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Abstract— Micro aerial vehicles, such as multirotors, are
particularly well suited for autonomous monitoring, inspection,
and surveillance, e.g., for doing inventory in large warehouses.

Key prerequisites for efficient MAV inventory missions is
time- and energy-efficient flight. Generated trajectories must
assure the visiting of certain waypoints while preventing large
deviations or overshoot, as these can cause crashes in narrow
corridors.

In this paper, we propose a novel trajectory generation
method that is able to analytically compute time- and energy-
optimal trajectories, incorporating system dynamics, based on a
first-principles model. Due to the fast runtime of the method, it
is not only used to generate trajectories on a higher level, but
to control the MAV in real-time, substituting state-of-the-art
cascaded control loops for position, velocity, and attitude.

I. INTRODUCTION

Micro aerial vehicles (MAVs) are becoming a key factor in
reducing the required time, risks, and costs for, e.g., search
and rescue missions, inspection tasks, and aerial photogra-
phy. Due to their flexibility and low cost, they constitute a
promising alternative to employing heavy machinery or even
risking the health of humans in many situations. Especially
for inventory in large warehouses, MAVs can save time and
cost, replacing the cumbersome manual acquisition of the
present stock by scanning on the fly.

However, to make such applications efficient, MAV flight
needs to be autonomous and time-efficient. On one hand,
time-efficient flight must be fast, so that more waypoints can
be visited in a given time. On the other hand, time-efficient
flight must also be energy efficient, so that the total flight
time is maximized and flights back to the charging station
are reduced to a minimum.

Since aisle widths of 3m or less are common in ware-
houses, MAV flight also needs to be precise. Classic ap-
proaches, employing a cascaded control loop for position,
velocity, and attitude are either conservatively slow or induce
overshoot. Furthermore, these approaches are not capable
to respect certain state constraints, e.g., maximum allowed
velocity, and rely on a proper parameterization.

In this paper, we propose a novel trajectory generation
method that generates time- and energy-optimal trajectories
from the simplified dynamics of the MAV. Due to the fast
runtime, our method is not only able to compute offline
trajectories, but is also capable of controlling position,
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Fig. 1. Our MAV (circled) on an inventory mission. It is equipped with
multiple cameras and an RFID reader to detect and locate inventory in a
warehouse. Here, we scan and locate the righthand boxes in a prerecorded
map of the warehouse.

velocity, and acceleration of the MAV in real-time. Since
the method works parameterless, no cumbersome parameter
identification is needed.

Optimality is guaranteed by exploiting specific properties
of the environment:

• We assume that direct line of sight to the next target
waypoint is available. When used in a hierarchy of plan-
ners, this constraint can always be met. In an orthogonal
environment like warehouses, the systematic placement
of direct reachable waypoints does not even induce non-
optimality. Since waypoints are placed on crossings,
globally optimal trajectories consist of a composition
of locally optimal trajectories with direct sight.

• We restrict the movement to one dimension at a time. In
our use case, this constraint is always met, since storage
compartments and shelves are orthogonal.

The above mentioned constrains are only necessary when
optimality has to be guaranteed. When suboptimal motion
is acceptable, the assumptions can be relaxed. The lack of
parameters is an advantage, compared to classic approaches
like PID control where parameters need to be tuned.

II. RELATED WORK

Trajectory generation for MAVs is an active field in
scientific research. The state of the art can be subdivided
into approaches that either assume it is possible to change
the MAV velocity instantaneously (e.g., Nieuwenhuisen et
al. [1]), or fully incorporate the dynamics of the MAV. As our
approach counts to the latter, we focus on dynamic trajectory
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generation approaches. Trajectories are either generated off-
line in a more long-term application, or in a short-term way
for online usage in real-time feedback systems like Model
Predictive Control (MPC).

The first category of methods includes the work of Mo-
tonaka et al. [2], who use kinodynamic planning. Due to the
complex model parameter estimation and the computation-
ally expensive nature of kinodynamic planning, the practical
applicability of this approach is limited. Richter et al. [3]
use iterative refinement of polynomials after finding a valid
trajectory via straight-line rapidly exploring random trees
(RRT). As the RRT needs 3 s to compute (t < 1ms for
the iterative polynomial refinement), also their approach is
not real-time capable.

