from a single image. Deep neural networks compute increas-
ingly abstract features, which simultaneously become more and
more semantically meaningful, and incorporate larger contexts.

A real-world vision system will have to deal with the time
dimension as well. Content is increasingly generated in the
form of videos by Internet users, surveillance cameras, cars,
or mobile robots. Video information can be helpful, as looking
at a whole sequence instead of single frames may enable the
interpretation of ambiguous measurements.

Similar to increasingly abstract features on images, we are
interested in neural networks which produce high-level features
on sequences. In a recursive computation, these high-level
features should help to interpret the next frame in a sequence.
In addition to a semantically meaningful localized content
description, such features should form high-level descriptions
of motions with increasing temporal context.

In this paper, we introduce and compare recurrent convolu-
tional neural network architectures which produce high-level
localized sequence features. We evaluate them on the NYU
Depth v2 dataset, an RGB-D object-class segmentation task,
where every pixel of the input image must be labeled with

Fig. 1: Architecture of the unidirectional RNN. The layers
are connected to each other with valid convolutions. Upward
(forward) connections additionally include spatial max-pooling
operations, while downward (backward) connections include a
spatial upsampling. Delay D is number of time frames between
an input and corresponding output frame.

the category of the object it belongs to. In this challenging
and established benchmark, most methods focus on prediction
based on single frames, while our method exploits image
sequences.

In short, our contributions are as follows:

e We introduce three recurrent neural network models
for processing image sequences.

e On toy datasets, we show that our recurrent models
are able to keep an abstract state over time, track and
interpret motion, and retain uncertainty.

e We show that our model can reach competitive results
on RGB-D object class segmentation on the challeng-
ing NYU Depth v2 dataset.

e We compare the introduced models and find that
unidirectional models with long sequences produce the
best results.

The remainder of this paper is organized as follows. Section II
introduces our architecture. In Section III, we discuss related
work. Network training is described in Sec. IV. We evaluate
our model in Section V, and discuss the results in Section VI.

Next layer
Forward Connection

@ Backward Connection
______ -
I'T/Iultiscale Inputs
Pool I |
Forward Connection ‘ Conv ‘ | ‘ Input ‘ |
Lateral Connection ; | :
|
IE' ‘ RelU ‘ | ‘ Conv ‘ :
A I
[Conv | [Conv | [Upscale | | [RelU | I
|
R N
+
[_Pool]

Forward Connection

Previous Layer

Fig. 2: Recurrent connections as viewed from a single hidden
layer. Activations of a hidden layer are the result of forward
connections from below, backward connections from above,
and lateral connections from the same layer at previous time
steps. Inputs may be provided at all scales.

II. RECURRENT CONVOLUTIONAL NEURAL NETWORKS
FOR IMAGE LABELLING

In this section, we present our network architectures. All
network architectures are inspired by the Neural Abstraction
Pyramid of Behnke [1], a hierarchical recurrent neural network
architecture for image processing. A schematic overview is
shown in Figures 1 and 2. We use convolutional neural net-
works (CNN [2]), which retain the topological image structure
and ensure localization of features. Our base configuration
(without the ability to process sequences) contains L = 3 lay-
ers with 32 maps each, ReLU non-linearities, and interleaved
spatial max-pooling (c.f. Hinton et al. [3]).

A. Connection Types

To process sequences, we replicate our model for T
time steps and introduce connections between the temporal
copies. Three types of connections exist: forward, lateral, and
backward. Computationally, all connections are valid convolu-
tion operations followed by a half-rectifying point-wise non-
linearity f(z) = max(0, z).

A hidden layer H (t,1), at time step ¢ and abstraction level [,
is connected to layer H (t+1,[+1) using a forward connection.
These connections allow the vertical flow of information from
the bottom of the network to the top and thus the construction
of high level features based on the low level features. The non-
linearity of the forward connections are followed by a spatial
2x2 maximum pooling operation with stride 2.

