
Detection and Tracking of Small Objects
in Sparse 3D Laser Range Data

Jan Razlaw, Jan Quenzel, and Sven Behnke

Abstract— Detection and tracking of dynamic objects is a key
feature for autonomous behavior in a continuously changing
environment. With the increasing popularity and capability of
micro aerial vehicles (MAVs) efficient algorithms have to be
utilized to enable multi object tracking on limited hardware
and data provided by lightweight sensors. We present a novel
segmentation approach based on a combination of median
filters and an efficient pipeline for detection and tracking
of small objects within sparse point clouds generated by a
Velodyne VLP-16 sensor. We achieve real-time performance on
a single core of our MAV hardware by exploiting the inherent
structure of the data. Our approach is evaluated on simulated
and real scans of in- and outdoor environments, obtaining
results comparable to the state of the art. Additionally, we
provide an application for filtering the dynamic and mapping
the static part of the data, generating further insights into the
performance of the pipeline on unlabeled data.

I. INTRODUCTION

As robotics is getting more and more popular, autonomous
robots are utilized in a growing variety of environments and
situations. One basis for the safe deployment of autonomous
machines is a robust perception and anticipation of con-
tinuous changes in the world. This problem is addressed
by detection and tracking algorithms. Detection consists of
identifying or perceiving objects of interest, while tracking
is the task of monitoring the objects’ states over time.
Knowledge about their temporal history allows to anticipate
future behavior.

Recent developments in the field of lightweight light
detection and ranging (LiDAR) sensors facilitate their use
on micro aerial vehicles (MAVs). These MAVs are utilized
in an increasing number of applications, like mapping [1],
inventory [2], or even health care [3]. For those, collision
avoidance and dynamic path planning ensure safety and en-
able the efficient usage of restricted resources with regards to
energy consumption and flight time. Detection and tracking
of dynamic objects is a key feature for these tasks and
interaction with the environment in general.

Another beneficiary of improvements in this field is
autonomous driving. The cars are usually equipped with
powerful computers and a variety of different sensors. MAVs,
on the contrary, are constrained by their lifting capacity—
hence, providing limited computational power and allowing
lightweight sensors only.

Our goal is detecting and tracking multiple objects of
a specific size—e.g. humans—in sparse point clouds as

All authors are with the Autonomous Intelligent Systems
Group, University of Bonn, Germany {razlaw, quenzel,
behnke}@ais.uni-bonn.de

Fig. 1: An exemplary point cloud generated from one scan of
the courtyard of the Landesbehördenhaus in Bonn, projected
into an aerial photography [4]. Points are colored by height.

depicted in Fig. 1. These point clouds are generated by a
Velodyne VLP-16 sensor mounted underneath a DJI Matrice
600 MAV. Due to the limited compute power of the MAV,
efficient algorithms have to be utilized for detection and
tracking to achieve real-time performance.

II. RELATED WORK

Object tracking algorithms in general can be subdivided
into two categories. In the first category are model-based
tracking algorithms that utilize a detector to discriminate
target objects from others based on a model description.
The second category covers model-free tracking comparing
consecutive scans of the environment to distinguish dynamic
objects from the static background.

The challenge for the former lies in the creation of a
precise object model able to discriminate targets from non-
targets while accounting for different settings and special
cases. Numerous works investigated the usage of trained
classifiers [5], [6], [7], [8] on a variety of features and
descriptors. Others utilized convolutional or recurrent neural
networks [9], [10], [11] with promising results, but mostly
on camera images.

Model-free tracking on the contrary is independent of a
predefined model. Objects are detected either by searching
for similar regions in consecutive scans implicitly building
and updating a model [12] or, as usually applied for multi
object tracking (MOT), by extracting the background and
tracking the remaining measurement groups [13], [14]. Such
methods rely on the dynamics of objects as static or tem-
porarily static objects are not tracked.

