
Towards Learning Abstract Representations for

Locomotion Planning in High-dimensional State Spaces

Tobias Klamt and Sven Behnke

Abstract— Ground robots which are able to navigate a variety
of terrains are needed in many domains. One of the key
aspects is the capability to adapt to the ground structure,
which can be realized through movable body parts coming along
with additional degrees of freedom (DoF). However, planning
respective locomotion is challenging since suitable represen-
tations result in large state spaces. Employing an additional
abstract representation—which is coarser, lower-dimensional,
and semantically enriched—can support the planning.

While a desired robot representation and action set of such an
abstract representation can be easily defined, the cost function
requires large tuning efforts. We propose a method to represent
the cost function as a CNN. Training of the network is done
on generated artificial data, while it generalizes well to the
abstraction of real world scenes. We further apply our method
to the problem of search-based planning of hybrid driving-
stepping locomotion. The abstract representation is used as
a powerful informed heuristic which accelerates planning by
multiple orders of magnitude.

I. INTRODUCTION

Most robot locomotion planners feature search- or

sampling-based methods which perform well in 2D and 3D

planning problems, e.g., driving robot locomotion [1]–[3].

However, many areas of operation, e.g., in search and rescue

missions, have challenging properties. Suitable robots need

to adapt to those environments to provide fast, safe, and

energy efficient locomotion which can be realized through,

e.g., tracked flippers, legs, or wheels at adjustable limbs.

Including these capabilities in the planning problem results

in high-dimensional state spaces which may lead to extensive

searches for search- and sampling-based approaches.

In recent years, intensive research has been performed on

learning-based motion planning approaches [4]–[8] which

learn to map a given situation to a reasonable action with-

out performing extensive searches. However, the necessary

amount of training data and the required network complexity

strongly depend on the size of the considered maps and the

number of state space dimensions. Thus, at the current state-

of-the-art, learning-based planners are restricted to small

maps or low-dimensional planning problems.

A well investigated idea to accelerate planning in large

state spaces is abstraction. An abstract representation has

a coarser resolution or fewer state space dimensions and

compensates this information loss through additional features

to increase semantics. Given such an abstract representation,

All authors are with University of Bonn, Computer Science
Institute VI, Autonomous Intelligent Systems, Bonn, Germany
klamt@ais.uni-bonn.de, behnke@cs.uni-bonn.de.
This work was supported by the European Union’s Horizon 2020
Programme under Grant Agreement 644839 (CENTAURO).

Planning problem Detailed representation CNN

Abstract representation

H
e

u
ri

s
ti
c

Planner

(e.g., A*, RRT, PRM)

Path

Fig. 1. A CNN is used to generate an abstract representation of a detailed
planning problem which is employed to support the planner.

the necessity of the detailed representation during planning

may be reduced to certain situations. However, a valuable

property of an abstract representation to be used along with

a detailed representation (e.g., as a heuristic or for coarse-

to-fine planning) is that the same actions induce the same

costs in both representations (cost similarity).

In [9], we have proposed a high-dimensional search-based

planner for hybrid driving-stepping locomotion which we

have extended in [10] to multiple levels of abstraction.

This has shown promising results since planning has been

significantly accelerated while the resulting path quality has

stayed comparable. However, abstract representations were

manually designed and parametrized to obtain cost similarity

which is a challenging and exhausting task.

In this paper, we propose a method to support the im-

plementation of abstract representations through convolu-

tional neural networks (CNNs), which map a spatially small

planning task to a corresponding cost assessment for the

shortest path. Since these small planning tasks represent a

coarse, low-dimensional set of actions, the CNN represents a

cost similar abstract representation for the high-dimensional

planning cost function (see Fig. 1).

We train the CNN on generated artificial data and evaluate

it on simulated and real-world sensor data. Furthermore,

the method is used to generate a powerful heuristic for

hybrid driving-stepping locomotion planning, but it can be

easily transferred to other domains, e.g., walking locomotion.

