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Abstract— In this paper, we present an interest point detector
and descriptor for 3D point clouds and depth images, coined
SURE, and use it for recognizing semantically distinct places
in indoor environments. We propose an interest operator
that selects distinctive points on surfaces by measuring the
variation in surface orientation based on surface normals in the
local vicinity of a point. Furthermore, we design a view-pose-
invariant descriptor that captures local surface properties and
incorporates colored texture information. In experiments, we
compare our approach to a state-of-the-art feature detector in
depth images (NARF). Our descriptor achieves superior results
for matching interest points between images and also requires
lower computation time. Finally, we evaluate the use of SURE
features for recognizing places.
Index Terms— surface interest points, local shape-texture de-
scriptor, place recognition

I. INTRODUCTION

Interest points paired with a descriptor of local image
context provide a compact representation of image content.
Applications such as place or object recognition require
that a detector repeatably finds interest points across images
taken from various view poses and under differing lighting
conditions. Descriptors, on the other hand, are designed
to distinguish well between different shapes and textures.
However, one must admit that descriptor distinctiveness
depends clearly on the variety of shapes and textures that
appear at the selected interest points. Thus, a detector will
be preferable, if it selects interest points in various structures
and highly expressive regions.

In this paper, we propose an approach for extracting shape
features at surface points through a measure of surface
entropy (SURE). We demonstrate the use of SURE features
for place recognition. Our features consist of a novel pair
of interest point detector and local context description. Our
approach can be applied to depth images as well as unor-
ganized 3D point clouds. An entropy-based interest measure
selects points on surfaces that exhibit strong local variation
in surface orientation. We complete our approach by the
design of a descriptor that captures local surface curvature
properties. We also incorporate color and texture cues into
the descriptor in case RGB information is available for the
points.
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Fig. 1: We detect SURE features in depth images at locations
with locally prominent surface curvature. Our interest oper-
ator measures the entropy of the distribution of curvature
directions at a point in a local neighborhood (top row).
The curvature direction (blue arrow) is obtained by the
cross product between the estimated surface normal at the
point of interest (red arrows) and at neighboring points
(green arrows). We propose a descriptor that captures local
shape and colored texture at interest points. We recognize
places using a Bag-of-Words approach using SURE features
(bottom row).

In experiments, we measure repeatability of our interest
points under view pose changes for several scenes and
objects and compare our approach with a state-of-the-art
detector and descriptor to demonstrate advantages of our
approach. We show that SURE is capable of correctly rec-
ognizing the semantic label of scenes with a Bag-of-Words
approach. The top row in Fig. 1 gives a short idea how the
interest point detection works while the bottom row outlines
the place recognition application with SURE features.

II. RELATED WORK

A. Interest Point Detection

Feature detection and description has been a very active
area of research since decades. Nowadays, interest point
detection algorithms are designed to be invariant against
moderate scale and viewpoint changes [1]. Examples are the
Harris-Affine [2] detector that recognizes corner structures
based on the second moment matrix, the MSER [3] detector
that identifies groups of pixels that are best separable from
their surrounding, and the well known SIFT [4] or optimized
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SURF [5] detectors that are based on intensity blobs found by
a difference of Gaussians filter. Most related to our method,
also the entropy measure based on image intensities has been
investigated for interest point detection [6], [7], [8]. It has
been successfully applied to object recognition [9] due to the
high informativeness of maximum entropy regions.

However, those methods purely based on intensity image
data suffer problems emerging from projective reduction
to 2D space [10]. Recently, various methods have been
developed to extract interest points from dense, full-view
point clouds.

Novatnack et al. [11] extract multi-scale geometric interest
points from dense point clouds with an associated triangular
connectivity mesh. Our approach does not require connec-
tivity information given by a mesh. Unnikrishnan et al. [12]
derive an interest operator and a scale selection scheme for
unorganized point clouds. They extract geodesic distances
between points using disjoint minimum spanning trees in a
time-consuming pre-processing stage. In [13], this approach
has been applied to depth images and an interest detector
for corners with scale selection has been proposed. Steder
et al. [14] extract interest points from depth images without
scale selection, based on a measure of principal curvature
which they extent to depth discontinuities. However, our
approach is not restricted to depth images and can be readily
employed for full-view point clouds.

