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Real-Robot Deep Reinforcement Learning: Improving Trajectory
Tracking of Flexible-Joint Manipulator with Reference Correction

Dmytro Pavlichenko and Sven Behnke

Abstract— Flexible-joint manipulators are governed by com-
plex nonlinear dynamics, defining a challenging control prob-
lem. In this work, we propose an approach to learn an outer-
loop joint trajectory tracking controller with deep reinforce-
ment learning. The controller represented by a stochastic policy
is learned in under two hours directly on the real robot. This
is achieved through bounded reference correction actions and
use of a model-free off-policy learning method. In addition, an
informed policy initialization is proposed, where the agent is
pre-trained in a learned simulation. We test our approach on
the 7DOF manipulator of a Baxter robot. We demonstrate
that the proposed method is capable of consistent learning
across multiple runs when applied directly on the real robot.
Our method yields a policy which significantly improves the
trajectory tracking accuracy in comparison to the vendor-
provided controller, generalizing to an unseen payload.

I. INTRODUCTION

The fundamental task for a robotic manipulator is to ac-
curately follow the commanded trajectory, which is achieved
by trajectory tracking control methods [1] [2]. The ap-
plication domains of robotic manipulators are constantly
expanding and new challenges arise. In particular, flexible-
joint manipulators are used to ensure an increased safety
for human workers in shared workspaces. It is not trivial to
accurately control a flexible-joint manipulator, however, due
to the complex nonlinear dynamics [3]. Design of classical
controllers for such systems is time-consuming and often
requires extensive instance and/or task-specific tuning.

Deep reinforcement learning (DRL) methods produced
effective policies for a broad range of control tasks [4], [5],
[6]. Most DRL approaches rely on learning in simulation
and sim-to-real transfer. However, an accurate simulation of
the robot is often not available. In this work, we propose an
approach capable of learning an outer-loop control policy
with DRL online, directly on the real robot. The policy
operates at a lower frequency than the underlying classical
controller and provides bounded reference correction actions.
These corrections are applied to the reference trajectory
before it is fed to the classical controller (Fig. 1). This formu-
lation keeps the method agnostic of the underlying classical
controller type. Our approach can also be interpreted as
an online closed-loop trajectory optimization. The corrective
actions of bounded magnitude alleviate safety concerns while
training the model online on the real robot. To shorten the
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Fig. 1. Stochastic reference correction policy learned directly on the real
robot. Left: The policy learns to produce actions a; from the states s¢,
which correct an arbitrary reference trajectory (blue) with frequency At,
resulting in a corrected reference (magenta), which is fed to the vendor-
provided controller and leads to an improved tracking accuracy (green) as
opposed to the sole vendor-provided controller (red). Right: the policy is
capable of compensating for an unseen payload.

real-robot training time, we use an off-policy Soft Actor-
Critic (SAC) [7] method. In order to further increase the
learning speed, we propose an informed initialization: Policy
pretraining in a learned simulation.

The evaluation is done on the 7 degrees of freedom (DOF)
arm of a Baxter robot. The policy is learned in less than
two hours. Our experiments demonstrate that addition of
the learned high-level control policy significantly improves
trajectory tracking accuracy in comparison to the vendor-
provided controller. We also test how the learned policy han-
dles a previously unseen change of the dynamics (attaching
a payload) and the results indicate a persistent improvement
of the trajectory tracking accuracy.

The key contributions of this work are:

o Action, state and reward formulation to learn a reference

correction policy directly on the real robot with DRL,

« informed initialization of the policy through a coarse

dynamics model learned from data, which is used as a
simulator.

II. RELATED WORK

Trajectory tracking control approaches can be divided into
model-based [8] and model-free [9]. Model-free learning
approaches are the popular tool to overcome the problem of
imperfect models. The classical examples are Iterative Learn-
ing Control (ILC) [10] and Repetitive Control (RC) [11].
However, these methods are oriented on the repetitive ex-
ecution of the exact same trajectories. Policies represented
by Deep Neural Networks (DNN) obtained with Deep RL
(DRL) were shown to generalize well to novel trajectories
while approximating complex nonlinear dynamics [12].

First, we briefly review the most popular DRL algorithms.
On-policy methods, such as: Trust Region Policy Optimiza-
tion (TRPO) [13], Proximal Policy Optimization (PPO) [14]
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and Asynchronous Advantage Actor-Critic A3C [15] do
not make use of past experience. Hence, a high sample
complexity makes it challenging to perform learning directly
on a real robot. In contrast, off-policy algorithms learn from
past experience, drastically reducing sample complexity.
Deep Deterministic Policy Gradient (DDPG) [16] is a well-
known example. It is, however, very challenging to tune.
Soft Actor-Critic (SAC) [12] alters the RL objective with a
maximum entropy term [17] and is one of the newest off-
policy algorithms, which we utilize in this work due to its
sample efficiency and learning stability.

