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Abstract— Micro aerial vehicles, such as multirotors, are
developed for applications like autonomous monitoring, in-
spection, and surveillance. Most of the current application
scenarios assume a stationary environment and thus, trajectory
generation relies on static targets. In this paper, we address
time-optimal trajectory generation in dynamic environments,
e.g., for landing on a moving platform.

We extend our existing trajectory generation method by
the ability to synchronize several axes of motion, following a
master/slave approach for individual axes. We further explicitly
treat moving targets, like moving landing platforms by planning
in a target-centric frame. Our evaluation demonstrates the
performance of the method under disturbances.

These results have application in dynamic multicopter flight,
and also allow for fast and precise multicopter motion under
challenging conditions.

I. INTRODUCTION

Micro aerial vehicles (MAVs) are becoming a key factor in
reducing the required time, risks, and costs for, e.g., search
and rescue missions, inspection tasks, and aerial photogra-
phy. Due to their flexibility and low cost, they constitute a
promising alternative to employing heavy machinery or even
risking the health of humans in many situations.

Our research is performed in the context of the Mohamed
Bin Zayed International Robotics Challenge1 (MBZIRC)
which poses several tasks that require fast and precice MAV
flight under challenging conditions.

On one hand, MAV flight needs to be precise to pick up
objects that are located on the ground, while rejecting distur-
bances posed by the environment like, e.g., wind gusts or by
the picked objects themselves. On the other hand, MAV flight
has to be robust against noisy sensor measurements, as no
exact external measurement system is available. Since some
target objects move with up to 5 km

h in random directions,
the MAV also has to react instantaneously to changing target
velocities.

Another task is to land the MAV on a moving landing
platform inside a circle with only 1m diameter, while the
platform moves with up to 15 km

h which requires precisely
approaching trajectory generation methods. Since the overall
MBZIRC ranking depends on total task completion time, we
aim for a fast motion of the MAV, but since the maximum
allowed MAV velocity is 30 km

h , trajectory generation has to
respect this constraint.
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Fig. 1. Our MAV suddenly recieves an additional via state that it has
to pass on its way to its target. A new trajectory is generated from the
current state that incorporates state constraints (3D position, velocity and
acceleration) in the via state as well as in the target waypoint. The trajectory
respects limits on maximum allowed velocity and acceleration. For proper
visualization, we magnified the pitch angle eight times. For simplicity, we
use the following constraints for all figures: initial states are marked with a
green dot, via states with a blue dot and target states with a red dot. Grey
lines visualize the roll angle. The pitch angle is visualized by a grey and a
red line.

In this paper, we extend our existing trajectory generation
method [1] that generates time-optimal trajectories from the
simplified dynamics of the MAV to address the specific
problems posed in the MBZIRC. Due to the fast runtime,
our method is not only able to compute offline trajectories,
but is also capable of controlling position, velocity, and
acceleration of the MAV in real-time. Since the method
works nearly parameterless, no cumbersome parameter iden-
tification is needed and model uncertainties or changes in
model parameters (e.g., when picking up objects) do not have
to be modeled explicitly.

The key contributions of our paper are:
• improvement of our existing method to generate time-

optimal trajectories with the ability to synchronize an
arbitrary number of axes,

• extension of the method for state interception of moving
targets by predicting the target velocity and acceleration,

• generation of trajectories that start from an inadmissible
state and return the MAV into a permissible state, and

• reduction of the computational costs.

II. RELATED WORK

Trajectory generation for MAVs is an active field in
scientific research. The state of the art can be subdivided into
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Fig. 2. Time-optimal trajectory generated with our method. Starting from state x = (0.0, 0.0, 0.0) (starting at the origin, zero velocity, zero pitch), it
brings the simulated MAV to state xwayp = (5.0, 0.0, 0.0) (5.0m, zero velocity, zero pitch). The calculated switching times are t1 = 0.5 s, t2 = 1.5 s,
t3 = 0.5 s, t4 = 2.5 s, t5 = 0.5 s, t6 = 1.5 s, and t7 = 0.5 s.

approaches that either assume that it is possible to change
the MAV velocity instantaneously (e.g., Nieuwenhuisen et
al. [2]), or fully incorporate the dynamics of the MAV. As
our approach belongs to the latter, we focus on dynamic
trajectory generation approaches. Trajectories are either gen-
erated offline in a more long-term application, or in a short-
term way for online usage in real-time feedback systems like
Model Predictive Control (MPC).