B. Local Descriptors

The SIFT-descriptor [4] has been successfully used in
computer vision applications, as have several improvements
to SIFT. SURF [5] sums Haar wavelet responses as a rep-
resentation of the local gradient pattern. Recently, Calonder
et al. [15] and Rublee et al. [16] demonstrated that bina-
rized pixel comparisons yield a robust and highly efficient
descriptor.

Several point descriptors have been proposed for 3D point
clouds and depth images. Prominent examples are spin-
images [17], shape context [18], [19], and (C-)SHOT [20].
Steder et al. [14] proposed the NARF descriptor for depth
images. They determine a dominant orientation from depth
gradients in a local image patch and extract radial depth
gradient histograms. We directly compare our approach
to NARF and demonstrate that SURE finds more distinct
features. Rusu et al. [21] quantify local surface curvature
in rotation-invariant Fast Point Feature Histograms (FPFH).
They demonstrate that the histograms can well distinguish
between shapes such as corners, spheres, and edges. We also
base our descriptor on surfel-pair relations to describe shape.
We complement this descriptor with colorful texture cues.

C. Place Recognition

Bag-of-Words approaches are frequently used for place
recognition purposes [22], [23]. The image content is first
compressed into a set of features that are then quantized
using a vocabulary of visual words. The words represent
clusters in descriptor space that are learned from training
images. The histogram of word occurrences in an image is

then compared to the training images in order to retrieve the
place category. We also follow a Bag-of-Words approach and
demonstrate the use of SURE features for place recognition.

III. ENTROPY-BASED INTEREST POINTS IN 3D POINT
CLOUDS

A. Interest Points of Local Surface Entropy
Our detector is based on statistics about the distribution

of local surface orientations. We are interested in regions
with maximal diversely oriented surfaces, since they show
promise to be stably located at transitions of multiple sur-
faces or capture entire (sub-)structures that stick out of
the surroundings. To identify such regions, we measure the
entropy

H(XE) = −
∑
x∈XE

p(x) log p(x), (1)

where XE is a random variable characterizing the distribution
of surface orientations occurring within a region of interest
E ⊆ R3. We extract interest points where this entropy
measure achieves local maxima, i.e. where XE is most
balanced.

B. Estimation of Surface Normals and Curvature Directions
As we make use of surface normals to estimate surface

orientations, we shortly introduce our approach to estimate
them. Depth sensors usually measure surfaces by a set of dis-
crete sample points Q = {~q1, . . . , ~qn}, ~qk ∈ R3. We approx-
imate the surface normal at a sample point n(~qk) looking at
the subset of neighboring points Nk = {~ql ∈ Q| ‖~qk−~ql‖1 <
r} within a given support range r. Then, n̂r(~qk) equals the
eigenvector corresponding to the smallest eigenvalue of the
sample covariance matrix cov(Nk).

When directly measuring surface variation from the ori-
entation of surface normals, measurement noise may cause
spurious detections at ridges and edges. Heuristic post-
processing would then be required to filter out such false
detections. Instead, we propose to measure the variation in
surface curvature by the cross-product of pairs of surface
normals. This second-order statistics exhibit strong orienta-
tion peaks and therefore low entropy for ridge- and edge-
like structures. In contrast, at structures with diverse surface
normal orientations such as corners, curvature directions will
also point in diverse directions and entropy will be high. On
planar surfaces, curvature direction is strongly affected by
noise and, hence, the entropy is meaningless. Nevertheless,
the planarity of the surface is indicated by the similarity of
the normal orientations. We thus add a new class for parallel
normal pairs and re-weight the curvature direction according
to the scalar product of the normals.

For every sample point ~qk we collect all estimated nor-
mals N̂~qk in the neighborhood N and calculate the main
normal n̂(E), which incorporates all points in E . We calculate
curvature directions by the normalized cross products ck =
(n̂(E)× n̂r(~qk)) / ‖n̂(E)× n̂r(~qk)‖2 between the main nor-
mal and the neighboring normals. In order to handle planar
surfaces, we assign a weight

w× = (1− 〈n̂(E), n̂r(~qk)〉) (2)



which indicates the likelihood of the normal pair belonging
to a planar surface or not.