The results indicate that the proposed method outperforms

our manually tuned approach in terms of abstraction qual-

ity, while eliminating tuning efforts, and that the proposed

heuristic accelerates path planning by multiple orders of

magnitude, compared to popular heuristics.

behnke
Schreibmaschine
IEEE International Conference on Robotics and Automation (ICRA), Montreal, Canada, May 2019.



II. RELATED WORK

Most robot motion planning approaches are either

sampling-based, such as Rapidly-exploring Random Trees

(RRT) [1] or Probabilistic Roadmaps (PRM) [2], search-

based, such as A* [3] or a combination of those [11]. Low-

dimensional motion planning in 2D or 3D state spaces, can

be seen as solved with these approaches. However, it is still

challenging to solve high-dimensional, large planning prob-

lems since the required computational power and memory

significantly increase with an increasing state space size.

A solution to handle large environment sizes is multi-

resolution planning [12]. To handle high-dimensional state

spaces, a local adaptation of the robot representation is an

option. In previous work [9], we have proposed a search-

based approach to plan hybrid driving-stepping locomo-

tion. Similarly, Dornbush et al. [13] have planned multi-

modal paths for a humanoid with a search-based planner.

Both approaches handle the occurring high-dimensional state

spaces by separating the planning problem with respect to

the locomotion mode and apply high-dimensional planning

only if required. Nevertheless, both works suffer the problem

of handling large scenarios in feasible time since the high-

dimensional represented areas are still too large.

However, those approaches only neglect information in

their coarse/low-dimensional representations which might

result in wrong assessments, especially for complex terrain.

This is addressed by abstraction: Representations are coarser

but semantically enriched to compensate the information

loss. A theoretical basis for abstraction for search-based

planning has been given by Holte et al. [14]. In [10], we

have extended hybrid driving-stepping locomotion planning

to three levels of abstraction. With increasing abstraction, the

environment is represented in a coarser resolution but with

additional hand-crafted features such as height differences

or terrain classes. In addition, the robot representation has

a coarser resolution and less dimensions with increasing

abstraction. The costs functions were manually tuned to

obtain cost similarity. This was done by iteratively compar-

ing costs on a small set of exemplary tasks and adjusting

parameters. The abstract representations accelerate planning

by multiple orders of magnitude while the path quality stays

comparable. Especially the utilization of the most abstract

representation as a heuristic leads to significant speedup.

However, the design of descriptive features and tuning of

cost functions require extensive manual parametrization and

are very dependent on the used set of exemplary tasks.

In recent years, learning-based approaches for solving

robot motion planning problems have been proposed. In [4]

and [5], CNNs have been trained to map camera images

directly to motor commands, e.g., for manipulation tasks

or steering of a self-driving car. However, the long-term

goal-directed behavior of such approaches is usually poor

or the training would require unreasonable amounts of data

and time. Tamar et al. [6] have proposed a differentiable

approximation of the value iteration algorithm which can be

represented as a CNN—the Value Iteration Networks. Their

performance has been evaluated on small 2D grid worlds.

Similarly, Karkus et al. [7] have proposed QMDP-Net which

is also capable of planning in 2D grid worlds. Srinivas et

al. [8] have proposed Universal Planning Networks which

map images of the initial and goal scene to actions. These

three approaches point out the general problem of learning-

based approaches at the current state-of-the-art: The required

amount of training data and the required network complexity

are not manageable for large, high-dimensional planning

problems.

To summarize, learning-based planning approaches can

handle local problems with limited state space sizes quickly

without performing extensive searches. In contrast, tradi-

tional planning approaches show good goal-directed behav-

ior but might get stuck in extensive searches for complex

high-dimensional problems. Hence, it promising to combine

these approaches and merge the advantages of both. Faust

et al. [15] use a reinforcement learning agent to learn

short-range, point-to-point navigation policies for 2D and

3D action spaces which capture the robot dynamic and

task constraint without considering the large-scale topology.

Sampling-based planning is used to plan waypoints which

give the planning a long-range goal-directed behavior.