Lateral connections connect layers H(t,l) and H (¢t + 1,1).
These horizontal connections can incorporate immediate spa-
tial context from the same activation level. The intermediate
context is limited by the receptive field size of the convolution
filters.

Backward connections connect layer H (t,1) to layer H (t+
1,1—1), and can be interpreted as providing a high-level prior

A
Output

Input(n) ‘ Input(n) ‘
Input(0)] Input(0)]

Fig. 3: Architecture of the simplified RNN. All time steps of
the network have access to the whole image sequence.

for the lower, more detailed layers. Since higher layers have
a coarser spatial resolution, they also provide a convenient
shortcut for information that needs to travel long distances.
Backward connections are immediately followed by a spatial
upsampling operation.

Due to padded convolutions and the opposing pooling and
upsampling operations, all connections coinciding on a given
hidden layer have the same size, and are simply summed
elementwise.

All connections use temporal weight sharing, i.e. for all ¢
and all £ € {—1,0,1}, the weights used in the convolution
from H(t,1) to H(t+1,l+ k) are identical across time steps.

B. Output

In contrast to common CNN models, the output of our
network is always obtained in the lowest layer of the network,
at the first time step which ensures that the activations were
able to reach the highest layer and return back. This structural
property allows us to produce detailed outputs at input res-
olution. The cross-entropy loss over the C' object categories
is measured on a subset of the maps in the lowest layer,
where every map is responsible for one category. Apart from a
simplified implementation, this allows the network to produce
and reuse intermediate outputs, and refine them over time.

C. Multi-Scale Inputs

Inputs may be given on all scales of the network. When
using multi-scale inputs, we additionally convolve a (down-
scaled) version of the input and add it to the result.

D. Unidirectional RNN

In the architecture described so far, we process the video
images sequentially, one image per time step. The state (i.e.,
the activations) at time ¢ containing information about its past
is combined with the image at time ¢, producing an output and
a new state. Since the last output benefits from learning from
the whole sequence, it is natural to place the frame that we
want to evaluate at the end.

The first temporal copy is special, since it contains regular
feed forward connections. This allows us to produce activations
in each layer such that all connection types can be used in the
transition from ¢ to ¢ 4 1.

Forward Processing Subnetwork

Backward Processing Subnetwork
[]]]
[.lq H(t-D,1) .] H(t,1) .| H(t+D,1) ..]
[l H(t-D,0) .] H(t,0) [« H(t+D,0) 1«..]

[+]

Input(t)

Fig. 4: Architecture of the bidirectional RNN. The final output at the center has access to both past and future context. Delay
D is number of time frames between an input and corresponding output frame.

When processing input at time ¢, we allow L —1 time steps
for the information to reach the top level of the network and
the same amount for propagating back to the bottom layer,
where the output corresponding to time t is evaluated. Note
that the last temporal steps do not need all the hidden layers,
since their activation would no longer propagate to the output.

E. Simplified RNN

In this architecture, shown in Figure 3, we concatenate
inputs from all time steps and provide the whole sequence to
the network at every time step. This is a simplified version
of our first architecture, since the necessity of exploiting
temporal dependencies is reduced. On the other hand, spatial
information can still be aggregated over time, since we keep
temporal connections and the pyramid structure of the network.
Our intent for doing so is to demonstrate that learning from
stacks of time frames is inefficient and that limiting the
processing to a single image per time step does not result in
a performance decline.

F. Bidirectional RNN

The third architecture, shown in Figure 4, is inspired by the
bidirectional recurrent network [4], [5]. Here, connections exist
in both directions of the temporal dimension. This network is
able to exploit not only the past context, but also the future
context. In a real-time setting, of course, this would require
waiting for all the future frames to become available in order
to produce the result for the current one. We implement this
concept using two unidirectional networks, one in forward and
one in backward direction. We combine their outputs in order
to obtain the final output of the network. To keep the amount
of context between the models constant, we use half of the
context used by the other models in both directions.