A hybrid system, using offline and online trajectory gen-
eration was developed by Brescianini et al. [4]. They use
the ACADO toolbox to generate pole-throwing maneuvers
offline and execute them open loop. Simultaneously, they
generate a minimum snap real-time trajectory for catching
the same pole. The catching maneuver does not consider
state constraints, e.g., maximum velocity.

MPC-like trajectory generators have been developed by
several groups. For example, Tomic et al. [5], Van Loock et
al. [6], Ritz at al. [7], and Kahale et al. [8] use a similar
first-principles model to our work. The trajectory generation
problem is solved via numerical optimization by the first
three works, and with a MATLAB nonlinear program solver
(direct collocation approach) by the latter work. Each of
these works relies on the differential flatness of the MAV
model. Hehn et al. [9] replan time-optimal trajectories at
every time step, making the method similar to an MPC. The
approach assumes direct line of sight between current and
final state. Furthermore, it is not able to incorporate velocity
constraints, and is only able to generate trajectories targeting
the vehicle at zero speed.

The works of Achtelik et al. [10] and Mellinger et al. [11]
use N th order polynomials with more degrees of freedom
than equality constraints and a numerical solver to generate
MPC-like trajectories. Boeuf et al. [12] employ splines in
a decoupled global and local planner, resulting in a bang-
singular-bang optimal trajectory, similar to our work. The
solution, however, is not analytical.

In their works [13] and [14], Mueller et al. present a
trajectory generator, capable of approaching the full target
state (position, velocity, and acceleration). Analogue to our
approach, they use jerk (respectively the rotational velocity
ω) as system input, but the convex optimization problem is
solved numerically.

In [15], Kröger presents a state-to-state solver for poly-
nomial trajectories of robot manipulators with acceleration
(Type II) or jerk (Type IV) as input. The algorithm runs
with a typical cycle time of t ≤ 1ms, but no worst case
or guaranteed cycle time is given. The Type IV solver,
corresponding to the work presented here, is not publicly
available.

To the knowledge of the authors, there exists no optimal
analytical trajectory generation method for MAVs. Existing
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Fig. 2. Forces and state variables of the 2D hexacopter model used in this
paper.

analytical methods, like PID-trajectory tracking, lead to
non-optimality and cannot handle nonlinearities like state
constraints. Our approach extends our previous work [16].

The key contributions of our paper are:
• derivation of a simplified first-principles model of the

MAV,
• analytically generating smooth trajectories that involve

not only position, but velocity, pitch, and rotational
velocity,

• evaluation in a realistic scenario, in comparison to a
state of the art cascaded PID position-velocity-attitude
loop.

III. SYSTEM MODEL

Our MAV design is a hexacopter with a frame surround-
ing the rotor plane. Fig. 1 shows it in a typical indoor
environment—a warehouse. A detailed description of the
used MAV including sensors, onboard processing systems
and methods for state estimation and control can be found
in [17].

A. Equations of Motion

We assume the MAV to follow rigid body dynamics
and simplify it as a point mass with jerk j as system
input. Following Newtons second law, the system is a triple
integrator in each dimension with position p, velocity v,
acceleration a, and jerk j. Since every point-to-point motion
can be projected on a 2D plane by the unit vectors p and
z, we use the 2D hexacopter model in Fig. 2. Furthermore,
the MAV can be rotated by angle θ (pitch) with rotational
velocity ω (pitch rate). The corresponding state vector x
(Eq. 1) and system equations (Eq. 2) are

x =

pv
a

 , (1)

ṗ = v, v̇ = a, ȧ = j. (2)
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Fig. 3. Linearization of the horizontal acceleration. While retaining a
constant vertical acceleration of a = g = 9.81 m

s2
, the true horizontal

acceleration (blue) is linearized either around neutral attitude (red) or
maximum pitch (black).

We assume a constant vertical acceleration of g = 9.81 m
s2

and a constant height z. Therefore, the vertical thrust is
constant Fg = m · g. The assumption of a constant ver-
tical acceleration simplifies the navigation problem to one
dimension.