MOT algorithms additionally need to provide an as-
signment method capable of matching detections to corre-

behnke
Schreibmaschine
IEEE International Conference on Robotics and Automation (ICRA), Montreal, Canada, May 2019.



sponding tracked objects. Such assignment methods range
from simple approaches minimizing pairwise distances of
matches [7] to sophisticated but computationally more de-
manding joint probabilistic data association filters [15]
or likelihood-based sampling based methods [16]. Recent
works [11], [17], [8] investigated the capability of recur-
rent neural networks, such as Long Short-Term Memory
networks [18], for assignment and tracking.

In this work, we attempt to combine the best of both
worlds by relying on a simple, thus general, object model to
not only preserve the ability of tracking static or temporary
static targets but also to reduce parametrization effort and
generalize to different settings. Additionally, we utilize the
tracker’s temporal information in the detector to reduce the
rate of missed detections and concentrate on the usage of
efficient algorithms to process data on limited hardware in
real-time.
In summary, the key features of our method are:

• A novel approach to segment point groups of a specified
width range,

• a detector utilizing segments, temporal information and
the inherent structure of the data,

• an efficient multi object tracker able to maintain tracks
through short occlusions characteristic to the data,

• real-time capability on a single CPU core of our MAV
hardware,

• and a practical application for filtering the dynamic and
mapping the static part of the world.

III. METHOD

In the following, we provide a step-by-step description of
the implemented MOT pipeline depicted in Fig. 2. Starting
with the point cloud generated by the sensor, we preprocess
the data by segmenting foreground point groups of a spec-
ified width range. This segmented cloud is used to create
object detections that are fed to the MOT algorithm. The
estimated tracks are then returned to the detector aiding
the detection in following scans. We estimate the object
states in the world frame. For this purpose, we utilize Multi
Resolution Surfel Mapping [19] to estimate the sensors
position in the world. This mapping algorithm was explicitly
developed to work in real-time on sparse laser range data.

A. Point Cloud Generation

The chosen sensor to detect small objects in a long range
is the Velodyne VLP-16. The sensor has 16 laser-detector
pairs placed on a vertical axis and oriented with an angle
of 2◦ to each other resulting in a 30◦ vertical field of view
(FoV). This setup allows getting 16 measurements at a time.
Spinning the laser-detector pairs around the sensor’s vertical
axis generates a 360◦ horizontal scan of the environment
consisting of 16 scan rings. Fig. 1 shows an example scan.

We exploit the configuration of 16 × n measurements
to generate one organized point cloud per full rotation,
preserving the grid-like structure of the scan.

LiDAR

point cloud

segmented point cloud

transform
detections

Segmentation

Mapping

Detection

Tracking

tracks

Fig. 2: Overall concept of the MOT pipeline.

B. Segmentation

The scan rings generated by the sensor are deformed by
objects in the environment, resulting in grouped measure-
ments closer to the sensor than their neighboring measure-
ments from the background. Due to the sensors low vertical
resolution, especially small or distant objects raise the risk of
laying in between scan rings or corresponding to only very
few measurements. Training of sophisticated object models
under these circumstances is hard if not impossible. Hence,
we segment objects according to their width, as this is the
most distinct feature we can compute even for distant targets.
Our goal is to find all points belonging to foreground groups
of a specified width range.

We utilize the segmentation method we presented in [20]
consisting of two median filters—one for noise, one for
background—with different kernel sizes applied to the dis-
tance readings of single scan rings. This method segments
foreground point groups of a specified width, by filtering
all narrower objects utilizing the noise filter with a smaller
kernel size and additionally filtering the target objects them-
selves using a slightly bigger kernel size in the background
filter. Points for which the filters return different results are
classified as target points. This approach naturally extends
to segmenting groups of a specified width range by defining
the minimal and maximal width explicitly through the noise
and background filter kernel sizes.