C. Entropy Calculation

We discretize the domain of weighted curvature directions
into a fixed number of orientation bins and a center bin for
parallel surfel-pairs. For the discretization of the orientation
distribution in a given region of the surface we estimate an
orientation histogram. We use the approach by Shah [24] for
subdividing a spherical surface into approximately equally
sized patches. Every patch is specified by its central azimuth
and inclination angle. The number of azimuth angles is deter-
mined by the inclination angle so that it is proportional to the
circumference of the section of the sphere. We transform the
angles from spherical into Cartesian coordinates and obtain
a set of normalized vectors ~vi,j pointing to the centers of
histogram bins.

A normalized vector ~v contributes to the orientation his-
togram bin hi,j with a weight inversely proportional to its
distance from the center of a histogram bin, i. e.,

wi,j =

{
0 , if 〈~v,~vi,j〉 < cosα
〈~v,~vi,j〉−cosα

1−cosα , otherwise.
(3)

The maximal angular range of influence is bounded by α. In
addition, we weight each entry in the orientation histogram
with the unplanarity weight w×.

The center bin receives the weight 1−w× for each normal-
pair. Finally, we normalize the complete histogram before
calculating the entropy according to Equation 1.

D. Efficient Implementation using Octrees

For efficient data access and well-ordered computation,
we set up an octree structure containing the 3D point data
from the depth image or point cloud. In order to measure
local surface entropy, our octree enables uniform sampling
in 3D space. Furthermore, we exploit the multi-resolution
architecture of the octree for fast volume queries of point
statistics.

The multi-scale structure of the octree allows for efficient
bottom-up integration of data, facilitating the calculation
of histograms, as well as search queries for local maxima
in arbitrary volumes. In each node, we store histogram,
integral and maximum statistics for different attributes of
all points that are located within the volume of the node.
These values can be computed efficiently by passing the
attributes of points on a path from leaf nodes to the root
of the tree. This direction, every parent node accumulates
and merges data received from its child nodes. An easily
understood example for data statistics is the average position
of points within a certain volume V . By integrating over
the homogeneous coordinates of points ~s = (x, y, z, w)T =∑
~qi∈V(xi, yi, zi, 1)T , one retains the mean via normaliza-

tion ~̄q = 1
w~s.

When querying for statistics inside an arbitrary 3D vol-
ume, we recursively descend the tree: if a node is fully
inside the queried volume, its statistics are integrated into
the response; if it is completely outside, this branch is

Fig. 2: We calculate normals and entropy histograms at
equidistant sample points in fixed scale radii.

discontinued; otherwise its child nodes are examined the
same way. This is valid since each node already integrates
the data of all leaves below in its own statistics.

E. Interest Point Detection

The surface entropy function depends on two scale param-
eters: one is the radius r of vicinity N for the estimation of
a surface normal orientation (called normal scale); the other
is the extend of a region of interest E , where the distribution
of normals and thus the local surface entropy is gathered
(called histogram scale) as seen in Fig. 2. These volumes are
chosen to be cubic and appropriate to fit the intrinsic octree
resolutions. The maximal depth (=̂resolution) of the octree
is usually determined by the normal sampling interval at the
finest scale, that is specified to be a common multiple of
the other dimensions. This way, range queries are processed
most efficiently. Usually, sampling interval sizes of surface
normals as well as normal orientation histograms are set to be
at least half of the diameter of their respective local support
volume.

All these parameters have to be chosen carefully. The
histogram scale E corresponds directly to the size of the
interest points, at which local structures become salient.
Its sampling interval is a trade-off between preciseness and
speed. According to the Nyquist-Shannon sampling theorem,
a minimal sampling frequency of twice the region size is
needed to reconstruct the surface entropy function, i.e. not
to miss the occurrence of a local maximum. We choose
the normal scale r to a constant fraction of the histogram
scale. Accordingly, the sampling interval for normals must
also obey the sampling theorem. Reproducing the effect of a
lowpass filter for removal of artifacts, we consider an entropy
sample to be an interest point candidate, if it exceeds all its
spatial neighbors within a dominance region. In addition,
the candidate is only kept if it exceeds a global entropy
threshold Hmin. The latter is checked, because we assume
regions of interest containing many equally aligned normals
to be unstable and/or less accurate.

