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I. INTRODUCTION

Robotic systems play a major role for realizing the vision

of sustainable crop production [1]. While Unmanned Aerial

Vehicles (UAVs) are increasingly used to monitor the health

status of agricultural fields using sensors like RGB cameras,

multi-spectral cameras, and LiDAR, it is often still necessary

to literally walk into the field to do close-up inspections of

individual plants or even leaves for the detection of diseases

or nutrient deficiencies in early stages of plant growth.

The main contribution of this work is demonstrating the

integration of aerial and ground robotic systems to automate

plant inspection processes, thereby enhancing efficiency in

field monitoring tasks. A UAV identifies areas or plants of

interest from higher altitudes whose coordinates are trans-

ferred to an Unmanned Ground Vehicle (UGV). The UGV

then autonomously navigates to the specified location and

a mounted robotic arm with five cameras captures close-

range images with automatically optimized camera poses.

The result is a high-resolution 3D reconstruction suitable for

further plant analysis. This integration of UAV and UGV

allows us to ’zoom in’ on any coordinate in the field with a

few centimeters of accuracy.

II. AERIAL INSPECTION OF CROP FIELDS

An attractive way to observe crop fields or breeding plots

at a larger scale is the use of UAVs. Fig. 1 left shows our

UAV that is equipped with a high-resolution Phase One iXM

100 MP camera with an 80 mm lens. The UAV can cover

6 ha/h at 1 mm/px ground sampling distance [2].

The UAV is used to obtain accurate, geo-referenced or-

thophotos. To this end, we use a flight pattern to capture

images with an overlap of 75% in both height and width.

Each of these images is tagged with a centimeter-accurate

RTK-GNSS 3D position. These positions are used as initial

guess in the structure from motion procedure [3], which

outputs a high-resolution orthophoto.

From the orthophoto, we compute a semantic mask dif-

ferentiating between crops and weeds using the approach

proposed by Weyler et al. [4] as it generalizes well to

unseen crop fields. Its semantic perception network consists
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Fig. 1. Left: UAV used to create high-resolution semantic orthophotos in
the field. Right: UGV and robotic camera arm setup for crop inspection.

of one encoder and two decoders based on the ERFNet [5]

architecture. The encoder produces highly descriptive fea-

tures from the input pixels and the two decoders predict the

semantics and the instances, respectively. This method can

be trained on partial annotations, where only a subset of

pixels is annotated, exploiting a set of loss functions based

on common operators used in physics to analyze the behavior

of vector fields, i.e., divergence and curl.

To provide a navigation map for the UGV, we detect crop

plots and rows. To segment the plots, we perform unsuper-

vised clustering with HDBSCAN [6] on the crop pixels. We

find the crop rows by performing a Hough transform on

the crop pixels, see Fig. 2 left. The rows are then used to

create a traversability map for the UGV by defining occupied

areas around the crop row lines and intersecting the resulting

polygons with the crop plot polygons coming from the plant

sowing machine.

We extract coordinates of interest from the semantic

orthophoto depending on the downstream tasks. For example,

we can automatically extract coordinates corresponding to

high weed pressure for precise weeding or corresponding to

slow-growing regions to identify deficits in nutrition.

III. CLOSE-UP INSPECTION FROM THE GROUND

Fig. 1 right shows our UGV that is based on the Thorvald

II [7] platform. For detailed close-up plant inspections, we

integrate a robotic arm with five high-resolution cameras.

The UGV’s dimensions are about two meters in height,
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length, and width. Its U-shaped design allows plants to be

observed with the camera arm even if crops are large. For

autonomous navigation in the field, the UGV has four electric

wheels powered by a lithium battery that can be controlled

using a ROS (Robotic Operating System) interface. For more

details about the UGV platform, we refer to Esser et al. [8].