We further assume the rotational velocity θ̇ = ω to be
the direct control input to the system. Underlying dynamics
like motor inertia are assumed to be neglectable and/or
perfectly controlled. This assumption is justified since ω and
all inherent underlying dynamics are controlled by a high-
bandwidth, high gain controller, using gyroscope feedback.
Since ω is tracked with a rate of 400Hz, the impact of
underlying dynamics can be neglected.

Sec. III-B describes how the true control input ω is mapped
to state input j. We want to emphasize that this model needs
no parameters and that especially the estimation of hard-to-
find parameters like motor constants or inertia tensor is not
needed in our approach.

B. Model Linearization

Fig. 3 shows the horizontal acceleration a caused by force
Fs in relation to deflection θ. It was obtained by

a = g · tan(θ). (3)

The total thrust F of the MAV evolves with

F =
Fg

cos(θ)
, (4)

to compensate for gravity.
Often, the small angle assumption linearizes around the

hover point. Instead, here we use linearization around the
maximum pitch, as time-optimal trajectories have the prop-
erty to maximize the usage of extreme control inputs (Pon-
tryagin’s minimum principle). In Sec. IV-B, this behavior
will be detailed. We evaluate our linearization method in
Sec. V-A.

With a maximum pitch of θmax = 0.5 rad and lineariza-
tion

a = (
g · tan(θmax)

θmax
) · θ, (5)

the state vector x, and the system equations can be
substituted by observable quantities:

x =

pv
θ

 , (6)

ṗ = v, v̇ = a = 10.72 · θ, θ̇ = ω. (7)

IV. TRAJECTORY GENERATION

We state the trajectory generation problem as follows:
Find a trajectory T (t) that satisfies state constraints (IV-A)

and dynamic constraints (IV-C, IV-D) such as smoothness of
the position p, velocity v, and pitch θ and minimizes time t.

The trajectory generation shall be real-time capable, and
the generated trajectory time- and energy-optimal. We want
to emphasize here that our simplified model is differentially
flat.

A. State Constraints

The trajectory generation method has to make sure that
the following state and input constraints are never violated:

vmin ≤ v ≤ vmax, (8)
θmin ≤ θ ≤ θmax, (9)
ωmin ≤ ω ≤ ωmax. (10)

B. Trajectory Composition

In [18], Pontryagin shows that there exists a particular
type of trajectories that satisfy time-optimality. The so called
Pontryagin’s minimum principle states that extreme control
inputs minimize the time to drive a dynamic system from
one state to another. In optimal control theory, a method
that maximizes control input that lies on the edge of the
control envelope is know as bang-bang or bang-singular-bang
control.

Instead of specifying the Hamiltonian and minimizing it,
we follow a more intuitive procedure. We decompose the
trajectory into seven parts that either yield maximum pitch
rate (ω = ωmax), zero pitch rate (ω = 0), or minimum pitch
rate (ω = ωmin). This is illustrated in Fig. 4 for the following
example.

The optimal strategy for starting from state space point
x = (0, 0, 0) (starting at the origin, zero velocity, zero pitch)
with target xwayp = (5, 0, 0) (position = 5m, zero velocity,
zero pitch) in state space is:

I) Start to pitch forward with maximum pitch rate ω =
ωmax until you reach maximum pitch θ = θmax,

II) stop pitching ω = 0 and stay at maximum pitch θ =
θmax until your velocity is ’fast enough’,

III) start to pitch backward with minimum pitch rate ω =
ωmin until you reach zero pitch θ = 0 and exact the
maximum allowed velocity v = vmax,
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Fig. 4. This time-optimal trajectory was generated with our method. Starting from state x = (0, 0, 0) (starting at the origin, zero velocity, zero
pitch), it brings the simulated MAV to state xwayp = (5, 0, 0) (5m, zero velocity, zero pitch). The trajectory complies with the following constraints:
vmax = −vmin = 1 m

s
, θmax = −θmin = 0.051 rad ⇔ amax = −amin = 0.5 m

s2
, ωmax = −ωmin = 0.102 rad

s
⇔ jmax = −jmin = 1 m

s3
.

The calculated switching times are t1 = 0.5 s, t2 = 1.5 s, t3 = 0.5 s, t4 = 2.5 s, t5 = 0.5 s, t6 = 1.5 s, and t7 = 0.5 s.