F. Improved Localization

Since the detector so far only considers a fixed discretiza-
tion with an arbitrary global shift, the true maximum location
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Fig. 3: Occlusion handling. In depth images, structure may
be occluded (dashed gray). At depth discontinuities, we
therefore add artificial measurements (red dots) from fore-
ground towards the background. We reject false interest point
detections at virtual structure in the background.

in entropy has not yet been recovered. In order to improve
localization, we apply mean-shift starting from a candidate’s
location: We integrate surrounding surface entropy samples
via a Gaussian window in order to estimate the gradient
of the surface entropy density. Then, the position of the
candidate is shifted along this gradient direction. We iterate
this procedure up to three times.

G. Occlusion Handling in Depth Images

In depth images, one cannot always measure all joining
surfaces explicitly due to occlusions, resulting in a reduced
entropy. To compensate this we detect jump edges in the
depth image. Since we know that there must exist another
hidden surface behind each foreground edge, we approximate
it by adding artificial measurements in viewing direction up
to a distance that meets the biggest used histogram scale.
A scheme is show in Fig. 3 We exclude interest points at
partial occlusions in the background, since one cannot make
any assumptions on the occluded surfaces.

IV. LOCAL SHAPE-TEXTURE DESCRIPTOR

Since our detector finds interest points at locations where
the surface exhibits strong local curvature variation, we
design a shape descriptor to capture this distribution. When
RGB information is available, we also describe the local
texture at an interest point. We aim at a rotation-invariant
description of the interest points in order to match features
despite of view pose changes. For each individual cue, we
select a reasonable distance metric and combine them in a
distance measure for the complete feature.

A. Shape

Surfel-pair relations have been demonstrated to be a
powerful feature for describing local surface curvature [25],
[21] (see Fig. 4). In order to describe curvature in the local
vicinity of an interest point, we build histograms of surfel-
pair relations from neighboring surfels (see Fig. 5). Each
surfel is related to the surfel at the interest point being the

Fig. 4: Surfel-pair relations describe rotation-invariant rela-
tive orientations and distances between two surfels.

Fig. 5: Shape descriptor in a simplified 2D example. We build
histograms of surfel-pair relations from the surfels in a local
neighborhood at an interest point. We relate surfels to the
central surfel at the interest point. Histograms of inner and
outer volumes capture distance-dependent curvature changes.

reference surfel (p1, n1). We discretize the angular features
into 11 bins each, while we use 2 distance bins to describe
curvature in inner and outer volumes. We choose the support
size of the descriptor in proportion to the histogram scale.

B. Color

A good color descriptor should allow interest points to be
matched despite illumination changes. We choose the HSL
color space and build histograms over hue and saturation in
the local context of an interest point (see Fig. 6). Our his-
tograms contain 24 bins for hue and one bin for unsaturated,
i.e., “gray”, colors. Each entry to a hue bin is weighted with
the saturation s of the color. The gray bin receives a value
of 1−s. In this way, our histograms also capture information
on colorless regions.

Similar to the shape descriptor, we divide the descriptor
into 2 histograms over inner and outer volumes at the interest
point. In this way, we measure the spatial distribution of color
but still retain rotation-invariance.

Fig. 6: Color descriptor. We extract hue and saturation
histograms in an inner and outer local volume at an interest
point.



C. Luminance

Since the color descriptor cannot distinguish between
black and white, we propose to quantify luminance contrasts
of neighboring points towards the interest point. By this, our
luminance descriptor is still invariant to ambient illumina-
tion. We use 10 bins for the relative luminance and, again,
extract 2 histograms in inner and outer volumes.