The robot arm is a 7-DOF UFactory xArm7, mounted upside-

down on aluminum profiles in the center of the UGVs U-

shape. It can be moved side-ward on a linear axis between the

active and the home position to avoid plant-destroying while

the UGV is driving in the field. The arm moves a sensor

setup consisting of five 20 MP Basler ace 2 Pro cameras [9].

A. Path Planning and Navigation in the Field

Autonomous navigation of the UGV in agricultural fields

needs 1) precise online vehicle position and orientation

estimation, 2) path planning based on a traversability map

of the field to avoid destroying plants, and 3) controlling the

UGVs electric motors to execute the planned trajectory.

For precise pose (position and orientation) estimation, the

heading and 3D position data of a dual antenna RTK-GNSS

receiver are combined with inertial measurements of an IMU

using an extended Kalman Filter (EKF). The resulting pose

is published to ROS navigation at 10 Hz.

For path planning to the waypoints of interest coming

from the UAV orthophoto, we use a simple A* algorithm

similar to [10], and the traversability map of the field that was

created based on the semantics in the UAV orthophotos and

the crop polygons of the sowing machine. The path planning

outputs the shortest path from the current robot position and

the next point of interest by minimizing the costs on the map.

To execute the path, the current robot EKF pose and the

angle and distance to the next point of the planned path are

used to calculate linear and angular velocities for the four

motor controllers. After reaching a waypoint of interest, the

UGV stops and sends a message to the five-camera robotic

arm to closely inspect the plants at that position.

B. Viewpose Planning and Image-Based Reconstruction

After the UGV stops at the coordinate of interest, the arm

moves from its home position to the active position in the

center of the UGV using a linear axis. The arm is then moved

to a set of pre-defined discovery viewposes, looking in the

general direction of the plant of interest.

At each discovery pose, we identify the leaves to approach

to take detailed close-up images using color segmentation

and online multi-view stereo processing. The cameras’ in-

trinsic and extrinsic calibration is obtained offline using

Kalibr [11] and they are software-triggered to provide syn-

chronized frame-sets. We employ a simple stereo block

matching [12] between each camera pair of the central

camera and one of the outside cameras, project the obtained

depth images to 3D, and transform the resulting point clouds

to the central camera coordinates. We fuse the point clouds,

mask them with the green color obtained from the central

camera image, and finally post-process them using voxel

and outlier filters. We then segment planes that represent

Fig. 2. Left: Georeferenced orthophoto with extracted crop rows and one
example for an individual sugar beet plant of interest. Right: Colored high-
resolution 3D reconstruction of a single sugar beet leaf created with the
multi-camera robot arm of the UGV.

the leaves in the post-processed point cloud and calculate

the camera pose to look at the largest perceived leaf along

the plane’s normal direction from the optimal focus distance.

The arm then approaches the calculated pose.

This process can be iterated several times to further

improve the capture pose. The obtained images are saved for

the offline reconstruction of the high-resolution leaf model.

To ensure that the arm moves safely within the UGV without

collisions, we integrate our setup with MoveIt [13]. Our robot

model includes a collision box to keep the robot arm and

the cameras at a safe distance from both the ground and the

robot’s inner enclosure. To compute the joint configuration

to reach a desired view pose, we utilize BioIK [14].

We obtain an accurate, dense leaf point cloud from the

close-up images captured on the field using Colmap multi-

view stereo [15] and obtain a mesh using Poisson surface

reconstruction [16]. The mesh is cropped using the leaf’s

segmentation mask. The high-resolution color image from

the central camera is then added to the mesh as texture, where

the texture coordinates are obtained by projecting the vertex

coordinates onto the camera image plane. The final, highly

detailed leaf model is depicted in Fig. 2 right.

IV. OUTLOOK

In this work, we demonstrated how a set of close-range

cameras can autonomously observe a single plant in an

agricultural field, selected in a map generated by a UAV.

With the same set of methods, it is also possible to monitor

specific plants over longer periods, e.g. to understand dis-

eases or nutrient deficiencies on the leaf-level or to perform

selective weeding at single-plant scale.
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