There are numerous RL-based approaches to robotic ma-
nipulator control. Pradhan et al. [18] use actor-critic RL
to adjust the model parameters in response to the payload
variations on a two-link manipulator. Xu et al. [19] pro-
pose to learn a policy with DDPG to control a two-link
manipulator in simulation. An RL agent acting as a nonlinear
input compensator over the traditional controller is presented
in [20]. It is applied to a 1 DOF robot in simulation. This idea
is further explored by authors [21], being applied to a 5 DOF
URS5 manipulator, introducing a notion of RL-based refer-
ence compensation. A corrective controller is trained for each
joint. Learning takes 30-70 executions for each trajectory,
lacking generalization. Our action definition resembles the
formulation of reference compensation. However, we train a
single policy for all joints at once, which is advantageous
when dealing with coupled flexible joints. Finally, we train
the policy with DRL online on the real robot, promoting
generalization to a broad range of trajectories. In some
works, the approaches operate in task-space [22] [23]. While
this may be beneficial in certain cases, we focus on the joint
space since it avoids redundancy.

On-policy RL methods such as PPO are used to train
policies in simulation [24] [25] [26], which are then trans-
ferred to a real robot. This makes availability of an accurate
simulation necessary. The resulting controller is used as a
final product, which discards advantages of learning from
the interaction with the real system. Moreover, in this case
a re-traning is needed if the dynamics changes, for instance,
due to wear and tear over time. Such re-training requires
the aforementioned changes to be transferred back to the
simulation first. In contrast, we present an approach to learn
a policy directly on the real robot. This not only avoids the
need for simulation, but allows to continuously learn from
further experiences, adjusting to changes such as wear and
tear. Finally, we augment the classical control law with a
reference correction policy, instead of replacing it, creating
an opportunity for both methods to complement each other.

III. BACKGROUND

The objective of reinforcement learning is to find a policy
7 which maximizes the expected discounted sum of rewards.
In DRL, a policy 7y is represented by a deep neural network,
parameterized by learnable weights §. The problem is mod-
eled as a Markov Decision Process (MDP): {S, A, P, r} with
state space S € R"™, action space A € R™, state transition
function P: Sx A +— S and a reward functionr: Sx A — R.

We address the problem with continuous state and action
space, thus, we define a stochastic policy mg(als), repre-
senting an action probability distribution when observing a
state s; at timesptep ¢. In this work, we use the off-policy
SAC algorithm [12] to train the policy. SAC is based on
an actor-critic approach, where an actor provides actions
and a critic represents the value function. SAC follows a
maximum entropy RL formulation, which optimizes both
expected reward and the entropy of the policy:

J(mg) = ZE[r(st,at)+a7—l(7rg(-|st))], (1)

t=0

where H is the entropy of the stochastic policy and o €
[0,1] is the temperature parameter. Note that with oz = 0 the
above equation reduces to the conventional RL objective.
The maximum entropy formulation incentivizes the policy
exploration and was shown to produce robust polices and
achieve stable learning. In this work, we use a SAC version
with automatic tuning of the hyperparameter «. The critic is
realized with two Q-networks for increased stability of the
learning process. A detailed description of the algorithm can
be found in the original paper by Haarnoja et al. [12].

IV. METHOD

We propose an approach to learn a reference correction
outer-loop controller to improve joint trajectory tacking
accuracy over the existing classical controller (baseline) by
utilizing DRL directly on a real robot. Given an arbitrary
reference trajectory of joint positions g.(to) ... q,(tn) with
N equally spaced in time points with At = ¢; — t;_1
and duration T" = tny — tg, our goal is to minimize the
trajectory tracking error. Given a baseline with a subpar
tracking accuracy, we propose to improve its performance
by augmenting the control loop with an outer-loop learned
policy. Underperformance of the baseline occurs when the
available model is not accurate enough, the baseline was
not tuned well enough, or the robot hardware accumulated
significant wear and tear. Thus, achieving higher accuracy
with the baseline requires to develop a better baseline or to
perform tedious, instance and/or task-specific tuning. These
solutions are time-consuming and require a highly skilled
professional. We propose to utilize recent developments of
DRL in order to learn a policy which compensates for the
inaccuracies of the baseline (Fig. 2). The learning is done
online on the real robot, which avoids the need for an
accurate simulation and consequent sim-to-real transfer.

