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Abstract— Obstacle detection and real-time planning of
collision-free trajectories are key for the fully autonomous
operation of micro aerial vehicles in restricted environments.

In this paper, we propose a complete system with a mul-
timodal sensor setup for omnidirectional obstacle perception
consisting of a 3D laser scanner, two stereo camera pairs, and
ultrasonic distance sensors. Detected obstacles are aggregated
in egocentric local multiresolution grid maps. We generate
trajectories in a multi-layered approach: from mission planning
to global and local trajectory planning, to reactive obstacle
avoidance.

We evaluate our approach in simulation and with the real
autonomous micro aerial vehicle.

I. INTRODUCTION

Micro aerial vehicles (MAVs) are enjoying increasing
popularity. Due to their low cost and flexibility, they are used
for aerial photography, inspection and surveillance missions.
In most cases, a human operator pilots the MAV remotely to
fulfill a specific task or the MAV is following a predefined
path of GPS waypoints in an obstacle-free altitude.

Our MAV is shown in Fig. 1. We aim for a fully au-
tonomous creation of semantic maps of buildings on demand
of a user. Hence, the MAV has to operate at low altitudes
in the vicinity of facades and other structures, e.g., trees,
street lights, and power cables. This requires more elaborated
means of navigation than direct flight between predefined
GPS waypoints. We follow a multi-layered approach to
navigation: from slower deliberative to fast reactive layers,
including mission planning, global and local path planning,
fast local obstacle avoidance, and robust motion controllers.

Although we aim at mapping the environment during
execution, prior knowledge can aid our mission planning—in
contrast to fully autonomous exploration of unknown space.
We incorporate 3D city models as acquired by land surveying
authorities, i.e., a Level-of-Detail 2 (LoD2) model containing
footprint, height, and roof-shape of buildings [1] and a digital
elevation model (DEM) of the environment. These models
do not include smaller structures, which constitute a collision
hazard for the MAV. Thus, the initial mission plans need to
be adjusted on the fly, whenever more information becomes
available during a flight. Nevertheless, buildings are often the
largest obstacles and might inhibit local path planners to find
a feasible path towards the global goal. Other obstacles, e.g.,
power poles, vegetation, or building attachments, are likely
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Fig. 1: Our MAV is equipped with eight co-axial rotors and
a plurality of sensors, including a continuously rotating 3D
laser scanner and two stereo camera pairs.

to be small enough to be covered by our local obstacle map,
built by means of efficient multiresolution scan registration.
Hence, a globally consistent path enables a local planner to
navigate towards a global goal.

MAVs pose a problem for designing sensory systems and
perception algorithms due to their size and weight constraints
and limited computing power. In order to enable navigation
in difficult 3D environments for autonomous MAVs, we
developed a small and lightweight continuously rotating 3D
laser scanner that measures distances of up to 30 m in almost
all directions. It consists of a Hokuyo 2D laser range finder
(LRF) which is rotated by a servo actuator to gain a 3D FoV,
as shown in Fig. 2.

Up to now, such 3D laser scanners are rarely used
on MAVs due to their payload limitations. Instead, two-
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dimensional laser range finders are used [2], [3], [4], [5],
which restricts the field-of-view to the two-dimensional
measurement plane.

Additionally, our MAV is equipped with two stereo camera
pairs, and ultrasonic sensors covering the volume around the
MAV up to 30 m range [6]. All these sensors have only local
precision. This is reflected in the local multiresolution prop-
erty of our MAV-centric obstacle map. The local navigation
planner operates directly on this representation. We employ
3D local multiresolution path planning, extending ideas from
our prior work [7]. This efficient planning technique allows
for frequent replanning, which makes 3D navigation in
dynamic, unpredictable environments possible.

After a discussion of related work in the next section,
we introduce our MAV in Sec. III. Sec. IV describes our
local multiresolution obstacle map. Our hierarchical control
architecture from global path planning to low-level control is
detailed in Sec. V. We present evaluation results in Sec. VI.

II. RELATED WORK

The application of MAVs varies especially in the level of
autonomy—ranging from basic hovering and position hold-
ing [8] over trajectory tracking and waypoint navigation [9]
to fully autonomous navigation [2].