By exploiting the organized structure of the data, we in-
troduce points with invalid distance readings—e.g. measure-
ments in the direction of the sky or on absorbing surfaces.
We automatically classify these as background points and
replace the invalid distance by a fixed value exceeding the
maximal measuring range. This way, invalid points can still
be utilized by neighboring valid measurements during the
median computation and allow segmenting objects in the sky,
e.g. other MAVs.

C. Detection

Detection generation is split up into clustering of seg-
mented points and subsequent filtering. For clustering, we
utilize region growing on the organized structure of the point
cloud. The region growing algorithm connects a seed point to
its neighboring segment points and those successively to their



Algorithm 1: Region Growing Clustering (RGC)

1: function RGC(Organized grid of segmented points P )
2: C : empty list of clusters
3: Q : empty queue of points to process
4: cmin : minimal number of points within valid cluster
5: for each not visited segment point pi ∈ P do
6: c : empty cluster
7: add pi to Q and c
8: mark pi as visited
9: while Q not empty do

10: dequeue pj from Q
11: for each neighbor pn : ‖pn − pj‖1 ≤ r do
12: if pn not visited and a segment point and

‖pn − pj‖2 < θ then
13: add pn to Q and c
14: mark pn as visited
15: if |c| ≥ cmin then
16: add c to C
17: return C

a) b) distance

Fig. 3: Two persons scanned behind each other with green
segment points and red background points. a) Sensor per-
spective: Simply connecting the direct neighbors would result
in wrong clusters. b) Shifted perspective: Accounting for
the distance between neighboring points helps to distinguish
segment points corresponding to different objects.

neighboring segment points. The neighborhood is defined on
the grid structure of the cloud. We apply Alg. 1 to each
unclustered segment point.

We adapt the clustering at two points to work more
robustly on the special structure of our data. Due to the
sparsity of the data, the neighborhood search radius in line
11 is extended to check more than just the direct neighbors
on the grid (Fig. 3a). Additionally, in line 12 the Euclidean
distance of the current point to its neighbors has to be taken
into account to prevent under-clustering of several distinct
but partially occluding objects (Fig. 3b).

One drawback of the organized grid for this clustering
method is a potential overlap of the start and end of a circular
scan. We need to handle this case explicitly by computing
the approximate overlap, finding the clusters lying within and
fusing those corresponding to the same objects in the world.

After clustering the segment points, we need to filter those
clusters not matching our simple object model consisting

of a height range and a maximal diagonal width. Due to
the sensor’s limited vertical FoV, objects might be scanned
partially. Consequently, we refrain from testing for a minimal
height for clusters containing at least one point from the top
and bottom scan rings. Additionally, we exploit the tracker’s
temporal information by relaxing the object model—omitting
the minimal height and increasing the maximal width—for
clusters in the vicinity of already tracked objects. Clusters
fitting this description are considered valid detections.

D. Multi Object Tracking
Multi Object Tracking in general is the task of monitoring

the states of several objects simultaneously. For this purpose,
the algorithm maintains a set of object hypotheses. These
are represented by an axis aligned bounding box and a state
consisting of a 3D position and velocity. The hypotheses are
updated using points corresponding to valid detections in the
most current scan. One Kalman filter with a constant velocity
model is deployed for each hypothesis.

For tracking multiple objects, it is essential to know
which detection corresponds to which object hypothesis. We
solve this classical assignment problem in polynomial time
utilizing the Hungarian method [21]. The algorithm finds a
one-to-one assignment for a given cost matrix minimizing
the total assignment costs. Hence, we model our problem
as an adjacency matrix between detections and hypotheses
utilizing the Bhattacharyya distance as a proximity measure.
We forbid individual assignments that exceed a distance
threshold.

Each assigned detection is used to correct the matched
hypothesis state. We prevent velocities induced by sensor
noise and varying amounts of partial occlusions by truncating
velocity estimates of up to 1 km/h to zero. Additionally,
we truncate estimated velocities to a maximum of 10 km/h
to reduce the effect of volatile detections, due to sparse
measurements on altering object parts.