In the absence of an accurate model, DRL allows for
efficient learning of the control policy, guided by the reward
function. The trajectory tracking problem has dense rewards,
which facilitates the learning process. Since we aim to per-
form the learning directly on the real robot, the DRL system
should have high robot persistence [27], the first component
of which is self-persistence: the robot must not damage
itself while training. We use strictly bounded actions which
represent a corrective term for the reference trajectory. Thus,
at any given time, the potential deviation from the reference
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Fig. 2. Control architecture. Given reference trajectory g, and feedback e,
which form a state s, the learned stochastic policy corrects the reference g,
with action a, resulting in a corrected reference g 7 The classical controller
produces the control signal w for the actuators. (C): concatenation.

trajectory is bounded. Selection of the maximum allowed
magnitude of the corrective action provides a necessary
flexibility when setting up the learning system. In addition,
the corrective actions are filtered with a low-pass filter.
Note, that we assume collision-free reference trajectories,
hence the safety concerns raised here are related solely to
the influence of models’ actions. The second component
is task-persistence: the robot must learn and collect data
with minimal human assistance. The state of the manipulator
at any time step is determined from the actuator encoders.
Although there is noise, its magnitude is negligible since the
learned policy operates at a relatively low frequency. Thus,
there is no need for any additional software or hardware,
which makes the learning setup and process coherent: the
manipulator learns online from its own trial-and-error.

We chose a reference correction instead of input correc-
tion, because: First, input correction has to be done with
a much higher frequency, which decreases the influence of
a single action, obstructing the learning. Moreover, higher
frequencies mean higher impact of latencies and noise, which
makes the learning even more challenging. Second, reference
correction is agnostic of the underlying baseline control law,
which makes the approach more flexible.

A. Action Space

The action a(t) € RY for a robot with N joints,
produced by a learned stochastic continuous control policy,
represents a reference compensation term: gs(t + 1) =
q-(t + 1) + a(t), where g,.(t + 1) is a reference trajectory
point in joint space and g;(t + 1) is a resulting corrected
reference. The corrective action a(t) produced at timestep ¢
is designated to change the next reference trajectory point
at timestep ¢ 4+ 1 such, that commanding the inner-loop
classical controller to reach qy(t + 1) would result in the
manipulator reaching g,-(t+1). We strictly bound the actions
a(t) € [—@maz,@maz] by a predefined constant vector
Qaz- The stochastic policy runs at a frequency of 20 Hz,
so At = t; —t;—1 = 0.05s. The produced actions a are
filtered by a low-pass filter with a cutoff frequency of 4 Hz to
smooth out any inconsistent signal. The predefined constant
Qa, regulates the amount of power given to the learned
policy. In this work, we choose to set @,,q, = M
where qp;,, 1s a joint velocity limit vector. Thus, havmg
two consecutive actions a(t) = —@mq and a(t + 1) =
Qpa Would satisfy the velocity limit qy;,,. Indeed, as the
corrective action is applied to the reference trajectory, this

does not guarantee preserved velocity limits. However, it is
a meaningful standardized formulation of a,,,, which can
be used as a baseline value. Each point g (t) is checked for
joint, velocity and acceleration limits (and clipped to them
upon violation) before being commanded to the underlying
controller.

B. State Space
The state s(t) of a robotic manipulator is a column vector:

po(t - 2)7 a(t - 2)a po(t - 1)7 a’(t - 1)7
Po(t), Apo(t), )
pr(t+1),pr(t+2)

where point p contains joint positions and velocities:
P =1[q,4], po is an observed point, read from the joint
encoders, p, is a point from the reference trajectory,
Ap,(t) = po(t) — pr(t) is an observed error. The first four
components contain past observations and actions; the next
two components contain current observations, augmented
with the observed error; the last two components contain
the future desired joint positions and velocities. Our state
representation provides the policy with information about
the past, the current state, and the future targets. Inclusion
of the past observations and actions helps to combat the
negative effects of latency [27] [28]. In addition, it provides
information about the dynamics of the manipulator, further
strengthened by inclusion of joint velocities q. Several future
reference points p, provide more information about the
desired motion of the manipulator. Each term in the state
s(t) is rescaled to the [—1,1] interval. It is straightforward
to do so for g, g and a, given joint limits q;;,,, joint velocity
limits q;;,,, and action magnitude @,,,,.. There is no obvious
way to choose an interpolation interval for Ag and Aq. In
this work, we interpolate them with [—(u; +30;), 1 +30;],
where p; and o; are measured per-joint errors of positions
and velocities, while executing random trajectories with the
baseline controller.