1) Obstacle Perception: Particularly important for fully
autonomous operation is the ability to perceive obstacles and
to avoid collisions. Obstacle avoidance is often neglected,
e.g., by flying in a sufficient height when autonomously
flying between waypoints. Most approaches to obstacle
avoidance for MAVs are camera-based, due to the limited
payload [10], [11], [12], [13], [14], [15], [16], [17]. Hence,
collision avoidance is restricted to the field of view (FoV) of
the cameras. Moore et al. [18] use a ring of small cameras to
achieve an omnidirectional view in the horizontal plane, but
rely on optical flow for speed control, centering, and heading
stabilization only.

Other groups use 2D laser range finders (LRF) to local-
ize the UAV and to avoid obstacles [2], limiting obstacle
avoidance to the measurement plane of the LRF, or combine
LRFs and visual obstacle detection [3], [19], [20]. Still, their
perceptual field is limited to the apex angle of the stereo cam-
era pair (facing forwards), and the 2D measurement plane
of the scanner when flying sideways. They do not perceive
obstacles outside of this region or behind the vehicle.

We allow omnidirectional 4D movements of our MAV,
thus we have to take obstacles in all directions into account.
Another MAV with a sensor setup that allows omnidirec-
tional obstacle perception is described in [21].

2) Navigation Planning: A two-level approach to
collision-free navigation using artificial potential fields on
the lower layer is proposed in [22]. Similar to our work,
completeness of the path planner is guaranteed by an allo-
centric layer on top of local collision avoidance.

Some reactive collision avoidance methods for MAVs
are based on optical flow [23] or a combination of flow
and stereo vision [24]. However, solely optical flow-based
solutions cannot cope well with frontal obstacles and these

Fig. 2: 3D laser scanner. A 2D LRF is continuously rotated
around the red axis.

methods are not well suited for omnidirectional obstacle
avoidance as needed for our scenario.

Recent search-based methods for obstacle-free navigation
include work of MacAllister et al. [25] and Cover et al. [26].
A good survey on approaches to motion planning for MAVs
is given in [27]. These methods assume complete knowledge
of the scene geometry—an assumption that we do not make
here.

III. SYSTEM SETUP

Our MAV platform is an octorotor platform with a co-axial
arrangement of rotors (see Fig. 1). This yields a compact
flying platform that is able to carry a plurality of sensors
and an onboard computer with sufficient computing power
(Intel Core i7-3820QM 2.7 GHz) for sensor data processing
and navigation planning employing the Robot Operating
System (ROS [28]) as middleware. For low-level velocity
and attitude control the MAV is equipped with a PIXHAWK
flight control unit [29]. To allow for safe omnidirectional
operation of the MAV in challenging environments our MAV
is equipped with a multimodal sensor setup. Our main sensor
for obstacle perception is a continuously rotating 3D laser
scanner (Fig. 2). The measurement density of the 3D laser
scanner varies and has its maximum in a forward-facing
cone. Only a small portion above the MAV’s back is occluded
by its core. Two stereo camera pairs (pointing in forward
and backward direction) are used for visual odometry and
obstacle perception. Equipped with fish-eye lenses they cover
a large area around the MAV. Eight ultrasonic sensors around
the MAV complete the perception setup. Despite their limited
range and accuracy, they aid the perception of small obstacles
in the vicinity of the MAV, such as tree branches, overhead
power cables and transmission lines. The fusion of these
sensors facilitate the reliable detection and avoidance of
obstacles. Their fusion is discussed in Sec. IV-C.

For localization and state estimation, we use GPS and an
optical flow camera [30] in addition to the two stereo camera
pairs and the 3D laser scanner. The flow camera is pointing
vertically to the ground and can—given suitable lighting
conditions—measure velocities relative to the ground-plane
with more than 100 Hz. We detail our sensor setup and the
processing pipeline in [6], [31].



Fig. 3: We aggregate 3D laser scans (middle) into local grid-based obstacle maps. The right image shows a resulting map
from the indoor environment in the left image. The scans are aggregated over 1 s.

IV. OBSTACLE PERCEPTION

In order to fuse and accumulate laser range measure-
ments, we construct MAV-centric obstacle maps. For each
measurement and the corresponding 3D point, the individual
cell of the map is marked as occupied. An exemplary map
from an indoor environment is shown in Fig. 3. The map is
used by our path planning and obstacle avoidance algorithms
described in subsequent sections.