A detection without a matching hypothesis might be corre-
spondent to an object entering the FoV and thus creates a new
hypothesis. Detections generated using the relaxed object
model implicitly correspond to already tracked objects—
hence do not create new hypotheses. Unassigned hypotheses
might correspond to objects that left the FoV and thus need to
be tested for validity. As unassigned hypotheses’ covariances
grow with each prediction step, we declare those with a high
covariance as non-valid and initiate deletion. For this, we
compute the eigenvalues of the Kalman filter’s covariance
matrix and test if at least one value exceeds a threshold.
To account for oversegmentation or misassignments, we
delete the younger hypotheses being in the vicinity of older
hypotheses.

Additionally, we classify tracked objects into the classes
static and dynamic. Each hypothesis is generated static and
becomes dynamic once its current bounding box does not
intersect with its initial bounding box.

E. Dynamic Objects Filter
As a practical application, we filter out tracked dynamic

objects from all point clouds and generate a map of the static



part of the scene. For this, we discard every detected point
corresponding to a dynamic hypothesis from each currently
processed point cloud. These filtered clouds are stored in a
log. Once a hypothesis becomes dynamic, all its previous
bounding boxes—from the time it was static—are utilized to
remove corresponding points from these logged clouds. If a
dynamic hypothesis loses track of an object but recovers, we
filter points corresponding to the predicted bounding boxes
from intermediate steps similarly. The result is a log of point
clouds corresponding to the static part of the world.

IV. EVALUATION

We evaluate efficacy and efficiency of our proposed MOT
approach as follows. We start by giving an overview of two
metrics commonly used to evaluate MOT algorithms against
ground truth annotations. These annotations are provided
in two data sets we inspect afterwards. We utilize both
for evaluation and parameter optimization and discuss our
achieved results.

A. Evaluation Metrics

The first metric is the CLEAR MOT metric [22]. It utilizes
the Hungarian method to assign hypotheses to ground truth
labels in each time step. Valid matches have a Euclidean
distance below a threshold—0.5 m are suggested by the
authors for visual people tracking. Matched hypothesis-label
pairs from the previous time step are not reassigned to others
if both are still present and close to each other. Using the
sum of distances dt between each hypothesis and matched
label for time t and the number of matches ct it computes
the Multi Object Tracking Precision (MOTP) as

MOTP =

∑
t dt∑
t ct

. (1)

Additionally, it counts the number of missed labels mt,
false positives fpt, mismatch errors mmet and labels gt for
each time t to compute the Multi Object Tracking Accuracy
(MOTA) as

MOTA = 1−
∑

t(mt + fpt +mmet)∑
t gt

. (2)

The MOTA is a measure for the consistency of the generated
tracks.

Another way to evaluate the performance of an MOT
algorithm is to inspect how much of the object tracks were
covered by the hypotheses [23]. This metric is split up into
three ratios: Mostly Tracked (MT), Partially Tracked (PT),
and Mostly Lost (ML). An object trajectory is mostly tracked
if at least 80% of it is covered by hypotheses. It is mostly
lost if less than 20% is covered and partially tracked for the
remaining cases. We apply the same constraints as for the
CLEAR MOT for an object to be classified as tracked.

This metric does not account for identity switches, false
positives or precision. It can be seen as an addition to the
CLEAR MOT metric, providing a more detailed insight to
the ratio of misses.

TABLE I: Properties of simulated sequences.

ID Area Targets Duration Scans Environment

1 100m × 100m 6 98s 986 Empty field
2 100m × 100m 50 99s 995 Empty field
3 200m × 200m 6 97s 978 Empty field
4 100m × 100m 6 54s 547 Industrial
5 200m × 200m 6 92s 925 Industrial, Shops, Houses
6 100m × 150m 6 97s 974 Park

B. Data Sets

Three data sets were utilized for evaluation and parameter
optimization. The first two are used for a quantitative evalu-
ation against ground truth data. The third data set consists of
scans recorded from our MAV setup during two flights in a
large courtyard. Due to missing ground truth for the latter, we
utilize our filtering application for a qualitative evaluation.