s(t) =

C. Reward Function

For each timestep ¢, we define the reward function:
r(t) = wrq(t) + (1 — w)ry(t), 3)

where 7, € [0, 1] is a reward term encouraging joint position
tacking, r, € [0,1] is a reward term encouraging joint
velocity tracking, and w € [0,1] is a relative importance
scaling factor. Given that, r € [0, 1]. To compute 7, and 7,
we first define the cumulative absolute errors e, for the joint
position and e, for the joint velocity:

j=N
)= lab(t) — al(t)], €
j=0

where N is the number of joints, gJ(¢) is the observed
position of joint 7, and g/ (t) is the desired position at time
step t. The procedure is analogous for e,,. Finally, we use the
smooth logistic kernel function K [5] to define the reward
terms: 5

K(l’, l) = exl + e—xl’

(&)



Tq(t) = K(eq(t),1g), (6)

where [ is the kernel sensitivity parameter. The term 7, (¢) is
defined analogously. When a trajectory is tracked perfectly,
r = 1. We use the L1 norm in Eq. 4, because when using the
L2 norm we noticed that while learning, the policy would
aggressively abuse joints with smaller errors to compensate
for joints with bigger errors, leading to learning instabilities
and unintuitive motions of the manipulator.

We include the joint velocity tracking term 7,(t) into
the reward function to promote trajectory smoothness. We
observed that without this term, the policy would often learn
a bang-bang style control, leading to non-smooth motions.
Adding an explicit action cost term was extremely hard to
tune, and often led to an abusive behavior, when the policy
would generally avoid making any corrections with sudden
corrections of large magnitude in between. Finally, we con-
cluded that rewarding joint velocity tracking is a natural
way to promote trajectory smoothness though following the
derivative of the reference path. Since our main goal is to
improve joint position tracking accuracy, we set w = 0.75.

D. Model

In this work, we train the stochastic policy using the
SAC algorithm [12]. The method is off-policy, making this
choice natural for the real-robot learning due to its increased
sample efficiency. Unlike the original SAC, where actions are
bounded to a finite range through the use of a Gaussian policy
with the squashing function, we use a Beta policy [29], which
is bounded in the [0, 1] range by definition. Both actor and
critic networks have similar structure: they consist of two
hidden fully-connected layers with tanh nonlinearity. The
output layer of the Q-networks provides a single Q-value,
when supplied with a state-action pair {s(t), a(t)}. The actor
network outputs two values for each dimension of the action
space, resulting in 2 - |a| outputs. Each pair of these values
parameterizes a beta distribution, from which the actions are
sampled. The sampled actions are in the [0, 1] range. It is
straightforward to rescale them to [—@maz, @maz]- We use
the sigmoid activation function in the output layer of the
actor network. Since beta distribution parameters € (0, oo],
the outputs of the actor are clipped to [e, 1], where € =
1 x 107°. Finally, we scale them up by a factor of 10
to provide the actor with enough freedom for distribution
selection. During training, the actions are sampled from the
distributions, while during inference we use their modes.

E. Learning Process

A single episode corresponds to a reference trajectory
consisting of T joint positions g(t) and velocities ¢(t),
equally spaced in time with interval At. Thus, every episode
is finite by definition. During each episode, at each time step
t with the observed state s; the policy provides a reference
correction action a(t), leading to state s(¢ + 1) with reward
r(t). The tuple {s(t),a(t),r(t),s(t + 1)} is stored in the
replay buffer for experience replay. We perform SAC update
iterations with a replay ratio [30] of 1 (one update per one
point added to the buffer). The weights of the actor network

are updated after each episode. For each SAC iteration, a
minibatch of uniformly sampled datapoints is generated.

F. Informed Initialization

It is beneficial to have a deliberate initialization of the
model before applying it to the real robot, since a ran-
domly initialized policy yields a low-reward behavior. In
the absence of an accurate simulation, we propose to learn
a coarse simulation, represented by a neural network to
pretrain the policy. First, a small sample of random tra-
jectories from the real robot is recorded. Then, we train
a neural network consisting of three fully connected lay-
ers to output [g,(t + 1), g, (t + 1)], given [g,(t), g,(t)] and
[g-(t+1),q,(t + 1)]. Finally, we use this coarse forward
dynamics model as a simulation environment to pretrain
the stochastic policy before using it on the real robot. This
pretraining step keeps the approach generic, as it does not
require any additional knowledge about the manipulator dy-
namics, while representing latencies and noise from the real
system, informing the policy about its future experiences.
Thus, we refer to this approach as informed initialization.
The training in this learned simulation and on the real robot
is performed as described in Section IV-E. In addition, the
data gathered for informed initialization is used to determine
scaling factors for Aq and Aq (Section IV-B).