A. Local Multiresolution Map

We use a hybrid local multiresolution map that represents
both occupancy information and the individual distance mea-
surements. The most recent measurements are stored in ring
buffers within grid cells that increase in size with distance
from the robot’s center. Thus, we gain a high resolution in the
close proximity to the sensor and a lower resolution far away
from our robot, which correlates with the sensor’s character-
istics in relative distance accuracy and measurement density.
Compared to uniform grid-based maps, multiresolution leads
to the use of fewer grid cells without loosing information
and consequently results in lower computational costs. Fig. 4
shows our multiresolution grid-based map.

We aim for efficient map management for translation and
rotation. Therefore, individual grid cells are stored in a ring
buffer to allow shifting of elements in constant time.

We interlace multiple ring buffers to obtain a map with
three dimensions. The length of the ring buffers depends on
the resolution and the size of the map. In case of a translation
of the MAV, the ring buffers are shifted whenever necessary
to maintain the egocentric property of the map.

B. Scan Registration

To compensate the sensor’s motion during scan acquisi-
tion, we incorporate a visual odometry estimate from two
pairs of wide-angle stereo cameras [32]. This 6D motion
estimate is used to assemble the individual 2D scan lines of
each a half rotation to a 3D scan.

We register consecutive 3D scans by matching Gaussian
point statistics in grid cells (surfels) between local multires-
olution grid maps [33]. We assign surfels in a probabilistic

way within a Gaussian mixture model (GMM) in a coarse-
to-fine fashion, which is facilitated by the multiresolution
property of our map.

After the new scan has been registered to the map, the new
measurements are added, replacing the oldest measurements.
We also implement an aging of the individual grid cells,
which leads to the abandoning of outdated measurements in
free or unobserved volumes.

C. Occupancy Mapping

The individual sensors of our MAV have different
strengths and weaknesses. In order to perceive as many
obstacles as possible it is necessary to fuse the measurements
adequately into a single map. We collect these measurements
in an occupancy grid maintaining occupancy probabilities.
We fuse measurements from the 3D laser scanner, from wide-
angle stereo cameras and from ultrasound sensors. Fig. 5
shows an example of an outdoor scenario where fusing laser
range measurements with dense stereo [34] allows for per-
ception of challenging obstacles. Besides very thin obstacles
such as a cable in the previous example, transparent objects
are demanding for reliable obstacle perception. Fig. 6 shows
how fusing measurements from our 3D laser scanner with
ultrasound measurements allows for detecting transparent
obstacles, like windows.

V. PLANNING

To reduce the planning complexity we divide the overall
planning problem into multiple problems with different levels
of abstractions. This is represented by a hierarchical control
architecture for our MAV, with slower deliberative planners
that solve complex path and mission planning problems on
the upper layers and high-frequency reactive controllers on
the lower layers (see Fig. 7).

A. Mission and Global Path Planning

The topmost layers are a mission planner and a global
path planner using a static representation of the environment
derived from a 3D city model and a digital elevation model,
depicted in Fig. 8(a). This model is stored efficiently in
an OctoMap [35]. The global environment model does not
change during a single observation mission. Hence, the



Fig. 4: Grid-based local multiresolution map with a higher resolution in proximity to the sensor and a lower resolution with
increasing distance. Color encodes height.

(a) (b) (c) (d)

Fig. 5: Obstacle perception by fusing laser range measurements of our 3D laser scanner with dense stereo measurements.
(a) a loose-hanging cable at 3 m distance, which is not perceived with the 3D laser scanner of the MAV; (b) dense stereo
allows for detecting the cable; (c) the resulting occupancy grid map with measurements from the laser scanner solely; (d) the
resulting occupancy grid map with laser and dense stereo. The fused map shows the obstacle circled in blue. The position
of the MAV is circled red.

(a) (b) (c) (d)

Fig. 6: Obstacle perception by fusing laser range measurements of our 3D laser scanner with ultrasound measurements. (a)
a windows in 2 m distance. (b) the window is only partially perceived by the 3D laser scanner; (c) the resulting occupancy
grid map with measurements from the laser scanner solely; (d) the resulting occupancy grid map with laser and ultrasound
measurements (red cones). The position of the MAV is circled red.

mission planner is executed once at the beginning of a
mission, necessary local deviations from the planned mission
are handled on lower layers. The input to the mission planner
are view poses defined by an user. It employs a global

path planner on a coarse uniform grid map to determine
the approximate costs between every pair of mission goals.
The optimal path covering all mission objectives is solved
by means of Concorde [36], a fast solver for the traveling



Fig. 7: Our MAV navigation concept. Slow planners on the
top yield coarse trajectories which are refined on faster lower
layers.

salesman problem (TSP). Please note, that the instances of
the TSP for one mission are sufficiently small and exact
solutions are tractable. The result of mission planning is
a flight plan composed of a list of waypoints the MAV
should pass approximately or reach exactly, depending on
the mission objectives. Fig. 9 shows an example solution for
inspecting a part of the building complex depicted in Fig. 8.