IV) stop pitching ω = 0 and stay at zero pitch θ = 0 until
traveled distance is ’far enough’,

V) start to pitch backward with minimum pitch rate ω =
ωmin until you reach minimum pitch θ = θmin,

VI) stop pitching ω = 0 and stay at minimum pitch θ =
θmin until your velocity is ’slow enough’, and

VII) start to pitch forward with maximum pitch rate ω =
ωmax until you reach your desired pitch θ = θwayp.
At this point you should exactly reach the desired state
x = xwayp.

C. First-order Conditions

For every part n of the composed trajectory, we formulate
a system of three differential equations, reflecting the state
at the end of the part, including position p, velocity v, and
acceleration a:

an = an−1 +

∫ tn

0

jn dt, (11)

vn = vn−1 +

∫ tn

0

an dt, (12)

pn = pn−1 +

∫ tn

0

vn dt. (13)

Under the assumption of extreme control inputs, stated
in Sec. IV-B, we can derive a system of non-differential

equations:

a1 = a0 + t1 · jmax, (14)
a2 = a1 + t2 · 0, (15)
a3 = a2 + t3 · jmin, (16)
a4 = a3 + t4 · 0, (17)
a5 = a4 + t5 · jmin, (18)
a6 = a5 + t6 · 0, (19)
a7 = a6 + t7 · jmax, (20)

v1 = v0 + t1 · a0 +
1

2
· t21 · jmax, (21)

v2 = v1 + t2 · a1 +
1

2
· t22 · 0, (22)

v3 = v2 + t3 · a2 +
1

2
· t23 · jmin, (23)

v4 = v3 + t4 · a3 +
1

2
· t24 · 0, (24)

v5 = v4 + t5 · a4 +
1

2
· t25 · jmin, (25)

v6 = v5 + t6 · a5 +
1

2
· t26 · 0, (26)

v7 = v6 + t7 · a6 +
1

2
· t27 · jmax, (27)



p1 = p0 + t1 · v0 +
1

2
· t21 · a0 +

1

6
· t31 · jmax, (28)

p2 = p1 + t2 · v1 +
1

2
· t22 · a1 +

1

6
· t32 · 0, (29)

p3 = p2 + t3 · v2 +
1

2
· t23 · a2 +

1

6
· t33 · jmin, (30)

p4 = p3 + t4 · v3 +
1

2
· t24 · a3 +

1

6
· t34 · 0, (31)

p5 = p4 + t5 · v4 +
1

2
· t25 · a4 +

1

6
· t35 · jmin, (32)

p6 = p5 + t6 · v5 +
1

2
· t26 · a5 +

1

6
· t36 · 0, (33)

p7 = p6 + t7 · v6 +
1

2
· t27 · a6 +

1

6
· t37 · jmax. (34)

D. Second-order Conditions

Since only 21 equations and 31 unknown variables are
defined (t1, ..., t7, a0, ..., a7, v0, ..., v7, p0, ..., p7), we need
second-order conditions to fully describe the trajectory. We
therefore assume x to be the current state and xwayp the
target state. We also assume Eq. 41 and the constraints in
Tab. I stated under ’Case 1’:

a0 = a, (35)
v0 = v, (36)
p0 = p, (37)
a7 = awayp, (38)
v7 = vwayp, (39)
p7 = pwayp, (40)

a3 = 0. (41)

E. Feasibility

Since we make the assumption that the MAV reaches the
maximum allowed velocity and pitch during the trajectory,
this approach is not feasible for arbitrary configurations of
x and xwayp. In contrast to other approaches that simply
lower the maximum pitch rate ωmax to converge to a feasible
trajectory, we generate eight different trajectory templates
that follow a different policy each. An optimal trajectory
could, e.g., be to only pitch forward and immediately pitch
backwards—without the part of constant velocity in the
middle. This leads to a substitution of second-order condition
v3 = vmax → t4 = 0 (Case 2). All permuted substitutions,
necessary for all possible trajectory templates are shown in
Tab. I.

We further mirror the trajectory templates to expand the
reachable set to all possible state space configurations. So,
with j1 = j7 = jmin, j3 = j5 = jmax and j2 = j4 = j6 = 0,
we get 16 trajectory templates in total.