In contrast to that work, we combine learning- and search-

based planning to handle 7-dimensional hybrid driving-

stepping locomotion planning. A CNN represents the cost

function of an abstract representation of the high-dimensional

planning problem employed as a heuristic to accelerate

planning.

III. PROBLEM STATEMENT

Given a planner which uses an environment representation

(E), a robot representation (Rd), a corresponding action set

(Ad), and a cost function (Cd). E is a map with an arbitrary

number of features describing each cell. Rd represents all

required DoF of the robot kinematics which are necessary to

address the planning problem. Ad contains all actions which

can be executed by the robot such that rd,i + ad,j = rd,i+1,

an action ad,j ∈ Ad connects two successive robot states rd,i,

rd,i+1 ∈ Rd while inducing the costs Cd(rd,i, ad,j).
A second, abstract representation, consisting of E , Ra, Aa,

and Ca, can be used to support the planning. Ra describes

the robot state in a low-dimensional state space although this

might not suffice to describe the robot state in enough detail

for execution. The correspondence between an abstract robot

state ra,i ∈ Ra and a detailed robot state rd,i ∈ Rd is given

through the transformation

ra,i = Td 7→ a(rd,i) (1)

and vice versa with

rd,i = Ta 7→ d(ra,i). (2)

Aa describes actions aa,j to move an abstract robot state

ra,i ∈ Ra to a successive state ra,i+1 ∈ Ra. The resolution of

Aa is coarser compared to Ad, such that an action sequence

Ta 7→ d(ra,i) + ad,j + ad,j+1 + ...+ ad,j+k = Ta 7→ d(ra,i+1), (3)



1@
72×72





xgoal

ygoal

θgoal





3@
72×72

5@
72×72 28@

59×59
31@

28×28
34@

13×13
36@

11×11
38@
9×9

40@
7×7

Conv. 1
3×3

Padding=1

Conv. 2
7×7

Padding=3

Conv. 3
14×14

Conv. 4
4×4

+
max

pooling

Conv. 5
3×3

+
max

pooling

Conv. 6
3×3

Conv. 7
3×3

Conv. 8
3×3

1960 + 3

500

150

50

20

costs

feasibility

Fig. 2. Architecture of the proposed CNN. Input are a height map patch and the goal state. Although it is not fed into the network, the start state is
depicted as a red arrow for better understanding. Output are the feasibility and costs values. Convolutional layers are visualized as red cuboids; blue lines
show fully connected layers. If not stated different, convolutions have a padding of 0 and a stride of 1.

is necessary in the detailed representation to perform the

least cost transition between two successive robot states

in the abstract representation, while the difference be-

tween the abstract costs Ca(ra,i, aa,j) and the detailed costs

Cd(Ta 7→ d(ra,i), ad,j, ..., ad,j+k) should be minimized to obtain

cost similarity.

While Ra and Aa can be easily defined, Ca needs extensive

tuning. We propose to represent Ca as a CNN to avoid these

tuning efforts and improve abstraction quality.

IV. NETWORK DESIGN

We propose a regular CNN architecture—consisting of

convolutional layers and successive fully connected layers—

to learn the abstract cost function (see Fig. 2). Input are

a height map patch with 72× 72 pixels and the three-

dimensional abstract goal state ra,g. The start state ra,s is

assumed to be always in the map patch center with a

fixed orientation and is not fed into the network. For a

given resolution of 2.5 cm, the map size is chosen such that

for every abstract goal state ra,g = ra,s + aa,j ∈ Aa, the

corresponding detailed goal state rd,g = Ta 7→ d(ra,g) with

any feasible leg configuration is completely inside this map

patch. ra,g is defined in resolution steps relative to ra,s.

Instead of only outputting costs which become infinite for

infeasible queries, we output two values: The feasibility value

describes whether there exists a path between ra,s and ra,g,

and, if so, the costs value describes the corresponding costs.