On the next level of the control hierarchy, global planning
finds a cost-optimal 3D path from the current MAV position
to the next waypoint. Even though global replanning seems
to be necessary only if unforeseen obstacles block mission
goals and local planning is not sufficient to find a feasible
detour, we found that continuous replanning is advantageous
on MAVs. Our global planner runs at 0.1Hz to both cope
with newly acquired obstacles and react on deviations from
the planned path by, e.g., gusts of wind. The global map can
be updated with local sensor measurements for that case. The
planned global path is fed as input to the next layer, the local
path planner.

B. Local Multiresolution Planning

On the local path planning layer, we employ a 3D local
multiresolution path planner. This layer plans based on the
next waypoint on the global path, a local excerpt of the global
map, and local distance measurements which have been
aggregated in a 3D local multiresolution map (Sec. IV-A). It
refines the global path according to the actual situation and
a finer trajectory is fed to the potential field-based reactive
obstacle avoidance layer on the next level (cf. Sec. V-C).

To resemble the relative accuracy of onboard sensors—
i.e., they measure the vicinity of the robot more accurate and
with higher density than distant space—we plan with a higher
resolution close to the robot and with coarser resolutions with
increasing distance.

Fig. 9: On the top layer, a mission planner evaluates the best
execution order of mission poses (red rectangles). Blue lines
show all cost-optimal trajectories between each pair from the
set of mission waypoints. The optimal flight plan to reach
all waypoints is shown in red. The cost function allows for
positions close to the building but penalizes these more than
paths farther away.

Furthermore, the necessity for modifications to the plan
is more probable in the future. Thus, it is reasonable to
spend more effort into a finer plan in the near future.
Overall, our approach reduces the planning time and makes
frequent replanning feasible. Our representation consists of
multiple robot-centered 3D grids. Recursively, these grids are
embedded into the next coarser grid with cells with a doubled
edge length. In contrast to a uniform grid that needs O(n3)
cells to cover a volume, our multiresolution grid needs only
O(log(n)3) cells. The advantages of this representation are
the low memory requirements and the inherent representation
of uncertainties in sensing and motion of the MAV.

For planning within this grid, we embed an undirected
graph and employ the A* algorithm. Grid cells are connected
to all surrounding neighbors. Fig. 10 illustrates the result of
local navigation planning for an example.

C. Local Obstacle Avoidance

On the next lower layer, we employ a fast reactive collision
avoidance module based on artificial potential fields [37] as
a safety measure reacting directly on the available sensor
inputs.

The robot-centered local multiresolution occupancy grid,
the current motion state xt, and a target waypoint wt,
serve as input to our algorithm. The obstacle map in-
duced repulsive forces on the MAV with magnitude F p

r =
costs (argmino (‖o− p‖)) for an obstacle o at a position p.
The target waypoint induces an attractive force towards the
goal.

In contrast to the standard potential field-based approach,
we relax the assumption that the robot is an idealized particle.
We account for the shape of the MAV by discretizing it into
cells of the minimum cell size of our 3D grid map (blue grid



(a) OctoMap derived from the 3D city model and
a digital elevation model.

(b) Local laser scan from the environment, in-
cluding a building and vegetation (blue circle).
Measurements on the MAV itself are circled red.

(c) Photo of the scanned environment.

Fig. 8: For the more abstract high-level planning layers we employ coarse models of the environment, i.e., a 3D city model
and a digital elevation model as provided by land surveying authorities (left). The planned paths are refined during a mission
by means of the local planning and obstacle avoidance layers operating with onboard sensor measurements, e.g., 3D laser
scans (middle). The color in both figures depicts the height. The MAV’s position is circled red in all figures.