1) InLiDa: The Indoor LiDAR Dataset InLiDa [7] con-
sists of six hand labeled sequences captured using a Velodyne
VLP-16 in an indoor environment. The sequences have a
total duration of 501 seconds and contain 4823 scans. The
sensor is placed in a fixed location in a corridor or a hall. Up
to eight dynamic objects—seven humans and one robot—are
simultaneously visible and labeled at point-level. The data
set provides challenging situations with occlusions, groups
of close objects moving in the same direction, rapid velocity
changes and other dynamic objects, like doors.

2) Simulated: Additionally, we simulated the Velodyne
VLP-16 in a set of diverse outdoor settings to generate an-
other data set (Fig. 4). For simulation, we used Gazebo [24]
and adapted a Velodyne VLP-16 simulator [25] to generate
organized point clouds. The data set provides sequences with
a varying number of dynamic persons within static envi-
ronments with different amounts of clutter and distractions
(Tab. I). Our simulated persons avoid obstacles, change their
velocities from 3.5 km/h to 12.5 km/h, and pause from time
to time. The environments are limited to a distance of up
to 140 m to the sensor in the center at a height of 2.5 m.
This implies that measurements of target objects do get very
sparse or disappear completely due to occlusions or objects
leaving the measurement range of the sensor. We recorded
a data set using a static sensor and another set of sequences
with a dynamic sensor moving on a trajectory with the shape
of an 8 within a radius of about 4 m around the center of the
environment. Ground truth labels are provided at point-level.

3) Real World Data: Our own data set was recorded
during flights of a piloted MAV in the courtyard of the
Landesbehördenhaus (LBH) in Bonn (Fig. 4). In the first
sequence, only the pilot is visible to the sensor as a dynamic
object. He moves in a slow pace within an area of about
7 m × 7 m.

The second sequence was recorded with four visible
humans. They are walking and running, crossing each other’s
paths, changing speeds and occluding each other. The MAV
and sensor are flying with velocities of up to 20 km/h.



Fig. 4: Exemplary views on environments the data sets were recorded in. Left to right: Real-World: Aerial photo [4]
of the LBH in Bonn, Germany. Simulated: Empty field sequences serve as a baseline providing easier circumstances.
Industrial setting with six dynamic persons and nine static distractors in red. Apartments, industry and shops containing
more natural distractors and occluders on a wider field. Park with buildings, fountains and a variety of trees providing
numerous possibilities for short-term occlusions.

C. Parameter Optimization

For parameter optimization, we used hyperopt [26], a dis-
tributed asynchronous hyperparameter optimization library.
It utilizes the Tree of Parzen Estimators [27] to optimize
parameters in a specified search space by minimizing a cost
function depending on the given parameters—e.g. object size
and covariance threshold.

The cost function we utilized is defined by

costs = 1−MOTA. (3)

The costs are equal to zero for a perfect MOTA (Eq. 2) of
1.0 and rising as the MOTA decreases.

D. Quantitative Results

For quantitative evaluations, we start by comparing the
results of our approach to the results reported in [7]. For
all evaluations of our method, we only use those hypotheses
classified as dynamic at least once.

The InLiDa Tracking approach concentrates on multi
person tracking. It utilizes global Ensemble of Shape Func-
tions (ESF) descriptors [28] on extracted point clusters and
classifies them using random forests into the classes Person
and Not person to generate person detections. For tracking,
existing hypotheses are matched to their closest detections
within a search radius of 0.5m and propagated utilizing a
circular velocity buffer.