III. RELATED WORK

Several groups have used neural networks to process image
sequences. Most works use stacks of frames to provide time
context to the neural network. Le et al. [6] and Taylor et
al. [7] learn hierarchical spatio-temporal features on video

sequences using Gated Convolutional Restricted Boltzmann
Machines (convGRBM) and Independent Subspace Analysis
(ISA), respectively. Their image features are not learned dis-
criminatively and the models do not allow localized predic-
tions.

Simonyan and Zisserman [8] use a two-stream architecture
for action recognition, which separately creates high-level
features from single-frame content and motion. Again, motion
is provided through a stack of optical flow images, so that the
modeled complexity is limited by the stack size. In our paper,
we find that increasing temporal context by providing frames
consecutively yields improved performance.

More recently, Michalski er al. [9] introduced a model
designed to explicitly represent and predict the movement of
entities in images. The architecture is chosen in a way that
higher layers represent invariances of derivatives of positions
(motions, accelerations, jerk). Our models do not explicitly
model motion. However, our models can make use of deep
layers even in the case no high-level position invariances exist,
since in addition to motion, they also encode static content.
Furthermore, in our model, deep layers have a lower resolution
and facilitate transport of information across longer distances.

Jung et al. [10] introduce a multiple timescale recurrent
neural network for action recognition, which uses neurons with
fixed time constants. The model uses leaky integrator neurons,
which limits the rate at which higher layer activations can
change. It is trained and evaluated on a simplified version of
the Weizmann Human Action Recognition dataset.

Various architectures for processing video data are explored
by Karpathy ef al. [11]. The architecture most similar to our
best model, slow fusion, uses weight sharing between time
steps and merges them in higher layers. In their study, slow
fusion yields best results. In contrast to classifying video
sequences with a single label, we produce label output at pixel
level.

Recurrent neural networks were successfully used for
object-class segmentation by Graves [4] and Pinheiro and
Collobert [12]. Both works use recurrence only to increase

spatial context, whereas we extend processing to the temporal
domain.

Long-Short Term Memory (LSTM) units are capable of
carrying information, at the original resolution, over long
temporal distances. This is especially useful for tasks such
as speech recognition [5] or language understanding [13],
where e.g. a specific property of a distant word or sound
might influence the semantics of the current context. In this
paper, we opt for simple neural units instead. While we are
also interested in learning long-range dependencies, we do not
provide spatial or temporal context at the original resolution.
Instead, our architecture maintains expressive low resolution
context information in higher layers. This is more realistic for
natural images, where correlations are stronger between nearby
pixels than those between distant ones. Pascanu et al. [14]
suggest that LSTM also addresses the problem of vanishing
gradients. Here, we use RMSProp as gradient method, which
in addition to preventing vanishing gradients also counteracts
gradient explosion.

Our architecture choices are motivated by the Neural
Abstraction Pyramid of Behnke [1], which performs pixel-wise
classification tasks at input resolutions as well. In contrast to
our work, Behnke did not train on video sequences, but only
on stationary patterns, which in some cases were corrupted by
temporally changing noise. We also include modern architec-
tural features, such as max-pooling and ReLLU non-linearities,
and use RMSProp to increase learning speed.

IV. LEARNING

We initialize the weights biases from a Gaussian distri-
bution. It is important to ensure that the activations do not
explode or vanish early during training. Ideally, activations in
the first forward pass should have similar magnitudes. This is
difficult to control, however. Instead, we choose the variance
of the weights and the mean of the bias such that the average
of the activations in every point of our network is positive and
slightly decreasing over time.

We learn the parameters of our network using Root Mean
Square Propagation (RMSProp), which is a variant of Resilient
Propagation (RProp) suitable for mini-batch learning [15].
RProp considers only the sign of the gradient, thus being
robust against vanishing and exploding gradients, phenomena
that occur when training recurrent neural networks.