The first category of methods includes the work of Mo-
tonaka et al. [3], who use kinodynamic planning. Due to the
complex model parameter estimation and the computation-
ally expensive nature of kinodynamic planning, the practical
applicability of this approach is limited. Richter et al. [4]
use iterative refinement of polynomials after finding a valid
trajectory via straight-line rapidly exploring random trees
(RRT). As the RRT needs 3 s to compute (t < 1ms for
the iterative polynomial refinement), also their approach is
not real-time capable.

A hybrid system, using offline and online trajectory gen-
eration was developed by Brescianini et al. [5]. They use
the ACADO toolbox to generate pole-throwing maneuvers
offline and execute them open-loop. Simultaneously, they
generate a minimum snap real-time trajectory for catching
the same pole. The catching maneuver does not consider
state constraints, e.g., maximum velocity.

MPC-like trajectory generators have been developed by

several groups. For example, Tomic et al. [6], Van Loock
et al. [7], Ritz at al. [8], and Kahale et al. [9] use a
first-principles model similar to our work. The trajectory
generation problem is solved via numerical optimization by
the first three works, and with a Matlab nonlinear program
solver (direct collocation approach) by the latter work. Each
of these works relies on the differential flatness of the MAV
model. Also Chamseddine et al. [10] invenstigate the flatness
property of the quadrotor model. The presented trajectory
generation method considers actuator constraints but it is
unclear if the proposed method is sufficiently fast to run in
real time. Hehn et al. [11] replan time-optimal trajectories at
every time step, making the method similar to an MPC. The
approach assumes direct line of sight between current and
final state. Furthermore, it is not able to incorporate velocity
constraints, and is only able to generate trajectories targeting
the vehicle at zero speed.

The works of Achtelik et al. [12] and Mellinger et al. [13]
use N th order polynomials with more degrees of freedom
than equality constraints and a numerical solver to generate
MPC-like trajectories. Boeuf et al. [14] employ splines in
a decoupled global and local planner, resulting in a bang-
singular-bang optimal trajectory, similar to our work. The
solution, however, is not analytical.

In their works [15] and [16], Mueller et al. present a
trajectory generator, capable of approaching the full target



TABLE I
SECOND-ORDER CONDITIONS FOR UNSYNCHRONIZED TRAJECTORIES.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8
θ1 = θmax θ1 = θmax t2 = 0 θ1 = θmax t2 = 0 t2 = 0 θ1 = θmax t2 = 0
θ5 = θmin θ5 = θmin θ5 = θmin t6 = 0 t6 = 0 θ5 = θmin t6 = 0 t6 = 0
v3 = vmax t4 = 0 v3 = vmax v3 = vmax v3 = vmax t4 = 0 t4 = 0 t4 = 0

state (position, velocity, and acceleration). Analogue to our
approach, they use jerk (respectively the rotational velocity
ω) as system input, but the convex optimization problem is
solved numerically.

Kröger [17] presents a state-to-state solver for polynomial
trajectories of robot manipulators with acceleration (Type II)
or jerk (Type IV) as input. The algorithm runs with a typical
cycle time of t ≤ 1ms, but no worst case or guaranteed cycle
time is given. The Type IV solver, corresponding to the work
presented here, is not publicly available. Haschke et al. [18]
also plan minimum jerk trajectories. The authors assume the
final velocity and acceleration to be zero, a restriction we
do not make in this work. This renders target interception
like we propose impossible. Also their solution takes 360 µs
to compute and numerical instabilities occur under extreme
input conditions.

Ezair et al. [19] compare polynomial trajectory generation
algorithms regarding the order, state constraints, and con-
straints on initial and final conditions. No optimal trajectory
generation method like ours (order 3 and general initial and
final states) is mentioned.

Autonomous landing with MAVs was previously ad-
dressed by Bi et al. [20]. They use PID position control with
visual feedback to land on a moving pushcart carrier.

To the knowledge of the authors, there exists no optimal
analytical trajectory generation method for MAVs. Existing
methods, like PID-trajectory tracking, lead to non-optimality
and cannot handle nonlinearities like state constraints.