V. EVALUATION

To evaluate the proposed approach, we apply it to the
left arm of a Baxter robot. It is a 7 DOF manipulator with
flexible joints. The underlying dynamics model is unknown
and flexible joints with coupled dynamics are challenging to
control. We aim to answer the following questions:

o Does our approach improve the joint position trajectory
tracking accuracy?

o Does it generalize to handle an unseen payload?

o Is the learning consistent and safe for the hardware?

A. Setup

The classical inner-loop controller which we further refer
to as baseline is the Baxter inverse dynamics controller!,
which calculates commanded torques from the supplied joint
positions and velocities. We chose it as the baseline in
our experiments because it showed the best joint position
tracking accuracy, compared to the Baxter position and ve-
locity PD controllers. In the case of this baseline we employ
reference correction for both joint position and velocities,
hence a(t) = [a,(t),a,(t)] € R?*N, where a,(t) is the
reference joint position correction and a,(t) is the reference
joint velocity correction. With N = 7 this results in a
14-element action vector. The maximum magnitude of the
velocity corrective term @y,q,, Was defined as described in
Section IV-A, only using joint acceleration limits.

According to our state representation (Eq. 2) and the
provided 14-element a and p, we obtain a state vector of
8 x 14 = 112 elements. We use the same size of 80 neurons

l1'1ttps ://sdk.rethinkrobotics.com/wiki/Joint_
Trajectory_Action_Server
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Fig. 3. Training on 1000 trajectories. a) SRCP reward in learned simulation.
b) Rewards on the real robot. ¢) Average joint position tracking error. d)
Average joint velocity tracking error. Both variants of the approach achieve
stable learning. Solid lines represent the mean and shaded regions represent
95% confidence intervals, averaged over three runs. Baseline best: the best
result achieved by the baseline controller. Average iterations per trajectory:
118. 10K iterations ~ 9 min of real time.

for hidden layers for both critic and actor networks. This
results in a 112 x 80 — 80 x 80 — 80 x 28 actor network
and a (112 + 14) x 80 — 80 x 80 — 80 x 1 critic network.
For training, we use Adam optimizer with triangular learning
rate scheduling, ranging from 1 x 10~ to 4 x 10~ with a
period of 100 episodes. We set the discount factor v = 0.85
and perform a hard critic update with 7 = 1 every 1000
iterations. We use a minibatch of 128 datapoints. The kernel
sensitivities were set to [, = 32 for the joint position tracking
reward term and [,, = 7 for the joint velocity tracking reward
term. Since the reward scale is critical for SAC due to the
entropy maximization [12], we set its value to 10, as we
empirically found that larger or smaller values resulted in
inferior learning. The training is performed on a regular
laptop with Intel i7-6700HQ CPU and 16 GB of RAM.

B. Experiments

To learn the Stochastic Reference Compensation Policy
(SRCP), we generate random trajectories from the workspace
of Baxter’s left arm. We cover the region Y in front and
to the side of the robot with approximate dimensions of
1.4 x 0.7 x 1.0m. Each trajectory is defined by a start and
a goal plus 1-3 intermediate points. Each point represents a
6D end-effector pose and is drawn randomly from Y. An
inverse kinematics solver is used to convert trajectories to
joint space. A trajectory is checked for joint, velocity and
acceleration limits, as well as for collisions before execution.
If found to be unfeasible, a new trajectory is generated.

To evaluate the effectiveness of the informed initialization,
as proposed in Section IV-F, we also train the forward
dynamics model to represent the simulation. The model has
three fully connected layers: 28 x 64 — 64 x 32 — 32 x 14.
We train this model with Adam optimizer and learning rate of
10~ until convergence on a small real-robot dataset (20 min
duration) of 200 trajectories generated as described above.
Finally, we train two variants of SRCP: one with random
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Fig. 4. Example test trajectory. a) Shoulder yaw position trajectory.
b) Tracking error of shoulder yaw. c) Path of the end-effector. d) End-
effector position tracking error. While the baseline controller (red line)
leads to significant deviations from the desired trajectory (blue dotted line),
combination with our learned controller leads to a more accurate tracking
(green line), achieved by reference compensation (magenta dashed line).

weights and the other one is first pretrained in the learned
simulation. We refer to the latter as SRCP+InformedInit.