We discovered that key to a good abstraction performance

are some convolutions with large kernel sizes which might

be explained as follows: A first small convolution extracts

descriptive map features from the input height map. Next, a

second convolution possesses a kernel size which is similar

to the size of a robot foot and thus can determine if foot

placement is possible for each kernel position. The kernel

size of the third convolution is chosen such that is covers the

maximum action length for an individual foot. Hence, it can

find connections between feasible foot positions in a certain

distance which is valuable for, e.g., steps. The following

convolutions and max pooling operations with small kernels

a) b) c)

Fig. 3. Hybrid driving-stepping locomotion robots. a) Momaro, b)
Centauro, c) corresponding detailed robot representation (blue = robot base,
red squares = feet, arrows visualize the DoF).

do further processing on the actions and are followed by six

fully connected layers.

The last fully connected layer is split: While costs are

output directly, the feasibility output is processed by a

sigmoid function since it is Boolean.

V. LEARNING ABSTRACTION OF HYBRID

DRIVING-STEPPING LOCOMOTION PLANNING

We apply the proposed method to hybrid driving-stepping

locomotion planning for our platforms e.g., Momaro [16]

and Centauro [17] (see Fig. 3 a, b). Both are able to perform

omnidirectional driving and stepping motions. A detailed

robot representation which matches both robots is depicted

in Fig. 3 c.

A. Detailed Representation

The environment representation E is a height map which

is generated from registered point clouds using the method

by Droeschel et al. [18] (Fig. 4 a). Regarding Cd, foot costs

(see Fig. 4 b) and base costs, which describe the costs to

place a single foot/the base at a given position/in a given

state on the map, are computed from this height map. Foot

costs and base costs are merged to state costs. The robot

is represented in 7D states rd ∈ Rd = (rx, ry, rθ, f1, ..., f4)
with the robot base state (rx, ry, rθ) and the relative longitu-

dinal position of each foot f1, ..., f4 as shown in Fig. 3 c.

Positions have a resolution of 2.5 cm while there are 64

discrete orientations. Lateral foot positions are fixed and foot

heights are computed after a result path is found.



a) b)

Fig. 4. Detailed environment representation: a) input height map, b) foot
cost map (yellow = untraversable by driving, olive = unknown).

a)

b) c) d) e)

Fig. 5. Robot actions in Ad: a) omnidirectional driving with fixed
orientation, b) turning with fixed position, c) moving a foot relative to the
base while keeping ground contact, d) longitudinal base shift, e) step. Grid
and orientation resolution are enlarged to facilitate visualization.

Robot actions in Ad are (see Fig. 5):

• omnidirectional driving within a 20-neighborhood with

fixed orientation,

• turning to the next discrete orientation,

• moving an individual foot relative to the robot base

while keeping ground contact,

• moving the base longitudinal relative to the feet, and

• performing a step with a single foot.

Steps are represented as the direct transition from a pre-

stepping to a post-stepping state. Only those steps in the

result path are refined to detailed motion sequences which

consider robot stability and the detailed stepping motion.

Each action carries costs with respect to the occurring foot

and base costs that the individual robot elements experience.

For driving locomotion, a large angular difference between

the robot orientation and driving direction is punished with

higher costs to prefer driving forward which brings advan-

tages to the perception of the environment directly in front

of the robot and when switching to stepping motions in

the sagittal direction. An A*-based planner which uses the

above presented representation is used to plan hybrid driving-

stepping locomotion paths. More details can be found in [9].

B. Abstract Representation

Ra contains 3D robot states ra = (rx, ry, rθ) which

describe the robot position with a resolution of 10 cm and the

orientation in 16 discrete steps. Individual foot configurations

are neglected. Aa contains

• moving the robot within a 20-neighborhood with fixed

orientation (see Fig. 5 a) and

• turning to the next discrete orientation with fixed posi-

tion (see Fig. 5 b).