The task for evaluation was to track humans only, distin-
guishing them from the dynamic robot present in four of
six sequences. They evaluated their approach by training
parameters on one InLiDa sequence and testing on the
remaining. Each sequence was used for training once.

The InLiDa Tracking achieves a total MOTA of −0.213,
our approach evaluated in the same way achieves a total
MOTA of 0.071. The resulting MOTAs are rather low,
considering that using no tracker at all results in a MOTA
of zero. One possible reason is the utilized evaluation pro-
cedure. Training on one sequence only increases the risk of
overfitting the parameters. Additionally, the methods have
difficulties to distinguish between the robot and humans, if
there is no robot present in the training sequence. Applying
the methods to other unseen sequences, with an attendant
robot, yields bad results.

TABLE II: Results of quantitative evaluation.

Data Set MOTA MOTP MT PT ML

InLiDa 0.562 0.108m 0.49 0.43 0.08
Simulated static sensor 0.677 0.044m 0.75 0.25 0.0
Simulated dynamic sensor 0.533 0.033m 0.57 0.40 0.03

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

MOTA Training Set

M
O

TA
Te

st
Se

t

InLiDa Seq. 2 : r = 0.78

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

MOTA Training Set

M
O

TA
Te

st
Se

t

Simulated Seq. 3 : r = 0.88

Fig. 5: Plots visualizing the MOTA on the training set
against the MOTA on the test sequence during parameter
optimization. The titles report the sequence utilized as the
test set and the Pearson correlation coefficient r.

We evaluated our method a second time on the InLiDa.
Due to the limited size of the data set, we perform a Leave-
one-out cross-validation (LOOCV). For this, we split the data
set containing n sequences into a training set of size n−1 for
parameter optimization and a test set consisting of the left
out sequence. The test set serves the purpose of evaluating
the method’s performance and ability to generalize on unseen
data. This process is successively repeated n-times, each time
leaving another sequence out. Table II presents the results of
this evaluation on the InLiDa and the simulated data sets.

To get a better insight into the method’s ability to general-
ize to unseen data, we plot the MOTAs {x1, . . . , xn} on the
training set against the MOTAs {y1, . . . , yn} on the test set
computed during n runs of the optimization process. For each
sequence, we additionally compute the Pearson correlation
coefficient r defined by

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(4)

with x̄ and ȳ as the means of the MOTAs on the training



Fig. 6: Top down views of two mapped sequences. Color
encodes height (yellow low, red high). Left: Raw measure-
ments mapped into one coordinate frame. Measurements on
dynamic objects result in artifacts visible as orange lines on
the yellow ground. Right: Same scans with dynamic objects
filtered out. Top: Pilot only. Bottom: Four persons.

and test set, respectively. The correlation coefficients during
the optimizations on the InLiDa sequences range from 0.68
to 0.83, on the simulated sequences from 0.47 to 0.90. We
present the plots corresponding to the test sequences with
the median correlation coefficient per data set in Fig. 5.

E. Qualitative Results

For a qualitative evaluation, we filter the sequences
recorded in the courtyard of the LBH as described in Sec. III-
E. Measurements on dynamic objects create artifacts. Our
method is able to filter out most points corresponding to
those objects, even for noisy mapping results present in the
first sequence (Fig. 6).

F. Run Time

Finally, we inspect the real-time capability of our method
by plotting the run time per scan for two example se-
quences (Fig. 7). We measured the time for each module—
Segmentation, Detection and Tracking—to process incoming
data. We assume a sequential procession of the data on one
CPU core. In practice, all modules are able to process the
data of the next time step directly after processing the current
data. The method was executed on the hardware of our MAV
consisting of an Intel Core i7-6770HQ CPU and 32 GB of
RAM.

We chose the most demanding sequences from the InLiDa
and the simulated data set: a sequence in the hall with a
wall close to the sensor resulting in large kernel sizes during
segmentation and the simulated sequence with 50 persons
present. Our method processes the data before the next scan
is available after 100 ms.