We perform three training runs for each model. A run
consists of 1000 random trajectories. One run completes in
under 2 hours, with approximately 100 min dedicated for
the trajectory execution. In Fig. 3, we show the training
reward curves as well as the joint position and joint velocity
tracking errors, averaged over the three runs. Since each
trajectory has a different number of points, the cumulative
values would not be representative; and we show all values
averaged over the number of points. The baseline statistics
were calculated from 100 random trajectories. While training
in learned simulation (takes less than 20 min), the SRCP
quickly reaches relatively high rewards (Fig. 3a). On the real
robot, the policy learns slower (Fig. 3b) due to the latencies
and complex dynamics. One can see that SRCP+InformedInit
directly starts in the reward region above the baseline,
achieving higher rewards faster than the randomly initialized
policy. Note, that SRCP+InformedInit becomes twice more
accurate than the baseline only in 18 min. Both policies
converge to a similar performance in the end. The average
cumulative joint position error e, for a trajectory with N
joints consisting of 7" points is calculated according to Eq. 4,
additionally averaged by 7. The average cumulative joint
velocity error is calculated analogously. One can observe
that the joint position tracking error, which we prioritize in
Eq. 3, is being reduced considerably during training. The
joint velocity tracking error declines as well, serving as a
smoothness constraint. SRCP inference took 0.005 % 0.002 s
on average, not causing noticeable delay compared to the
original control loop. The entropy temperature parameter
converged to o = 0.05 4+ 0.01.

We evaluate the learned SRCP by executing 100 unseen
test trajectories and comparing the joint position tracking
accuracy of the baseline + SRCP control against the vendor-
provided baseline. In addition, we perform the same test
with a payload of 0.9kg to evaluate the performance in
the presence of altered dynamics (maximum payload for



TABLE I
AVERAGE JOINT POSITION TRACKING ERROR, RAD X 102,

No payload 0.9 kg payload
Joint Baseline B+SRCP Baseline B+SRCP
1 275+ 183 052+£043 | 332 £232 047 £042
2 1.13 £ 1.08 036 +0.27 | 231 £ 1.73  1.17 £ 0.62
3 1.07 £ 0.87 021 £0.19 | 1.38 £ 1.10 0.27 £0.25
4 0.66 = 0.71  0.19 £ 0.20 | 0.79 £ 0.74 0.25 £ 0.20
5 0.51 £ 035 027 +£0.22 | 0.62 £ 053 0.38 £ 0.32
6 038 £0.28 031 £0.27 | 0.62 £0.52 041 £ 0.37
7 035 +0.26 0.19 +0.15 | 030 £ 024 0.16 = 0.14
> 6.87 £ 3.15 208 £0.87 | 9.36 £ 407 3.13 £ 1.16

*

*Mean £ SD is shown. B+SRCP stands for Baseline+SRCP.

Baxter is 2.2kg). A video is available online>. We show
the measured average joint position tracking error in Table I
and end-effector position tracking error in Table II. Joints
are labeled from 1 to 7, going from the shoulder to the
wrist. SRCP improves the trajectory tracking accuracy more
than three times for both cases: without and with previously
unseen payload, achieving an average end-effector tracking
error of 0.66 cm without a payload (more than four times
more accurate than the baseline). For comparison, advanced
MPC controllers applied to Baxter [31] [32] achieved 1-
2.5cm average steady-state error. The proposed method
outperformed our earlier work based on offline supervised
learning [33]. There is a dependency between position of the
joint in the kinematic chain and its tracking error: first joints
have a much higher error. This effect can be explained by
a larger inertia affecting the base joints. Moreover, one can
observe that joint 2 has the highest increase in tracking error
when the payload is added. We explain this by the fact that
it has a passive external spring, which further complicates
its dynamics. An example trajectory of the shoulder yaw
position and the resulting end-effector path are shown in
Fig. 4. The baseline controller frequently deviates from the
reference trajectory while accelerating (seconds 0-1 and 2.5-
3.5) or decelerating (seconds 1-2 and 3.5-4.5). The addition
of the learned SRCP compensates for these deviations.

Overall, the conducted experiments shown that the pro-
posed approach consistently improved the policy directly on
the real robot. The proposed informed initialization through
a learned simulation significantly reduced the tracking error
at the beginning of learning. Thanks to the bounded ref-
erence correction actions, filtered by a low-pass filter, we
did not observe jerky motions while training. The resulting
stochastic policy improved the trajectory tracking accuracy
more than three times, compared to the baseline, achiev-
ing sub-centimeter accuracy of the end-effector. Finally, it
demonstrated a persistent improvement of accuracy in the
experiment with a previously unseen payload, suggesting that
the policy learned to use live feedback from the robot, instead
of simply memorizing the necessary corrections.