F. Analytical Solution

We use the MathWorks R© MATLAB Symbolic Math Tool-
box to find an analytical solution to the problem stated. The
analytical solution for t1, ..., t7 for Case 1 is shown in the

0 1 2 3 4 5

−1

−0.5

0

0.5

1

Horizontal Position (m)

V
er
ti
ca
l
P
o
si
ti
o
n
(m

) Pitch and Position

Fig. 5. Trajectory when flying from x = (0, 0, 0) (green marker) to
xwayp = (5, 0, 0) (red marker). The pitch angle is depicted by the line.
Parameters for this simulation where chosen to be vmax = −vmin = 1 m

s
,

θmax = −θmin = 0.051 rad ⇔ amax = −amin = 0.5 m

s2
, ωmax =

−ωmin = 0.102 rad
s
⇔ jmax = −jmin = 1 m

s3
, blue markers are placed

every 150ms. For better readability, the pitch angle is magnified 8 times.

0

2

4

0

0.2

0.4

0.6

0.8

−0.05

0

0.05

Position (m)

State Space

Velocity (m
s
)

P
it
ch

(r
a
d
)

Fig. 6. Evolution of the state space when flying from x = (0, 0, 0)
(green marker) to xwayp = (5, 0, 0) (red marker). Parameters for this
simulation where chosen to be vmax = −vmin = 1 m

s
, θmax =

−θmin = 0.051 rad⇔ amax = −amin = 0.5 m

s2
, ωmax = −ωmin =

0.102 rad
s
⇔ jmax = −jmin = 1 m

s3
, blue markers are placed every

50ms.

appendix (Eq. 44 – Eq. 50). For better readability, we refrain
from substituting a and j, as this induces many constants into
the equation. We show a numerical solution for x = (0, 0, 0)
and xwayp = (5, 0, 0) in Fig. 4. The corresponding pitch
angles and the evolution of the state space are shown in
Fig. 5 and Fig. 6, respectively.

We test for feasibility by simply evaluating all trajectory
templates and choosing the one that does not violate any
state, and causality constraints (t1, ..., t7 ≥ 0).

Since only linear, quadratic, cubic, and quartic equations
can be solved analytically (Abel-Ruffini theorem), our ap-
proach is limited to jerk as system input. Higher derivative
input like snap prohibits the analytical solution. On first
glance, this poses a limit to the proposed approach. In
reality, since underlying dynamics are controlled by a high-
bandwidth, high gain controller, it poses no limitation for the
problem stated. E.g. Mellinger et al. [19] give insight into
the dynamics of pitch control. We further justify this design
choice in Sec. V-E.



TABLE I
SECOND-ORDER CONDITIONS

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8
θ1 = θmax θ1 = θmax t2 = 0 θ1 = θmax t2 = 0 t2 = 0 θ1 = θmax t2 = 0
θ5 = θmin θ5 = θmin θ5 = θmin t6 = 0 t6 = 0 θ5 = θmin t6 = 0 t6 = 0
v3 = vmax t4 = 0 v3 = vmax v3 = vmax v3 = vmax t4 = 0 t4 = 0 t4 = 0
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Fig. 7. Starting from x = (0, 0, 0), it can be seen where Case 1 (blue) or
Case 2 (aquamarine) is valid for a given configuration of xwayp.

The equations present in our approach can be solved by
e.g., PQ-formula, Cardano’s method, Ferrari’s method, or by
an automatic solver like the one used herein.

Fig. 7 shows the cases used, dependent on the target state
xwayp when starting from x = (0, 0, 0).

V. RESULTS

A. Linearization

In Fig. 3, it can be seen that the worst-case error (when lin-
earizing with a realistic maximum pitch of θmax = 0.5 rad)
is well below 10% of the true value, a quality usually not
achieved with model parameter identification.

Since the actual error heavily depends on the trajectory, it
is impossible to generalize the error metric to all trajectories.
Exemplarily, we evaluate the error of the trajectory shown
in Fig. 4.