0 20 40 60 80
0

20

40

60

80

Time within Sequence in s

R
un

Ti
m

e
in

m
s

InLiDa Sequence 1

Total Tracking
Detection Segmentation

0 20 40 60 80 100
0

10

20

30

Time within Sequence in s

R
un

Ti
m

e
in

m
s

Simulated Sequence 2

Fig. 7: Run time in milliseconds of method and modules per
scan on exemplary sequences.

G. Discussion

For better results, the application of a more sophisticated
but still efficient tracking approach should be investigated.
Complex movement patterns of humans can only be tracked
to a limited extent by the utilized Kalman filter.

Furthermore, the information about occlusions could help
to adjust the time an occluded hypothesis is retained. The
same information can be utilized to more robustly distin-
guish between static and dynamic objects. During partial
occlusions, the bounding box of the occluded object changes
its shape and size, as the object is only partially visible to
the sensor. In some instances this is interpreted as a move-
ment of the occluded object. Incorporating this information
would counteract false classifications and, hence, enable the
approach to filter dynamic objects more precisely.

Lastly, the run time of the proposed segmentation method
depends on the distance to the environment. Close objects
combined with a large specified target width increase the
run time. Replacing the median filters by an approach that
compares the measured distance of a point to the distances of
two neighboring background points could generate a similar
segmentation while being computationally more efficient.

V. CONCLUSION

We implemented a method for real-time multi object
tracking of small objects in the sparse point clouds generated
by a Velodyne VLP-16 on the limited hardware of a MAV.
For this, we proposed a novel segmentation approach to
segment point groups of a specified width range in single
scan rings and implemented efficient algorithms for detection
and tracking utilizing the structure of the data. We evaluated
our approach on simulated and real in- and outdoor data sets
achieving results comparable to the state of the art. As a
practical application, we filter data corresponding to dynamic
objects and map the static part of the scene.



REFERENCES

[1] D. Droeschel and S. Behnke, “Efficient continuous-time SLAM for
3D lidar-based online mapping,” in Proc. of the IEEE Int. Conference
on Robotics and Automation (ICRA), 2018.

[2] M. Beul, D. Droeschel, M. Nieuwenhuisen, J. Quenzel, S. Houben,
and S. Behnke, “Fast autonomous flight in warehouses for inventory
applications,” IEEE Robotics and Automation Letters, vol. 3, no. 4,
pp. 3121–3128, 2018.

[3] S. J. Kim, G. J. Lim, J. Cho, and M. J. Côté, “Drone-aided healthcare
services for patients with chronic diseases in rural areas,” Journal of
Intelligent & Robotic Systems (JINT), vol. 88, no. 1, pp. 163–180,
2017.

[4] Google. Landesbehördenhaus Bonn. [Online]. Available:
https://goo.gl/maps/3tNpQEdmqTy

[5] L. Spinello, K. O. Arras, R. Triebel, and R. Siegwart, “A layered
approach to people detection in 3D range data.” in AAAI, vol. 10,
2010.

[6] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[7] C. Romero-González, A. Villena, D. González-Medina, J. Martı́nez-
Gómez, L. Rodrı́guez-Ruiz, and I. Garcı́a-Varea, “InLiDa: A 3D lidar
dataset for people detection and tracking in indoor environments,”
in Proc. of the Int. Conference on Computer Vision Theory and
Application (VISSAPP), 2017.

[8] H. Farazi and S. Behnke, “Online visual robot tracking and iden-
tification using deep LSTM networks,” in Proc. of the IEEE/RSJ
Int. Conference on Intelligent Robots and Systems (IROS), 2017.

[9] D. Maturana and S. Scherer, “3D convolutional neural networks for
landing zone detection from lidar,” in Proc. of the IEEE Int. Confer-
ence on Robotics and Automation (ICRA), 2015.