Fig. 10: Our reactive collision avoidance layer is a fast mean
to react on apriori unknown obstacles (green rectangle in this
example). The arrows in the left figure depict the artificial
potential forces pushing the MAV away from all static and
dynamic obstacles, but the MAV will get stuck in a local
minimum (red circle) while approaching a waypoint in the
direction of the black line. The local path planning layer
is necessary to proceed without planning a new global path
(right).

cells in Fig. 11). Every cell is considered as one particle to
the algorithm.

To take the MAV’s dynamic state into account, we predict
its future trajectory Tt by predicting the probable sequence
of motion commands ut:t+n for a fixed discrete-time horizon
n (Fig. 11). The property that multicopters can quickly
change their motion state,e.g., by stopping completely and
accelerating into a different direction, bounds the relevant
prediction horizon.

The prediction of the future trajectory for the next n time
steps, initial motion command u0, initial position p0, and a
motion model f(x, u) is then given by

Tt = pt:t+n = (pt, pt + 1, . . . , pt+n) , (1)
pi+1 = f(xi, ui) + pi i ∈ [t : t+ n− 1] , (2)

ui = C ~Fpi
. (3)

Fig. 11: We predict the influence of a motion command by
rolling out the robot’s trajectory (red) using a learned motion
model. The direct line towards the next specified waypoint
is depicted in yellow. The white lines connect obstacles to
the parts of the robot model their artificial force is applied
to.

The future control commands ui are predicted by mapping
the estimated forces ~Fpi

at a position pi to a control com-
mand with matrix C. If a given force threshold is exceeded
at any point pi of the trajectory, we reduce the velocity v of
the MAV to

vnew =

(
1

2
+

i

2n

)
vmax. (4)

For more details, see [38].

VI. EVALUATION

A. Global Path Planning

We tested our global path planner in simulation and with
the real MAV. In the real robot experiments our MAV had



Fig. 13: Globally consistent paths (black lines) are planned
based on a static environment model at 0.1Hz. A local mul-
tiresolution path planner incorporating sensor information
refines the path locally (red lines) to avoid newly perceived
obstacles, e.g., the pole in this example situation.

TABLE I: Planning time (in milliseconds) and normalized
lengths of resulting trajectories.

grid cell size planning time length
representation (in m) min. max.
multiresolution 0.25 12 35 1.03

uniform 0.25 26 3395 1.00
uniform 1.00 4 20 1.09

to follow the planned paths employing a position controller
and GPS. We extended the allocentric map derived from
city and elevation model with obstacles (lanterns) for these
experiments. Replanning was performed at 0.1Hz and all
components were running on the onboard computer. Our
MAV was able to follow the planned paths collision free.
Fig. 12 shows an example from the test runs where the MAV
was pushed from the planned path by a gust of wind resulting
in a qualitatively different path after replanning.

B. Local Path Planning

We evaluate the computing time and the resulting flight
trajectories in simulation. The MAV follows a globally
planned path and has to avoid obstacles that are not in the
apriori known world model (Fig. 13). The experiments were
performed with two different uniform grids with cell size
0.25m and 1m, respectively. These were compared to our
local multiresolution grid with a minimum cell size of 0.25m
and 8 cells per grid. The timings in Tab. I are measured with
the MAV’s onboard computer.

All planning representations perform equally well if the
globally planned path can be followed. In the case newly
perceived obstacles have to be surrounded, the planning
time increases using a uniform grid with high resolution
substantially exceeds the time window for replanning. In
contrast, the local multiresolution planning is always fast
enough for continuous replanning.

Tab. I summarizes the resulting path lengths for a case
where the MAV has to locally plan a detour around an

obstacle not represented in the static environment model
using the three planning representations. The path lengths
are normalized for comparability between test runs. Local
obstacle avoidance without global replanning results in 3%
longer paths by means of our proposed multiresolution grid
instead of the fine uniform grid. The coarse uniform grid
results in 9% longer paths.

VII. CONCLUSIONS

In this paper, we presented an integrated system to operate
MAVs safely in the vicinity of obstacles. In the vicinity
of structures, fast reactions on new obstacle perceptions are
inevitable. We approach this challenge by employing local
multiresolution mapping and planning techniques that facil-
itate frequent updates and replanning. This refines higher-
level mission plans based on onboard sensing. A reactive
collision avoidance layer accounts for fast MAV and envi-
ronment dynamics.
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