III. TRAJECTORY GENERATION

We state the trajectory generation problem as follows:
Find a trajectory from an arbitrary initial state to an arbitrary
final state that satisfies state constraints such as maximum
allowed velocity and acceleration and dynamic constraints
such as smoothness of the position p, velocity v, and pitch θ
and minimizes total time T . We assume that the environment
around the MAV is obstacle free or that suitable via states
are generated by a higher-level planer that prevents collisions
with nearby obstacles like e.g. the method used in our
previous work [21].

A. MAV Model
We assume the MAV to follow rigid-body dynamics and

simplify it as a point mass with jerk j as system input.
Following Newton’s second law, the system is a triple
integrator in each dimension with position p, velocity v,
acceleration a, and jerk j,

ṗ = v, v̇ = a, ȧ = j. (1)

TABLE II
SECOND-ORDER CONDITIONS FOR SYNCHRONIZED TRAJECTORIES.

Case 1 Case 3 Case 4 Case 5
θ1 = θmax t2 = 0 θ1 = θmax t2 = 0
θ5 = θmin θ5 = θmin t6 = 0 t6 = 0
T = Ttraj. T = Ttraj. T = Ttraj. T = Ttraj.

Thus, the three-dimensional allocentric state of the MAV
x can be expressed by

x =

px py pz
vx vy vz
ax ay az

 . (2)

We assume jerk j to be the direct control input to the
system. In our previous work [1], we describe how the true
control input pitchrate ω = θ̇ is mapped to the input j. We
further describe our linearization approach and total thrust
computation. We also justify the applicability of our model.
We do not consider the yaw axis since the dependence of
the flat outputs of the quadrotor model and yaw is trivial.

B. Trajectory Composition

We decompose each one-dimensional trajectory into seven
parts that either yield maximum pitch rate (ω = ωmax ⇔ j =
jmax), zero pitch rate (ω = 0 ⇔ j = 0), or minimum pitch
rate (ω = ωmin ⇔ j = jmin). This is illustrated in Fig. 2
for a trajectory with start state x =

(
0 0 0
0 0 0
0 0 0

)
and target state

xwayp =
(

5 0 0
0 0 0
0 0 0

)
.

For every part n of the trajectory, we formulate a system
of three differential equations, reflecting the state at the end
of the part, including acceleration a, velocity v, and position
p:

an = an−1 +

∫ tn

0

jn dt, (3)

vn = vn−1 +

∫ tn

0

an dt, (4)

pn = pn−1 +

∫ tn

0

vn dt. (5)

Since only 21 equations and 31 unknown variables are
defined (t1, ..., t7, a0, ..., a7, v0, ..., v7, p0, ..., p7), we need
second-order conditions to fully define the trajectory. We
therefore assume x to be the current/start state a0, v0, p0 and
xwayp the target state a7, v7, p7.

As justified in our previous work, we also assume a3 = 0
and one of the constraint-sets in Tab. I. We also assume that



TABLE III
COMPLEXITY ANALYSIS (NUMBER OF MATHEMATICAL OPERATIONS).

Case t1 t2 t3 t4 t5 t6 t7 neq.

Case 1 3 14 1 89 1 13 2 1
Case 2 6 484 2 0 2 484 4 2
Case 3 4 0 14 87 1 14 2 1
Case 4 6 28 2 866 107 0 129 2
Case 5 234 0 190 704 214 0 258 4
Case 6 20 0 0* 0 37944 84 8 4
Case 7 8 96 0* 0 16 0 37952 4
Case 8 28 0 0* 0 18138 0 88 4

Degenerated Case 1 2 13 1 84 1 14 2 1
Degenerated Case 3 6 0 29 386 2 28 4 2
Degenerated Case 4 4 26 2 182 8 0 32 2
Degenerated Case 5 6 0 28 182 8 0 32 2
Synchronized Case 1 6 365 2 319 2 365 4 2
Synchronized Case 3 8 0 68197 124 4 80 8 4
Synchronized Case 4 8 96 4 140 16 0 68204 4
Synchronized Case 5 - - - - - - - -

*Since t3 and t5 are linearly dependent, we condensed both calculations into one equation.

the trajectory follows the pictured bang-singular-bang jerk
strategy j1 = j7 = jmax, j3 = j5 = jmin and j2 = j4 =
j6 = 0.