We apply dropout [3] during learning, which we found
improves our results in almost all cases. Applying dropout
in RNNs is delicate, however. It should not affect recurrent
connections, which would otherwise loose their ability to learn
long-range dependencies [16]. Thus, when using dropout, we
apply it to add a final convolution applied to the bottom layer
to extract the output.

V. EXPERIMENTS

We first conduct experiments on handcrafted datasets,
which allow us to demonstrate important characteristics of our
model. In a second step, we use our architectures for object-
class segmentation on a challenging RGB-D dataset.

Fig. 5: Toy Experiment: Denoising. Rows represent, in order:
the RGB input of the network for each time-step, the output
of the softmax layer, the final outputs of the network, the
evaluation (@ True Positives O True Negatives @ False
Positives @ False Negatives). The last output represents the
final output of the network and we use it for evaluation.

A. Toy Experiments

We present three toy experiments, showing that our net-
work is able to learn 1) filtering noisy information over time,
2) tracking and interpreting motion, and 3) retaining an internal
state including uncertainty.

1) Denoising: In this experiment, we simply feed different
degraded versions of the same binary image to the network.
We use salt and pepper noise, uniformly distributed over the
whole image. We also draw random black or white lines, to
make the task more difficult. The task is to obtain the original
image without noise. One way the network could solve this
task would be to learn to average the image over time. In
addition, denoising filters learned by the neural network can
remove high frequency noise.

To ensure that the network is able to generalize instead of
learning an input by heart, we use different objects for training,
validation and testing. Every split contains 100 independently
generated sequences.

Since the task has a reduced complexity, we opt for a
simple convolutional model of only one hidden layer with 32
maps. A small filter size of 5x5 provides sufficient spacial
context. There is no specific order in such a sequence of noised
images, thus we only test the unidirectional architecture on this
task.

We use T'=6 temporal copies. During training, we optimize
a weighted sum of the losses at all time steps, with a ten times
larger weight placed on the final output. In all toy examples,
we train for 12,000 iterations with minibatches of size 16.

Figure 5 shows an example from the test set. Our model is
able to improve its prediction step by step, accumulating over
time information even from the areas which are more affected
by noise. After only two steps, the network is able to remove
most of the false positives and to assemble together almost all
features of the object.

¥ ¥ b | 4 ¥ ¥

@ . , kS

Fig. 6: Toy Experiment: Detecting movement. Rows represent,
in order: the RGB input of the network for each time-step, the
output of the softmax layer, the final outputs of the network
and the evaluation (@ True Positives O True Negatives @
False Positives @ False Negatives). The last output represents
the final output of the network and we use it for evaluation.

We also train a convolutional model without recurrent
connections (not shown). Here the result is less clear, the model
only reduces noise in areas where the structure of the object is
clearly visible, resulting in a classification accuracy of 84.7%
network compared to 93.2% of the recurrent model.

2) Detecting Movement: In this experiment, we test the
capabilities of the network to track a foreground object while
the object is moving with constant speed through a noisy
image. To ensure that motion is the cue for tracking, we add
two randomly placed distractor objects of the same shape and
size in a random position at every time step. These distractors
should be classified as background. To prevent the network
from overfitting on motion direction and speed, we generate
several sequences, each moving the object from a random
position to another, with varying speed.

Figure 6 shows the results obtained on this task using
the unidirectional network. In the first time step, the network
cannot decide which object is moving continuously. Already at
t = 2, however, the network detects a slight positional change
from one of the objects, while the others are further away from
their initial position. The softmax layer activations show that
the certainty of the hypothesis increases step by step. Also, one
can notice that more details are added to the representation.
Some false positives still exist when the new random position
of an distractor object is close to its former position.