D. Measuring Descriptor Distance

The character of the individual components of our de-
scriptor suggests different kinds of distance metrics. For the
shape descriptor, we use the Euclidean distance as proposed
for FPFH features in [21]. Since the HSL color space is
only approximately illumination invariant, the domains of
our color histograms may shift and may slightly be mis-
aligned between frames. Hence, the Euclidean distance is not
suitable. Instead, we apply an efficient variant of the Earth
Mover’s Distance (EMD, [26]) from [27] which has been
shown to be a robust distance measure on color histograms.

V. PLACE RECOGNITION

We use SURE features for place recognition in indoor
environments. Our approach has two stages: For training,
we extract SURE features from each frame f ∈ Ftrain in
a training set of images. We apply the k-means algorithm
on the descriptors of the SURE features to create a Bag-
of-Words B (BoW) with k = 400 visual words. For each
frame, we then build similarity histograms f ∈ Ftrain
using the BoW. In the recall stage, we again create similarity
histograms for a frame t using the BoW. We determine the 20
best matching frames M = {m1, ...,m20} ⊂ Ftrain with
the training set by comparing histograms through histogram
intersection. Afterwards, we directly compare the SURE
features S(t) in frame t with the features S(mi) in each
of the 20 best matching frames mi ∈ M . Our error metric
sums up the minimal distance of pairings of each feature
in S(t) with all features in S(mi).

D(S(t), S(mi)) =
∑
s∈S(t)

min
sM∈S(mi)

d(s, sM ) (4)

Finally, the semantic label of the best matching frame

mbest = arg min
mi∈M

D(S(t), S(mi)) (5)

is chosen as the classification of t.

VI. EXPERIMENTS

We evaluate SURE features and our place recognition
approach on RGB-D images from a Microsoft Kinect sensor
and compare SURE with the NARF interest point detector
and descriptor as implemented in PCL 1.4 (cf. [28]). In all
experiments, we evaluate SURE at full resolution (640×480).

SURE, 12 cm histogram scale NARF, 320x240, 12 cm support

SURE, 12 cm histogram scale NARF, 320x240, 12 cm support

Fig. 7: Examples of detected interest points on a box (top)
and in a living room scene (bottom).

A. Repeatability of the Detector

We assess the quality of our interest point detector by
measuring its repeatability across view-point changes. We
recorded 4 scenes, 3 containing objects of various size, shape,
and color, and one cluttered scene with many objects in front
of a wall. The objects are a box (ca. 50x25x25 cm3), toy
rocking horses (height ca. 1 m), and a teddy bear (height
ca. 20 cm). Image sequences with 80 to 140 VGA images
(640×480 resolution) have been obtained by moving the
camera around the objects. We estimate the ground truth
pose of the camera using checkerboard patterns laid out in
the scenes.

In each image of a sequence, we extract interest points
on 3 histogram scales (SURE) or support sizes (NARF).
We chose the scales 12, 24, and 48 cm. We then associate
interest points between each image pair in the sequence using
the ground truth transform. Each interest point can only
be associated once to an interest point in the other image.
We establish the mutually best correspondences according
to the Euclidean distance between the interest points. Valid
associations must have a distance below the histogram scale
(SURE) or support size (NARF) of the interest point. In
addition to this simple measure of repeatability, we also
propose a measure that takes into account the uniqueness of
the interest point. This “unique repeatability” only accepts an
association if it is unambiguous, that means, if the associated
interest point is the only one within the acceptance volume. If
two or more interest points are within the accepted distance,
an association will be rejected.

While the simple repeatability measure (Fig. 8, mid row)
seems to indicate that NARF performs better than SURE,
our features clearly outperform NARF in unique repeatability
(Fig. 8, top row). This is due to the fact that NARF finds
many possibly redundant interest points. Thus, SURE pro-
vides features that can be uniquely matched between frames,
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Fig. 8: Repeatability and matching score of SURE and NARF features in different scenes under view-point change (x-axis,
in degrees). Top row: Repeatability of unique interest points for which a repetition must be unambiguous in its support
volume. Mid row: Simple repeatability where each interest points is mapped to the closest interest point in the second
image. Bottom row: matching repeatability of the descriptors referring to the closest interest points in the second image.

which reduces the chance of false associations.