There exist eight different cases that either assume that the
MAV reaches either or both acceleration and velocity limits.
For one specific start and target configuration, only one
case generates a valid trajectory. All permuted second-order
conditions necessary for all possible trajectory templates are
shown in Tab. I.

We further mirror the trajectory templates to expand the
reachable set to all possible state space configurations. So,
with j1 = j7 = jmin, j3 = j5 = jmax and j2 = j4 = j6 = 0,
we obtain 16 trajectory templates in total.

We use the MathWorks R© Matlab Symbolic Math Toolbox
to find an analytical solution to the problem stated. For
further details and mathematical derivation of our method,
we refer to [1].

For simplicity, when not explicitly stated otherwise, we
use the following constraints for all figures: vmax =
−vmin = 1 m

s , θmax = −θmin = 0.051 rad ⇔ amax =
−amin = 0.5 m

s2
, ωmax = −ωmin = 0.202 rad

s ⇔ jmax =
−jmin = 1 m

s3
.

C. Axis Synchronization

Although our MAV model only has three dimensions (axes
X, Y, and Z), we aim for an arbitrary number of axes n to
finish their respective trajectory at the same time. We address
this problem by first finding the time-optimal trajectory
for each axis as described before. We then determine the
maximum time and define it as the trajectory finishing time.
Ttraj. = max(Tn) with Tn = tn,1 + ...+ tn,7.

To slow down execution, we override the assumption to
reach maximum velocity as fast as possible as mentioned
in Sec. III-B with the second-order conditions stated in
Tab. II. This results in the maximum reached velocity by
the trajectory not to be the maximum velocity, but the one
that makes the specific trajectory take exactly Tn = Ttraj..

Since we do not alter the acceleration and deceleration
phases, they are still time-optimal. Thus, only the phase
of constant velocity t4 is stretched. With this method, we
maximize the time of constant velocity of each axis respec-
tively. This results in a straight trajectory when possible since
during constant velocity phases in all axes, the trajectory is
uncurved. This property could not be achieved by simply
lowering the maximum acceleration and deceleration phases.

Since this method is only applicable for cases that reach
the maximum velocity, we only override Case 1, Case 3,
Case 4, and Case 5. One could also imagine to cancel the
assumption of reaching the maximum pitch angle, but we
refrain from doing so, since these trajectories only occur
when start and target state are very close to another and
thus unsynchronized behaviour is acceptable. Up to now, we
found analytical solutions for Case 1, Case 3, and Case 4.
We are currently working on finding an analytical solution
for Case 5. When no synchronized trajectory can be found,
we use the unsynchronized trajectory.

With synchronized trajectories, we are able to perform
advanced flight maneuvers like depicted in Fig. 1. Since an
arbitrary number of axes can be synchronized, one could
also consider to synchronize the yaw axis or any number
of additional axis (e.g. of a gimbal) if smooth motion is
required.

D. Degenerated Trajectories

We extend out method proposed in [1], to generate degen-
erated trajectories that relax the assumption of a valid start
state. Although under normal conditions, the MAV is always
situated in a valid state space configuration, wind gusts or
other disturbances can cause the MAV to leave the valid
envelope.

Although pitch angles exceeding the maximum are very
uncommon, they can be dangerous since the acceleration of
the MAV is not bounded anymore. In this case, we simply
stop our trajectory generation method and command the
MAV to reach zero pitch. When the acceleration constraint



−1.5

−1

−0.5

0

0.5

1

1.5
−0.5

0

0.5

1

1.5

2

2.5

−1

−0.5

0

0.5

1

Z
P
o
si
ti
o
n
(m

)

X Position (m)

Y Position (m)

(a)

−1.5

−1

−0.5

0

0.5

1

1.5
−0.5

0

0.5

1

1.5

2

2.5

−1

−0.5

0

0.5

1

Y Position (m)

X Position (m)

Z
P
o
si
ti
o
n
(m

)

(b)

−1.5

−1

−0.5

0

0.5

1

1.5
−0.5

0

0.5

1

1.5

2

2.5

−1

−0.5

0

0.5

1

Y Position (m)

X Position (m)