3) Retaining Uncertainty: While in the previous experi-
ments, we showed that the network is able to track a moving
object, we now consider if a regular movement can be inferred
from temporally distant information. We use a bi-directional
model and provide only the first and the last input, so that
the initial positions have to be remembered until information
from the past and future converges at the center time step.
Since denoising is not an essential component of this task, we
do not add noise.

Figure 7 depicts a sample sequence from the test set. As

p— p— po— po— p—
% % Y [} ¢ w ¥
¥ . ‘ ® ¢
¥ % ® * # * v

Fig. 7: Toy experiment: Retaining uncertainty. Rows represent,
in order: the RGB input of the network for each time-step, the
output of the softmax layer, the final outputs of the network
and the evaluation (@ True Positives O True Negatives @ False
Positives @ False Negatives). The middle output represents the
final output of the network and we use it for evaluation.

no motion information is provided, the best strategy of the
network is to create a circular expanding hypothesis from the
seen location, which would then collapse as both timelines
are combined. This is what we observe in the output maps of
Figure 7. While the position is correctly identified, the shape
of the object is largely lost.

B. RGB-D Object-Class Segmentation

The NYU-Depth v2 (NYUD [17]) dataset is comprised
of video sequences taken from 464 indoor scenes, annotated
with a total of 894 categories. We use the popular relabeling
into four high-level semantic categories, small objects that
can be easily carried (“prop”), large objects that cannot be
easily carried (“furniture”), non-floor parts of the room: walls,
ceiling, columns (“structure”), and the floor of the room
(“ground”).

Although the NYUD dataset was recorded as a video
sequence, the actual dataset consists of a subset of 1449 frames
which were preprocessed and manually labeled. The remainder
of 407,024 frames are the raw output of the RGB-D cameras.

To transform the dataset into an image sequence dataset,
but at the same time use the labeled frames for evaluation,
we extracted the past and future context of each labeled frame
from the video stream and preprocessed it. For evaluation, we
compare the output corresponding to the labeled frame with
the ground truth, retaining the same training/testing split as in
the literature.

The temporal distance between frames should be kept short
enough to ensure that the translation stays within the 7x7 filter
size, such that each abstraction layer of the network can track
the changes between two frames. Although the speed of the
camera movement may vary, a fixed interval of 0.1s between
frames allows us to both have a smooth transition, but also to
cover a significant time span. It is necessary to synchronize the
RGB and depth frames, since the RGB and the depth sensors
work independently of each other.

TABLE I:. NYUD dataset test results of the best models for
our three architectures. The unidirectional network was addi-
tionally run with multi-scale inputs (MS), slightly improving
the results.

TABLE II: Comparison with two non-recurrent CNN models
with similar architecture. Recurrent networks perform better
than non-recurrent architectures for both multi-scale input
(MS) and depth-normalized sliding windows (SW).

Average Accuracy (%)

Class Accuracies (%) Average (%)

Method Class Pixel Method ground struct furnit prop Class Pixel
Simplified Network 59.2 60.0 Hoft et al. [19] 719 654 559 499 620 6l.1
Bidirectional Network 62.2 62.5 Unidirectional + MS 734 66.8 60.3 49.2 62.4 63.1
Un?d?rect?onal Network 623 627 Schulz ef al. [20] (no height)y 87.7 708 57.0 53.6 673 655
Unidirectional Network + M$ 624 631 Unidirectional + SW 90.0 763 521 612 699 675

The next step is the preprocessing of the RGB and depth
images. Here, we follow standard procedure, sequentially
applying lens correction, projecting the depth onto the RGB
sensor perspective and filling-in the depth. Lens correction
attempts to fix the barrel distortion typical to wide angle
cameras and is computed by the “Camera Calibration and
3D Reconstruction” package of OpenCV with the camera
parameters provided by the creators of the dataset. Depth and
RGB measurements are not taken from the same viewpoint.
Thus, the depth is projected to the RGB camera viewpoint.
This is done by a rotation and a translation using the matrices
provided by the creators of the dataset. The final step is to
fill-in the missing depth measurements, which are caused by
certain material properties (e.g. black or shiny surfaces) or by
occlusions. We fill in missing depth values based on color
information using the colorization algorithm of Levin et al
[18].