C. Discussion

We observed that the discount factor «y significantly in-
fluences the learning process. For our case, we found v €

2https://www.ais.unifbonn.de/videos/ICRA_2O22_
Pavlichenko

TABLE I
AVERAGE END-EFFECTOR POSITION TRACKING ERROR, CM.

No payload 0.9 kg payload
Baseline B+SRCP Baseline B+SRCP
312 £ 181 0.66 £042 | 435 +232 1.19 £ 0.60

*Mean £ SD is shown. B+SRCP stands for Baseline+SRCP.

[0.75,0.85] to be the best. A small value, such as v = 0.5
would typically result in a poor performance of the velocity
component r, and non-smooth trajectories. High values, like
v € [0.95,0.99] resulted in a much slower learning. We
explain this observation by the fact that in our problem
setting the policy does not have full control over the state: it
is always tied to the reference. Since the policy does not
have access to the complete reference trajectory at once,
accounting for the rewards which are far in the future makes
the learning more challenging due to the inherent uncertainty.
There are two task-specific aspects in the presented ap-
proach. First, the low-pass filter of the actions introduces
an additional delay which the model has to learn. However,
removing filtering led to frequently occurring jerky motions.
Second, the scaling of Aq and Aqg components, which is
determined empirically. In contrast to the filtering, these
components can be removed for increased generality of
the method without significantly harming the performance.
However, we observed a speed-up of the learning process
when including these components in the state representation.
The key hyperparameter for our approach is the maximum
magnitude a,,,, of the corrective action a. While it is not
trivial to choose its value, it provides an increased control
over the learned policy. For example, in cases when the
method is tried for the first time on a new manipulator, it is
easy to safely test the approach, using a small value of @4
One interesting direction for the future work is to have @4,
learned together with the stochastic policy. Additionally,
introducing adaptive constraints on the tracking error while
learning, would improve the safety of the approach.

VI. CONCLUSION

We presented a model-free approach to learn a stochastic
policy for improving joint trajectory tracking accuracy of a
flexible-joint manipulator. The learning is performed with
deep reinforcement learning directly on the real robot. The
obtained policy serves as an additional outer-loop controller
and provides reference correction actions. In addition, we
propose to perform an informed initialization which uses a
learned coarse forward dynamics model as a simulation. We
demonstrate that the proposed method is capable of consis-
tent learning on the real 7 DOF manipulator of a Baxter robot
without the need for an accurate hand-crafted simulation and
a consecutive sim-to-real transfer. Our experiments indicate
that the policy learned in under two hours improves the tra-
jectory tracking accuracy by more than a factor of three over
the vendor-provided baseline controller. The learned policy
is general enough to demonstrate a persistent improvement
when dealing with an unseen payload. Finally, the proposed
informed initialization made the policy learn high-reward
behaviors faster than a random initialization.



[1]

[2]

[3]

[4]

[7]

[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

S. Arimoto, “Learning control theory for robotic motion,” Interna-
tional Journal of Adaptive Control and Signal Processing, vol. 4, no. 6,
pp. 543-564, 1990.

Z. Hou and Z. Wang, “From model-based control to data-driven
control: Survey, classification and perspective,” Information Sciences,
vol. 235, pp. 3-35, 2013.

W. Sun, S.-F. Su, J. Xia, and V.-T. Nguyen, “Adaptive fuzzy tracking
control of flexible-joint robots with full-state constraints,” IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems, vol. 49, no. 11,
pp- 2201-2209, 2019.

J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis,
V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills
for legged robots,” Science Robotics, vol. 4, no. 26, pp. 58-72, 2019.
R. Diego and B. Sven, “DeepWalk: Omnidirectional bipedal gait by
deep reinforcement learning,” in IEEE International Conference on
Robotics and Automation (ICRA), 2021.

Z. Li, X. Cheng, X. B. Peng, P. Abbeel, S. Levine, G. Berseth,
and K. Sreenath, “Reinforcement learning for robust parameterized
locomotion control of bipedal robots,” 2021 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 2811-2817, 2021.
T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan,
V. Kumar, H. Zhu, A. Gupta, P. Abbeel, and S. Levine, “Soft actor-
critic algorithms and applications,” arXiv:1812.05905, 2018.

C. H. An, C. G. Atkeson, and J. M. Hollerbach, Model-Based Control
of a Robot Manipulator. MIT Press, 1988.

R. Longman, “Iterative learning control and repetitive control for
engineering practice,” International Journal of Control, vol. 73, pp.
930-954, 2000.