Z
P
o
si
ti
o
n
(m

)

(c)

Fig. 3. Evolution of generated MAV trajectories when starting from x =

(
0 0 0
0 0 0
0 0 0

)
with target xwayp =

(−1+0.5·t 2 0
0.5 0 0
0 0 0

)
after 0.2 s (a), 2.5 s (b),

and 5.0 s (c) without prediction of the waypoint motion. New trajectories are planned every 200ms.
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Fig. 4. Evolution of generated MAV trajectories when starting from x =

(
0 0 0
0 0 0
0 0 0

)
with target xwayp =

(−1+0.5·t 2 0
0.5 0 0
0 0 0

)
after 0.2 s (a), 2.5 s (b),

and 5.0 s (c) with prediction of the waypoint motion. New trajectories are planned every 200ms.

is not violated anymore, we continue planning trajectories
with our method.

The second constraint that can be violated is the velocity
constraint. When the velocity constraint is violated, the first
priority is to bring the MAV back into the allowed state
envelope. We address this issue by using a different jerk
input strategy. For degenerated trajectories, we use the same
second order conditions as stated in Tab. I, but instead of
using a jerk input of j1 = j7 = jmax, j3 = j5 = jmin and
j2 = j4 = j6 = 0, we use j1 = j7 = jmin, j3 = j5 = jmin

and j2 = j4 = j6 = 0 as input. This means that, e.g., when
starting with a too high velocity, we use a negative pitch
to slow the MAV down to the maximum allowed velocity
and stay at this velocity as long as possible. Finally, we use
negative pitch again to bring the MAV to rest at the target.

Since degenerated trajectories are only necessary for tra-
jectories that reach vmax, only Case 1, Case 3, Case 4, and
Case 5 are evaluated with the changed jerk strategy.

E. Interception

Our method is able to generate trajectories that connect ar-
bitrary start and target states, satisfying dynamic constraints
in an allocentric world-frame. Due to this property, we are
able to plan feasible trajectories with arbitrary number of
via states, e.g., shown in Fig. 1. Here, our method only
specifies target position, velocity and acceleration, but makes
no assumption about the motion of the waypoint itself.

Another trajectory with nonzero target velocites is shown
in Fig. 3a. It can be seen that the MAV lunges to exactly
reach the desired velocity of 0.5 m

s in X-direction. Neverthe-
less, since we do not explicitly consider the waypoint motion,
the waypoint moves between replanning steps, resulting in
a slightly different trajectory. Due to replanning, the MAV
converges to the target without steady-state error. The MAV
trajectory is suboptimal, however.

We address this problem by first predicting the target
velocity and acceleration in an allocentric frame (here
vx,predict = 0.5 m

s , ax,predict = 0 m
s2

). Afterwards, we
transform all states including via states and all constraints
into a moving target-centric coordinate system. Since the
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Fig. 6. During a 5m flight, lateral velocity estimation is noisy (zero mean, standard deviation 0.03 m
s

). New trajectories are planned every 200ms. Axis
synchronization was switched off for this experiment. The whole trajectory can be seen in (a). A magnification of the specific replanned trajectories is
shown in (b). For visualization purposes, we do not show the pitch and roll angle.

trajectory generation problem is symmetrical, the trajectory
is generated as if the MAV would have an initial velocity
of vx = −0.5 m

s and initial acceleration ax = 0 m
s2

. Since
constraints are defined symmetrical (Vmin = −Vmax) in the
allocentric frame, the transformation into a moving frame
also renders the constraints to become asymmetrical Vmin 6=
−Vmax.

Fig. 3 and Fig. 4 show an experiment with target prediction
inactive and active. It can be seen that with our method, an

optimal intersection state is calculated so that successively
replanned trajectories are lying on each other. By planning
in the target-centric frame, the constant optimal interception
state is implicitly projected in the allocentric world-frame.
By employing this method, we can analytically generate
optimal target interception trajectories without the use of
numerical methods like, e.g., gradient descent.