As seen in Fig. 8, the maximum error magnitude of
170 µm

s2
is three orders of magnitude smaller then the max-

imum nominal acceleration of 0.5 m
s2

. When the MAV is
in the state of either zero acceleration (hover condition) or
maximum acceleration, the error is completely eliminated
when linearizing with our method. This yields to a better
linearization-induced average absolute error per trajectory

ea =

∫ t1+...+t7
0

|agt − alin|dt
t1 + ...+ t7

, (42)

shown in Tab. II.
It can be seen that trajectories where times with zero or

maximum acceleration exceed transient times (t2+t4+t6 �
t1 + t3 + t5 + t7) show smaller linearization errors. This is
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Fig. 8. We compare the progress of the acceleration error with linearization
around the hover point and our linearization method. Here we simulate the
trajectory shown in Fig. 4

valid for most trajectories as realistic pitch rates are usually
in the range of ω � 5 rad

s .
In general, the relative linearization error is small in com-

parison to nominal accelerations and thus can be neglected
(0.5mm error at a 5m trajectory).

B. Energy Optimality

Under all trajectories that drive the MAV from the start-
to the target state and satisfy state- and dynamic constraints,
there exist an infinite subset that minimizes the times, the
MAV accelerates and decelerates. This means the MAV is
not decelerating and then accelerating again without reason.
A reason would be to prevent violation of a constraint (e.g.,
not to overshoot over the target). In this subset there is a
one specific trajectory that lies on the edge of the control
envelope. This specific trajectory is the one our method
generates.

We define the energy used by a trajectory as the integral
of the total thrust F

E =

∫ t1+...+t7

0

F dt, (43)

over the whole trajectory.
Fig. 9 shows the energy used for a set of trajectories with

different maximum velocities and accelerations. It can be
seen that the function is convex and that trajectories with
larger accelerations and velocities consume less energy.



TABLE II
AVERAGE LINEARIZATION INDUCED ERROR

Linearization Technique Average Absolute Error in µm
s2

Final Position in m Rel. Position Error in ppm
Neutral linearization 202.08 5.00381 762.69

Maximum linearization 28.91 4.99945 -108.31
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Fig. 9. Here we simulate the trajectory shown in Fig. 4 with different
maximum accelerations and velocities. It can be seen that the energy
function is convex and that it is always more energy efficient to accelerate
faster and to fly faster. The trajectories generated by our method lie on the
edge of the control envelope, and thus are energy-optimal. We assume the
MAV to weight m = 1.5 kg.

The energy that is used to compensate for gravity and
thus keep the MAV airborne grows linear with the total
time of a trajectory. Consequently, slow trajectories need
more energy. Thus, although faster trajectories consume more
energy for acceleration and deceleration, they consume less
energy overall, due to a shorter execution time.

Since our method always generates time optimal trajec-
tories, these trajectories are also energy-optimal in terms of
the total thrust intergral.

C. Classic PID Control

In Sec. IV-B we show that for time-optimal control, it
is necessary for the control input to lie on the edge of the
control envelope. Since classic PID control does so only in a
special case (with saturated control input k →∞), it does not
follow this so called Pontryagin’s minimum principle. When
saturating the control input however, classic PID control will
overshoot, since the target acceleration will become negative
(braking the MAV) only when the MAV has already reached
the target position.

In contrast to our method, low-level constraints are not
propagated into higher levels of the cascade. Thus when
saturating, e.g., the acceleration setpoint, the next higher
level (velocity loop) suddenly has limited control authority.
This can either lead to overshoot, or slow transient responses,
depending on the parameterization. While our approach
exploits model knowledge to predict the evolution of the
MAV state and thus can incorporate nonlinearities, classic

control theory is limited to linear control. Thus, under the
assumption of nonlinearities, classic PID control can under
no conditions be faster than our time-optimal approach.

Classic cascaded PID control also relies on the proper
parameterization of at least three parameters, while our
method works parameterless.

Another drawback of the classic approach is the un-
ability to specify the full target state of the MAV. Here,
the position setpoint determines the velocity setpoint which
then determines the acceleration (pitch) setpoint. The strictly
hierarchical property and missing model knowledge makes
it impossible to specify side conditions like target velocities
and accelerations.