B. Matching Score of the Descriptor

We also evaluate the capability of the detector-descriptor
pair for establishing correct matches between images. We
define the matching score as the fraction of interest points
that can be correctly matched between images by descriptor.

The results in the bottom row of Fig. 8 clearly demonstrate
that SURE performs better than NARF in matching individ-
ual interest points. In all resolutions NARF detects more in-
terest points than SURE (see Table I). The NARF descriptor
which only incorporates shape information does not seem to
be distinctive enough to reliably find correct matches. SURE
with only shape information performs similar or better in
matching score. For the teddy scene, shape seems to be the
essential feature, which is well captured by SURE with and
without colorful texture in its descriptor. SURE focuses on
prominent local structure that is well distinguishable with our
descriptor, and it can take advantage of color and luminance
information.

C. Run-Time

Table I lists the run-times of SURE and NARF on the 4
datasets. NARF shows significant differences in the average
run-time depending on the resolution.

(a) kitchen scene (b) bathroom scene (c) living room scene

Fig. 11: Example images of the second location (3 rooms).

D. Place Recognition Results

For the evaluation of our place recognition approach, we
recorded two locations with multiple scans of different rooms
with the Kinect. The first location contains five different
rooms (a living room, bathroom, kitchen, bedroom and cor-
ridor) with approx. 200 frames overall, the second location
contains three different rooms with approx. 500 frames (see
Fig. 11). For every location two sets were recorded to gain
independent data for training and testing.

The results are displayed in Table II. Our approach clas-
sifies nearly 90% of frames correctly. The direct comparison
of SURE features (i.e., comparing the test set to all images
in the training data set according to Eq. (5)) is only slightly
better, but needs more computational effort to classify each
frame. The results of NARF and SURE without RGB in-



SURE NARF 160x120 NARF 320x240 NARF 640x480
dataset #features run-time (sec) #features run-time (sec) #features run-time (sec) #features run-time (sec)

box 8.8 0.62 14.8 0.27 18.2 1.95 32.5 160.18
rocking horses 19.8 0.72 44.6 0.36 72.4 3.25 121.6 133.36

teddy 3.9 0.72 15.3 0.26 26.9 2.09 43.0 164.43
clutter 26.4 0.84 26.5 0.27 48.4 3.24 93.3 179.20

TABLE I: Average number of features and average run-time in seconds per frame.

dataset method correct avg. run-time

3 rooms

NARF 160x120 53,3% 0.3 sec
NARF 320x240 55,1% 4 sec
NARF 640x480 28,1% 4 min

SURE shape only 56,2% 1.4 sec
SURE color+shape 91,5% 1.6 sec

5 rooms

NARF 160x120 37,5% 0.3 sec
NARF 320x240 39,1% 4 sec
NARF 640x480 24,0% 4 min

SURE shape only 43,4% 1.4 sec
SURE color+shape 88,3% 1.9 sec

SURE, direct comparison 91,1% 4.8 sec

TABLE II: Place recognition results.The average run-time
includes the time needed for creating the features and the
place recognition task averaged per frame.

formation indicate that the use of shape alone for feature
description is not sufficient to distinguish places with our
approach.

VII. CONCLUSIONS

We proposed SURE, a novel pair of interest point detector
and descriptor for 3D point clouds and depth images, and
applied it for place recognition. Our interest point detector is
based on a measure of surface entropy on normals that selects
points with strong local surface variation. We designed
a view-pose-invariant descriptor that quantifies this local
surface curvature using surfel-pair relations. When RGB
information is available, we also incorporate colorful texture.

In experiments, we could demonstrate that the SURE
descriptor outperforms NARF in matching corresponding
features. While NARF finds many redundant interest points
in an image, SURE detects more distinctive features. SURE
also performs faster than NARF on 640×480 images. We
could also demonstrate that SURE features are well suited
for place recognition using a Bag-of-Words approach.

In future work, we will apply place recognition based on
SURE for loop-closure detection in a 3D SLAM framework.
We will also investigate automatic scale selection to further
improve the repeatability and localization of the SURE
interest points.
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