D. Bristow, M. Tharayil, and A. Alleyne, “A survey of iterative
learning control,” IEEE Control Systems Magazine, vol. 26, no. 3,
pp. 96-114, 2006.

L. Cuiyan, Z. Dongchun, and Z. Xianyi, “A survey of repetitive
control,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), vol. 2, 2004, pp. 1160-1166.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International Conference on Machine Learning (ICML),
vol. 80, 2018, pp. 1861-1870.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International Conference on Machine
Learning (ICML), vol. 37, 2015, pp. 1889-1897.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv:1707.06347, 2017.
V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in International Conference on Machine
Learning (ICML), vol. 48, 2016, pp. 1928-1937.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Sil-
ver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” in International Conference on Learning Representations
(ICLR), 2016.

T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement
learning with deep energy-based policies,” in International Conference
on Machine Learning (ICML), 2017, pp. 1352-1361.

S. K. Pradhan and B. Subudhi, “Real-time adaptive control of a
flexible manipulator using reinforcement learning,” IEEE Transactions
on Automation Science and Engineering, vol. 9, no. 2, pp. 237-249,
2012.

Z. Xu, W. Huang, Z. Li, L. Hu, and P. Lu, “Nonlinear nonsingular
fast terminal sliding mode control using deep deterministic policy
gradient,” Applied Sciences, vol. 11, no. 10, 2021.

Y. E. Bayiz and R. Babuska, “Nonlinear disturbance compensation
and reference tracking via reinforcement learning with fuzzy approx-
imators,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 5393-5398,
2014.

Y. Pane, S. Nageshrao, J. Kober, and R. Babuska, “Reinforcement
learning based compensation methods for robot manipulators,” Engi-
neering Applications of Artificial Intelligence, vol. 78, pp. 236-247,
2019.

Y. Zhu, Z. Wang, J. Merel, A. A. Rusu, T. Erez, S. Cabi, S. Tun-
yasuvunakool, J. Kramdr, R. Hadsell, N. de Freitas, and N. Heess,
“Reinforcement and imitation learning for diverse visuomotor skills,”
in Robotics: Science and Systems XIV, 2018.

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

L. Shao, T. Migimatsu, and J. Bohg, “Learning to scaffold the
development of robotic manipulation skills,” in IEEE International
Conference on Robotics and Automation (ICRA), pp. 5671-5677.

Y. Hu and B. Si, “A Reinforcement Learning Neural Network for
Robotic Manipulator Control,” Neural Computation, vol. 30, no. 7,
pp. 1983-2004, 2018.

A. Iriondo, E. Lazkano, L. Susperregi, J. Urain, A. Fernandez, and
J. Molina, “Pick and place operations in logistics using a mobile
manipulator controlled with deep reinforcement learning,” Applied
Sciences, vol. 9, no. 2, 2019.

V. Kumar, D. Hoeller, B. Sundaralingam, J. Tremblay, and
S. Birchfield, “Joint space control via deep reinforcement learning,”
arXiv:2011.06332, 2021.

J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine,
“How to train your robot with deep reinforcement learning: lessons
we have learned,” The International Journal of Robotics Research,
vol. 40, no. 4-5, pp. 698-721, 2021.

M. A. Riedmiller, “10 steps and some tricks to set up neural rein-
forjfcement controllers,” in Neural Networks: Tricks of the Trade,
2012.

P-W. Chou, D. Maturana, and S. Scherer, “Improving stochastic policy
gradients in continuous control with deep reinforcement learning
using the beta distribution,” in International Conference on Machine
Learning (ICML), 2017, pp. 834-843.

W. Fedus, P. Ramachandran, R. Agarwal, Y. Bengio, H. Larochelle,
M. Rowland, and W. Dabney, “Revisiting fundamentals of experience
replay,” in International Conference on Machine Learning (ICML),
2020.

L. Rupert, P. Hyatt, and M. D. Killpack, “Comparing model predictive
control and input shaping for improved response of low-impedance
robots,” in IEEE-RAS International Conference on Humanoid Robots
(Humanoids), 2015, pp. 256-263.

J. S. Terry, L. Rupert, and M. D. Killpack, “Comparison of linearized
dynamic robot manipulator models for model predictive control,”
in IEEE-RAS International Conference on Humanoid Robotics (Hu-
manoids), 2017, pp. 205-212.

D. Pavlichenko and S. Behnke, “Flexible-joint manipulator trajectory
tracking with learned two-stage model employing one-step future
prediction,” in /EEE International Conference on Robotic Computing
(IRC), 2021.