D. Computation Time

In order to prove the real-time capability of our approach,
we measured the time to derive the switching times t1, ..., t7
by the equations stated at Case 1. We found that the whole
process takes tcomp � 1 µs on a standard laptop computer.
This shows that the method is suitable to be running even
on small flight control computers with appropriate rates.

Since analytical solutions to high order polynomials tend
to become very complex, we analyzed the complexity of the
results. Tab. III shows the approximate number of mathemat-
ical operations that is necessary to solve the problem. It can
be seen that Case 6 – Case 8 are significantly more complex
then Case 1 – Case 5.

Computation time evolves approximately linear with the
number of mathematical operation. Case 6 is approximately
6504 times as complex as Case 1, so even the most complex
Case 6 should be solvable in milliseconds. With realistic
pitch rates, Case 6, 7 and 8 only occur very close to the target
waypoint, when the there is no time of constant velocity
(t4 = 0) and either no time of constant acceleration (Case 6,
t2 = 0), constant deceleration (Case 7, t6 = 0), or both
(Case 8, t2 = 0, t6 = 0).

Case 8 only occurs in the most extreme conditions of the
trajectory, very close to the target. It can be seen that when
starting from x = (0, 0, 0), Case 8 is only valid when the
target position is in a radius with r ≤ 3.12 cm (assuming
realistic parameters of vmax = −vmin = 1.5 m

s , θmax =
−θmin = 0.25 rad, ωmax = −ωmin = 1 rad

s with vwayp =
0 m

s , and awayp = 0 m
s2

).
Since Cases 6, 7 and 8 nearly never occur in realistic data,

we refrain from solving them explicitly.

E. EuRoC Simulator

We use the RotorS MAV simulator [20] which was devel-
oped for Challenge 3 of the European Robotics Challenges



TABLE III
COMPLEXITY ANALYSIS

Time Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8
t1 2 3 58 3 58 2 3 434540
t2 20 242 0 14 0 0 22586 0
t3 1 1 47 1 47 1433787 1 217269
t4 182 0 102 433 176 0 0 0
t5 1 1 1 53 54 1 11283 217269
t6 21 242 13 0 0 62319 0 0
t7 3 2 2 64 65 2 11281 144812

Start

MAV

Intermediate Goal

Goal

Fig. 10. Our method is evaluated within the RotorS MAV simulator. We
plan obstacle-free paths (green) from the MAVs starting location to the goal
in an allocentric gridmap of a warehouse (see Fig. 1). After pruning (red),
we employ our method to traverse the path. Here, the MAV (depicted by the
axes) already executed half of the trajectory to the intermediate waypoint.
Color encodes height.

(EuRoC) to prove the applicability of our method to nonlin-
ear models with realistic parameters. A typical test scenario
is shown in Fig. 10.

Since our method only allows direct waypoint flight, we
employ a hierarchy of planners. First, we plan obstacle-free
paths in an allocentric 3D gridmap of the environment and
26-neighborhood with A*. Details can be found in [21]. After
that, we employ the Ramer-Douglas-Peucker algorithm to
prune the planned path. We then use our method to plan
trajectories connecting the intermediate waypoints of the
path.

Due to the special characteristics of our environment (or-
thogonal walls, mostly vertical structures), we can guarantee
optimality although the target waypoint is not in direct line
of sight. Since waypoints are placed on crossings, globally
optimal trajectories consist of a composition of locally op-
timal trajectories with direct sight. Thus, we can even relax
the assumption made in Sec. I.

By adjusting the waypoint radius, MAV flight can be
either precise or fast. When the waypoint radius is small,
the MAV stops at intermediate waypoints and reaches them
exactly. If the waypoint radius is large, the MAV passes the
waypoint at constant maximum velocity, but does not reach
it exactly. In this way, a balance between precision and speed
at intermediate waypoints can be achieved.