Finally, we produce ground truth for unlabeled frames
by propagating labels along the optical flow direction. We
use OpenCV to compute optical flow on RGB image pairs
and write special ignore labels when label information is
unavailable or ambiguous. Locations with ignore labels are
excluded from the computation of the loss and its gradient.

1) Learning: We train the network with depth L = 3, an
input resolution of 160x160 pixels, again using minibatches
of size 16, and a temporal context of 8 frames. As input, we
use Histogram of Oriented Gradients (HOG) and Histogram of
Oriented Depth (HOD) channels and the whitened version of
the images, as described by Hoft er al. [19]. We use randomly
chosen 10% of the training set for validation (early stopping
and model selection). Ground truth is provided at times ¢ = 3,
6, and 8 (cf. Figure 9). Training continues for 12,000 iterations,
with an initial learning rate of 3-10~%. The learning rate was
decreased once the validation error failed to improve.

2) Comparison of the three architectures: We tested vari-
ous hyper-parameter settings of the network architectures. The
best result that we obtained for each architecture is listed in
Table I. While the unidirectional model wins slightly over
the bidirectional model, we were unable to produce similarly
good results from the simplified network. Inspection of the
weight matrices suggests that the learning problem becomes
too difficult, i.e. the huge number of input maps at all time
steps prevents the network from assigning credit to time frames
correctly.

The slightly worse performance of the bidirectional net-
work is likely insignificant, but could be caused by the smaller

temporal context of the two subnetworks or the increased
number of weights due to the lack of weight sharing between
the networks.

A sample segmentation by the unidirectional model is
depicted in Figure 8.

3) Exploiting the temporal context: To check whether our
network can take advantage of a temporal context, we perform
a static frame experiment. Here, we use the same frame as
input at all time steps in the unidirectional model during train-
ing and prediction. In this setting, the recurrent architecture is
still able to learn long-range spatial dependencies, but cannot
exploit temporal context, which results in accuracy reduction
in both class accuracy and pixel-wise accuracy (0.4 and 0.8
percentage points, respectively) relative to the model which
has access to temporal context.

4) Extensions: We have investigated two extensions to the
model described so far. As described in Section II-C, we
provide direct access to downscaled versions of the input maps
to higher abstraction layers. This improves our results by an
additional 0.4% and 0.1% in pixel-wise accuracy and class
accuracy, respectively.

We further integrate depth-normalized sliding windows of
Schulz et al. [20] into our learning algorithm. This approach
evaluates the model on image patches at a spatial resolution
which is dependent on the distance of the center pixel to the
observer, effectively building scale invariance into the model.
Similarly to Schulz et al. [20], the use of sliding windows
strongly improved both the class and pixel-wise accuracy
by 7.2% and 4.1%, respectively. Apart from the increased
resolution at which outputs can be generated, the network is
able to focus on dynamics that take place within a smaller
spatial context. Thus, it is able to track smaller objects easier.
Since the network then processes image patches instead of
images, we could reduce the size of the input the network
receives from 160x160 to 80x80 pixels. This allows faster
training at the cost of prediction time, since the network has
to process patches that fully cover the input and combine their
prediction afterwards.

5) Comparison with state of the art: We compare the
results of our network with other results obtained from the
literature. Due to the large impact the sliding window approach
had on the results, we consider it separately.