We want to emphasize here that the interception is differ-
ent than just reaching a non-stationary final state. The inter-
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Fig. 7. Our method is used to generate an aerobatic flight trajectory. Starting at the origin (green), the MAV flies 1) through a downward accelerating
waypoint (grey). The waypoint starts at position px = 1.0m, py = 2.5m, pz = 1.0m and accelerates in negative Z-direction with −0.2 m

s2
(long

magenta arrow). The waypoint is intercepted with the maximum allowed velocity vy = 1.0 m
s

. The actual passing position is px = 1.0m, py = 2.5m,
pz = −0.41m with velocity vz = −0.79 m

s
. 2) The MAV flies through a stationary waypoint at position px = 0.0m, py = 3.0m, pz = 0.5m with

a velocity of vz = 0.3 m
s

. 3) When passing the second waypoint, the third waypoint (grey) starts to move from position px = 1.0m, py = 1.5m,
pz = 1.5m in negative X-direction with constant velocity −0.2 m

s
(short magenta arrow). The waypoint is intercepted with velocity vy = −0.3 m

s
. The

actual passing position is px = 0.32m, py = 1.5m, pz = 1.5m. 4) The MAV comes to rest at position px = 1.0m, py = 0.0m, pz = 0.5m (red).

ception implicitly considers not only the kinematic properties
of the trajectory, but also the movement of the target.

Please note that the predicted velocity and acceleration
does not have to inevitably match the target velocity. Sce-
narios where the moving target has to be intercepted orthog-
onally, e.g., flying through a falling ring are also realisable
with our method (see Fig. 7).

Due to the ability to replan very fast, the target state (3D
position, velocity and acceleration) only has to be approxi-
mately known. Since trajectories are computed online, target
state estimation errors are canceled with the next iteration
of the planner. With perfect state estimation however, the
planner can be run open-loop as shown in Fig. 7.

F. Computation Time
Although the computational costs of our method are

marginal, we were able to reduce them further by reusing
already calculated results and by initializing the replanning.
In [1], all switching times were calculated independently,
only depending on the start and target state. We now cal-
culate the switching times in an order to maximize the
use of already calculated switching times. By doing so, we
can reduce the complexity of some equations. The number
of mathematical operations needed to solve for a specific
switching time are listed in Tab. III.

For every equation, there exist a number of solutions equal
to the order of the equation. We were able to eliminate
possible solutions by posing assumptions on some variables
like t1, ..., t7 > 0, etc. Thus, we were able to reduce the
number of equations to be solved for some of the considered
cases. The number of candidate equations is also shown
in Tab. III. Especially Case 6 benefits from our method
since now only 38 056 instead of 1 496 111 mathematical
operations have to be conducted.

Since replanning typically happens with a high rate, start
and target state often differ only marginally from the previous
trajectory. Thus, the propabilty of the same case to be valid
when replanning is high. We exploit this characteristic by
determining the order in which to evaluate the cases by the
previous trajectory. By doing so, we often do not need to
solve all cases.

IV. RESULTS

A. Disturbance Rejection

In order to evaluate the disturbance rejection capabilities,
we disturb the MAV with a lateral wind gust that results in
a lateral acceleration of 0.2 m

s2
. The experiment can be seen

in Fig. 5. Immediately after the disturbance is measured,
new trajectories are planned that bring the MAV back to
the optimal path. Since we do not explicitly model distur-
bances, the generated trajectories assume a disturbance-free
environment. This leads the MAV to settle in the equilibrium
between planned trajectory and windgust and results in a
steady-state error during the wind gust of approximately
2.3 cm. We want to mention here that the error strongly
depends on the replanning time. Although never fully elim-
inable, it can become very small with treplan → 0.

B. Measurement Noise Rejection

In order to assess the impact of measurement noise on the
performance of our method, we added normally distributed
noise with standard deviation of 0.03 m

s on the velocity mea-
surements in the lateral direction. The resulting trajectories
are shown in Fig. 6. It can be seen that the MAV tries
to compensate for the wrongly percieved velocity and thus
leaves the optimal path. Since the measurement noise is
zero mean, the impact on the system performance is only



(a) (b) (c)

Fig. 8. Landing on a moving target. (a) External view. (b) Image from the onboard camera. The camera is mounted in a 30◦ angle facing forward/downward.
(c) Image from the downward facing fisheye camera. First, the MAV (circled red) is searching for the target. After the first detection, the MAV predicts
the target motion and accelerates in direction of the optimal interception point. Axes are synchronized, so that the MAV decents in a straight line. The
target velocity is approximately 3.5 m

s
. The total landing procedure takes 4.3 s.

temporary. The maximum accumulated position error in this
experiment is 1.5 cm.