[10] P. Ondruska and I. Posner, “Deep tracking: Seeing beyond seeing using
recurrent neural networks,” arXiv preprint arXiv:1602.00991, 2016.

[11] A. Milan, S. H. Rezatofighi, A. R. Dick, I. D. Reid, and K. Schindler,
“Online multi-target tracking using recurrent neural networks.” in
AAAI, 2017.

[12] H. Possegger, T. Mauthner, and H. Bischof, “In defense of color-based
model-free tracking,” in Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015.

[13] F. Moosmann and C. Stiller, “Joint self-localization and tracking of
generic objects in 3D range data,” in Proc. of the IEEE Int. Conference
on Robotics and Automation (ICRA), 2013.

[14] A. Dewan, T. Caselitz, G. D. Tipaldi, and W. Burgard, “Motion-
based detection and tracking in 3D lidar scans,” in Proc. of the IEEE
Int. Conference on Robotics and Automation (ICRA), 2016.

[15] D. Schulz, W. Burgard, D. Fox, and A. B. Cremers, “People tracking
with mobile robots using sample-based joint probabilistic data associ-
ation filters,” The International Journal of Robotics Research, vol. 22,
no. 2, pp. 99–116, 2003.

[16] K. Granström, L. Svensson, S. Reuter, Y. Xia, and M. Fatemi,
“Likelihood-based data association for extended object tracking using
sampling methods,” IEEE Transactions on Intelligent Vehicles, vol. 3,
no. 1, pp. 30–45, 2018.

[17] J. Dequaire, P. Ondrúška, D. Rao, D. Wang, and I. Posner, “Deep
tracking in the wild: End-to-end tracking using recurrent neural
networks,” The International Journal of Robotics Research, 2017.

[18] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[19] D. Droeschel, J. Stückler, and S. Behnke, “Local multi-resolution
surfel grids for MAV motion estimation and 3D mapping,” in Proc. of
the Int. Conference on Intelligent Autonomous Systems (IAS), 2014.

[20] M. Schwarz, D. Droeschel, C. Lenz, A. S. Periyasamy, E. Y. Puang,
J. Razlaw, D. Rodriguez, S. Schüller, M. Schreiber, and S. Behnke,
“Team NimbRo at MBZIRC 2017: Autonomous valve stem turning
using a wrench,” Journal of Field Robotics, vol. 36, no. 1, pp. 170–
182, 2019.

[21] J. Munkres, “Algorithms for the assignment and transportation prob-
lems,” Journal of the Society for Industrial and Applied Mathematics,
vol. 5, no. 1, pp. 32–38, 1957.

[22] K. Bernardin and R. Stiefelhagen, “Evaluating multiple object tracking
performance: the CLEAR MOT metrics,” Journal on Image and Video
Processing, vol. 2008, p. 1, 2008.

[23] Y. Li, C. Huang, and R. Nevatia, “Learning to associate: Hybrid-
boosted multi-target tracker for crowded scene,” in Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2009.

[24] N. P. Koenig and A. Howard, “Design and use paradigms for Gazebo,
an open-source multi-robot simulator.” in Proc. of the IEEE/RSJ
Int. Conference on Intelligent Robots and Systems (IROS), 2004.

[25] Dataspeed, “Velodyne simulator,” 2018. [Online]. Available:
https://bit.ly/2x9ybfm

[26] J. Bergstra, D. Yamins, and D. D. Cox, “Hyperopt: A Python library
for optimizing the hyperparameters of machine learning algorithms,”
in Proceedings of the 12th Python in Science Conference, 2013.

[27] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms
for hyper-parameter optimization,” in Advances in Neural Information
Processing Systems, 2011, pp. 2546–2554.

[28] W. Wohlkinger and M. Vincze, “Ensemble of shape functions for 3D
object classification,” in Proc. of the IEEE International Conference
on Robotics and Biomimetics (ROBIO), 2011.