Our recurrent neural networks use the same convolutional

(a) RGB frame

(b) Depth

il il

(c) Prediction (d) Ground truth

Fig. 8: Prediction for one of the NYUD dataset frames. Images (a) and (b) show RGB and depth, respectively, after being
preprocessed. (c) and (d) represent the prediction and ground truth, respectively, where color codes “floor” (@), “prop” (@),
“furniture” (@), “structure” (@) and “unknown” (@)). The network detects most of the pixels correctly, even some wrongly
labeled ones (e.g the third object on the table and the center of the wall-mounted piece).

TABLE III: Comparison of NYUD classification performance
with state of the art. Our recurrent net with depth-normalized
sliding windows (SW) performs similar to explicit spatial
aggregation of random forest features [21].

Class Accuracies (%) Average (%)

Method ground struct furnit prop Class Pixel
Unidirectional + SW 90.0 763 521 612 69.9 67.5
Schulz et al. [20] 93.6 802 664 549 73.7 73.4
Miiller and Behnke [22] 949 789 79.7 55.1 71.9 72.3
Stiickler et al. [21] 90.8 81.6 679 199 65.0 68.3
Couprie et al. [23] 873 86.1 453 355 63.5 64.5
Hoft et al. [19] 779 654 559 499 61.1 62.0
Silberman et al. [17] 68 59 70 42 59.6 58.6

base model as Hoft er al. [19] and Schulz et al. [20]!, where
the main difference is due to the introduction of the depth-
normalized sliding window. The results in Table II show that
we were able to improve on both baseline results in both pixel
and class accuracy.

Table III shows our depth-normalized sliding window result
together with state-of-the-art results on the same dataset. Our
method is still behind the state-of-the-art, but shows promising
results. In particular, it performs similar to Stiickler et al.
[21], who explicitly accumulated predictions in 3D. It is
likely that results will improve significantly when the neural
network has access to the height above ground [20] and
predictions are post-processed with conditional random fields,
which strongly improved object-class segmentation results of
random forests [22] and neural networks [20].

Note, however, that except for Stiickler et al. [21], none
of the listed publications made use of temporal context to
determine class labels.

VI. CONCLUSION

In this work, we introduced recurrent convolutional neural
network architectures, which in addition to learning spatial
relations are also able to exploit temporal relations from video.
We started with a series of toy examples that showed that

'Note that we compare to their model without height-above-ground inputs,
which were also not used in the present study.

our networks are able to solve tasks that require denoising,
detecting movement, and retaining uncertainty.

We further carried out experiments on sequences of indoor
RGB-D video sequences from the NYU Depth v2 dataset. We
tested three architectures: simplified, where the whole temporal
context is available at all processing steps, unidirectional,
which has access to past frames by recursive processing, and
bidirectional, which also allows access to future context. In
our experiments, the unidirectional and bidirectional networks
obtained better results than the simplified model. This suggests
that explicitly modeling time in the network architecture was
beneficial.

Our proposed model improves on non-recurrent baseline
models with similar architecture and obtains close to the state
of the art RGB-D segmentation results.

REFERENCES

[1] S. Behnke, Hierarchical Neural Networks for Image
Interpretation, ser. Lecture Notes in Computer Science.
Springer, 2003, vol. 2766.

[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document recog-
nition,” Proceedings of the IEEE, vol. 86, no. 11,
pp- 2278-2324, 1998.

[3] G.E. Hinton, N. Srivastava, A. Krizhevsky, 1. Sutskever,
and R. Salakhutdinov, “Improving neural networks by
preventing co-adaptation of feature detectors,” 2012.
arXiv: 1207.0580 [abs].

[4] A. Graves, Supervised Sequence Labelling with Recur-
rent Neural Networks, ser. Studies in Computational
Intelligence. Springer, 2012, vol. 385.

[5] A. Graves, M. Abdelrahman, and G. E. Hinton, “Speech
recognition with deep recurrent neural networks,” in In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2013.