C. Aerobatic Flight

In Fig. 7, we illustrate the performance of our method with
multiple stationary and moving waypoints. When intercept-
ing moving targets, the MAV adapts its velocity and acceler-
ation, in direction of the movement, to the target. Thus, when
passing through the first waypoint, the MAVs does not pass
purely horizontal, but with the same downwards velocity and
acceleration as the waypoint. By doing so, the trajectory does
not rely on a fast motion through the waypoint, but can pass
with arbitrary orthogonal velocities. Here, the orthogonal
velocities are chosen so that the MAV could pass through,
e.g., a moving ring. Videos of this simulation and other

experiments can be found on our website2.

D. Landing on a Moving Target

In order to validate our method, we conducted real robot
experiments. Fig. 8 shows our DJI Matrice 100 MAV landing
on a moving platform. The platform was pulled with an
almost constant velocity of 3.5 m

s . After visually detecting
the platform from a height of 6m, the proposed method
is used to calculate a trajectory that guides the MAV to
the optimal interception point. Subsequently, the trajectory
is executed. Due to axis synchronization, the MAV flies on
a straight glide path. The trajectory is replanned with 50Hz.

2http://www.ais.uni-bonn.de/videos/ICUAS_2017_
Beul

http://www.ais.uni-bonn.de/videos/ICUAS_2017_Beul
http://www.ais.uni-bonn.de/videos/ICUAS_2017_Beul


Attitude commands are also sent to the MAV with 50Hz.
Position and velocity estimates of the target are updated with
40Hz. The entire landing process is completed after only
4.3 s

V. CONCLUSIONS

We proposed an analytical time-optimal trajectory gen-
eration method for MAVs that is able to run in real-time
and thus can be used as MPC. Starting from a simple
parameterless first-principles model of the MAV, we compute
optimal switching times for the rotational velocity of the
MAV, respecting state, and input constraints.

With the ability to specify the full state of the MAV, it
is possible to target moving or even accelerating waypoints
like, e.g., a moving landing platform.

We evaluated the effectiveness of the proposed approach,
benchmarking it under disturbances and under state uncer-
tainty. We further evaluated the computational costs of the
method and show that it is computationally inexpensive. We
showed that in general, our approach is capable of dealing
with arbitrary input and state constraints. The method is able
to recover the MAV from inadmissable start states and brings
it back into the allowed state envelope.

Real-robot experiments were conducted to demonstrate the
applicability of the proposed method in a real-world sce-
nario. In future work, we want to conduct further real-robot
experiments to prove the applicabilty of our method with
different robots and to be able to give quantitative results of
the performance of the proposed method. In particular, we
want to utilize our method at the MBZIRC to benchmark it
against methods used by other groups. Our method can be
employed as is, or build upon.
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[17] T. Kröger, “Opening the door to new sensor-based robot applications -
the reflexxes motion libraries,” in Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA), 2011.

[18] R. Haschke, E. Weitnauer, and H. Ritter, “On-line planning of time-
optimal, jerk-limited trajectories,” in Proc. of the IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS), 2008.

[19] B. Ezair, T. Tassa, and Z. Shiller, “Planning high order trajectories
with general initial and final conditions and asymmetric bounds,” The
Int. Journal of Robotics Research, vol. 33, no. 6, pp. 898–916, 2014.

[20] Y. Bi and H. Duan, “Implementation of autonomous visual tracking
and landing for a low-cost quadrotor,” Optik - International Journal
for Light and Electron Optics, vol. 124, no. 18, 2013.

[21] M. Nieuwenhuisen, D. Droeschel, M. Beul, and S. Behnke, “Au-
tonomous navigation for micro aerial vehicles in complex gnss-denied
environments,” vol. 84, no. 1, pp. 199–216, 2016.


	Introduction
	Related Work
	Trajectory Generation
	MAV Model
	Trajectory Composition
	Axis Synchronization
	Degenerated Trajectories
	Interception
	Computation Time

	Results
	Disturbance Rejection
	Measurement Noise Rejection
	Aerobatic Flight
	Landing on a Moving Target

	Conclusions
	References