Fig. 11 shows the corresponding position and velocity
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Fig. 11. Nonlinear simulated flight from state x = (0, 0, 0) to state
xwayp = (5, 0, 0) by RotorS. Parameters for the trajectory are chosen to be
vmax = 1.5 m

s
, θmax = −θmin = 0.25 rad, ωmax = −ωmin = 1 rad

s
.

graphs for a flight from state x = (0, 0, 0) to state xwayp =
(5, 0, 0). Instead of replanning at every control cycle, we
only plan the trajectory once. By doing so, we can identify
errors induced by the model linearization and the underlying
dynamics. For this experiment, rotor drag is switched off.
It can be seen that possibly because of linearization induced
errors, the maximum velocity is not exactly reached (vmax =
1.4767 m

s 6= 1.5 m
s ). This results in a positional error at

the end of the trajectory of pwayp = 4.8807m 6= 5m. We
want to emphasize here that the trajectory was executed open
loop so that the error of 2.4% could be easily reduced by
replanning the trajectory during execution.

Videos of this simulation and other experiments can be
found on our website1.

VI. CONCLUSIONS

The paper proposes an analytical time- and energy-optimal
trajectory generation method for MAVs that is able to run in
real-time and thus can be used as MPC.

Starting from a simple parameterless first-principles model
of the MAV, we compute optimal switching times for the
rotational velocity of the MAV, respecting state, and input
constraints.

With the ability to specify the full state of the MAV, it
is possible to target moving or even accelerating waypoints
like, e.g., a moving landing platform.

1http://www.ais.uni-bonn.de/videos/ICUAS_2016



We evaluate the effectiveness of the proposed approach,
comparing it to the state of the art cascaded control loop for
position, velocity, and attitude. The classic design can violate
high-level constraints, as low-level state constraints are not
propagated into higher levels of the cascade.

At the moment, optimality is only given for exclusively
horizontal movement and waypoints that have either direct
line of sight or lie within an orthogonal environment. Since
our use case and many other use cases deal with flying
in man-made environments that mostly consist of vertical
structures, these constraints are often met. Nevertheless, in
future work we want to relax the assumption of constant
height and extend the method to full 3D movements.

We show that in general, our approach is capable of deal-
ing with arbitrary input and state constraints. In future work
we want to evaluate if it is possible to model asymmetric
model properties, e.g., acceleration is faster then deceleration
because of drag.

At the moment, we test for feasability by evaluating all
trajectory templates and choosing the one that is valid. This
poses no computational problem, since the method is very
fast, but it would be more elegant to model the problem with,
e.g., a decision tree with state- and dyanamic thresholds.

The method can be employed as is, or build upon.
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APPENDIX
ANALYTICAL SOLUTION FOR CASE 1

t1 =
amax − a
jmax

(44)

t2 =
a2max · jmax − a2max · jmin + a2 · jmin + 2 · jmin · jmax · vmax − 2 · jmin · jmax · v

2 · amax · jmin · jmax
(45)

t3 = −amax

jmin
(46)

t4 = −A+B + C +D + E + F +G+H + I

J
(47)

A = amin · a4max · j2min − a4min · amax · j2min − amin · a4max · j2max + a4min · amax · j2max − 3 · amin · a4 · j2min

B = 3 · amax · a4wayp · j2min + 8 · amin · amax · a3 · j2min − 8 · amin · amax · a3wayp · j2min

C = −6 · amin · a2max · a2 · j2min + 6 · a2min · amax · a2wayp · j2min + 12 · amin · j2min · j2max · v2max

D = −12 · amax · j2min · j2max · v2max − 12 · amin · j2min · j2max · v2 + 12 · amax · j2min · j2max · v2wayp

E = 24 · amin · amax · j2min · j2max · p− 24 · amin · amax · j2min · j2max · pwayp

F = −12 · amin · a2max · jmin · j2max · vmax + 12 · a2min · amax · jmin · j2max · vmax

G = 12 · amin · a2max · j2min · jmax · v − 12 · a2min · amax · j2min · jmax · vwayp

H = 12 · amin · a2 · j2min · jmax · v − 12 · amax · a2wayp · j2min · jmax · vwayp

I = −24 · amin · amax · a · j2min · jmax · v + 24 · amin · amax · awayp · j2min · jmax · vwayp

J = 24 · amin · amax · j2min · j2max · vmax

t5 =
amin

jmin
(48)

t6 = −
a2min · jmax − a2min · jmin + a2wayp · jmin + 2 · jmin · jmax · vmax − 2 · jmin · jmax · vwayp

2 · amin · jmin · jmax
(49)

t7 = −amin − awayp

jmax
(50)