[6] Q.V.Le, W.Y.Zou,S.Y. Yeung, and A. Y. Ng, “Learn-
ing hierarchical invariant spatio-temporal features for
action recognition with independent subspace analysis,”
in Computer Vision and Pattern Recognition (CVPR),
Conference on, 2011, pp. 3361-3368.

http://arxiv.org/abs/1207.0580

Fig. 9: Prediction for one sample of NYUD test dataset. Rows represent, from top to bottom: the RGB input, the softmax layer
output, the output of the network; and the evaluation (@ True Positives O True Negatives @ False Positives @ False Negatives)
for the class structure.

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler,
“Convolutional learning of spatio-temporal features,”
in European Conference on Computer Vision (ECCV),
Springer, 2010, pp. 140-153.

K. Simonyan and A. Zisserman, “Two-stream convo-
lutional networks for action recognition in videos,” in
Advances in Neural Information Processing Systems
(NIPS), Z. Ghahramani, M. Welling, C. Cortes, N.
Lawrence, and K. Weinberger, Eds., 2014, pp. 568-576.
V. Michalski, R. Memisevic, and K. Konda, “Modeling
deep temporal dependencies with recurrent grammar
cells,” in Advances in Neural Information Processing
Systems (NIPS), Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, and K. Weinberger, Eds., 2014, pp. 1925-
1933.

M. Jung, J. Hwang, and J. Tani, “Multiple spatio-
temporal scales neural network for contextual visual
recognition of human actions,” in International Confer-
ence on Development and Learning and on Epigenetic
Robotics (ICDL), 2014.

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Suk-
thankar, and L. Fei-Fei, “Large-scale video classification
with convolutional neural networks,” in Computer Vision
and Pattern Recognition (CVPR), Conference on, 2014,
pp. 1725-1732.

P. H. Pinheiro and R. Collobert, “Recurrent convolu-
tional neural networks for scene labeling,” 2014.

M. Sundermeyer, R. Schliiter, and H. Ney, “LSTM
neural networks for language modeling,” in Interspeech,
2012.

R. Pascanu, T. Mikolov, and Y. Bengio, “On the dif-
ficulty of training recurrent neural networks.,” Journal
of Machine Learning Research, vol. 28, pp. 1310-1318,
2013.

Y. N. Dauphin, H. de Vries, J. Chung, and Y.
Bengio, “Rmsprop and equilibrated adaptive learn-

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

ing rates for non-convex optimization,” arXiv preprint
arXiv:1502.04390, 2015.

V. Pham, T. Bluche, C. Kermorvant, and J. Louradour,
“Dropout improves recurrent neural networks for hand-
writing recognition,” in International Conference on
Frontiers in Handwriting Recognition (ICFHR), 2014.
N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “In-
door segmentation and support inference from RGBD
images,” in European Conference on Computer Vision
(ECCV), 2012.

A. Levin, D. Lischinski, and Y. Weiss, “Colorization us-
ing optimization,” in Special Interest Group on Graphics
and Interactive Techniques (SIGGRAPH), 2004.

N. Hoft, H. Schulz, and S. Behnke, “Fast semantic seg-
mentation of RGB-D scenes with GPU-accelerated deep
neural networks,” in German Conference on Artificial
Intelligence (KI), 2014.

H. Schulz, N. Hoft, and S. Behnke, “Depth and height
aware semantic RGB-D perception with convolutional
neural networks,” in European Symposium on Artificial
Neural Networks (ESANN), 2015.

J. Stiickler, B. Waldvogel, H. Schulz, and S. Behnke,
“Dense real-time mapping of object-class semantics
from RGB-D video,” Journal of Real-Time Image Pro-
cessing, 2013.

A. C. Miiller and S. Behnke, “Learning depth-sensitive
conditional random fields for semantic segmentation of
rgb-d images,” in International Conference on Robotics
and Automation (ICRA), 2014.

C. Couprie, C. Farabet, L. Najman, and Y. LeCun, “In-
door semantic segmentation using depth information,” in
International Conference on Learning Representations
(ICLR), 2013.