Transforming a detailed robot state to an abstract robot

state (Td 7→ a) is done by neglecting the foot positions and

matching the position and orientation to the coarse resolution

of the abstract state space. The transformation from an

abstract to a detailed robot state Ta 7→ d is more complicated:

For all detailed robot base states that match the abstract

state, we search the least cost foot configuration while

preferring configurations which are close to the neutral robot

configuration (Fig. 5 a). The detailed robot state with the

minimum state costs is the transformation result.

C. Network Training

Training data is generated artificially. Hence, large datasets

can be produced without considerable effort. A map genera-

tor produces height maps of the desired network input size.

The following obstacles are placed randomly in those height

maps:

• cuboid shaped obstacles of random size,

• walls of random length and height, and

• staircases of random width with a random number of

stairs (with random height and length).

We produce 2,000 maps of each of the following categories:

• one/two/three cuboid obstacles,

• one/two walls,

• one cuboid obstacle and one wall,

• one staircase,

• one staircase and one wall, and

• one staircase whose orientation is in the interval
[

− π

16
, π

16

]

around the robot orientation. Those maps are

used to set a learning focus on stair climbing.

For each map, we define 22 abstract goal states ra,gi
with

respect to Aa. The start state ra,s is always in the map center

with a fixed orientation. ra,s and ra,gi
are transformed to Rd

using Ta 7→ d. For some maps, a valid detailed start state rd,s

cannot be found due to obstacles. Those maps are deleted.

In total, we get a set of 11,327 maps with 249,194 tasks.

Subsequently, we search for a shortest path from rd,s to rd,gi

with our detailed A*-planner. For each task, we save the

feasibility flag which describes if a path could be found.

Costs are saved for all feasible tasks.

The network is trained using the SGD optimizer with

a learning rate of 0.0001 and a momentum of 0.9. We

use a BCE loss function for the feasibility and a L1 loss

function for the costs. The costs loss is only considered

in the backpropagation if the task is feasible. Losses are

weighted with Wfeasible and Wcosts, both starting at 1. If

no improvement by means of a decreasing loss is achieved

in three successive training epochs, the corresponding loss

weight is divided by 5. This dynamic is applied to both losses

individually. For evaluation, a threshold of 0.5 is used to

make the feasibility output Boolean. A validation set which

includes 100 maps of each mentioned category is generated

and used to evaluate the training performance (Fig. 6). We

train the network for 100 epochs and choose the state with

the best results on the validation set for our experiments.

D. Abstract Representation as Heuristic

We utilize the learned abstract representation as a heuristic

for planning in the detailed representation. For a given goal

state rd,g, a one-to-any 3D Dijkstra search is started from



20 40 60 80 100
0

20

40

60

80

100

Epochs

F
e

a
s
ib

ili
ty

c
o

rr
e

c
t

[%
]

0

0.2

0.4

0.6

0.8

C
o

s
ts

[
-

]

Learned feasibility

Ø Cd

Std. dev.(Cd)

Ø Ca, learned

Ø Error(Ca, learned)

Fig. 6. CNN training performance. The detailed cost function Cd is shown
as a base line. The stated error describes the cost difference between the
detailed and the abstract cost functions.

ra,g = Td 7→ a(rd,g) and explores the whole map in the abstract

representation. During that search, neighbor states ra,ni
for a

state ra,m are generated through abstract actions aa,i such

that ra, ni
+ aa,i = ra, m while respective costs are computed

by the CNN which is fed with the respective height map

patches. Start and goal of each action are exchanged since

this search is running backwards, starting at the planner goal

state. While actions which are assessed as infeasible are

neglected, feasible actions are assigned the corresponding

costs output.

Consequently, each abstract state in the map carries the

estimated costs of the shortest path to rd,g. When planning

in the detailed representation, the planner uses these cost

estimations as an informed heuristic.

Please note that we cannot prove that this heuristic always

underestimates costs, and thus, we cannot prove admissibility

for the generation of optimal paths. We rather focus on the

generation of paths with a satisfying quality in feasible time

and thus, accept sub-optimality to speedup planning.

The CNN is implemented using Python 2.7 and PyTorch

0.4.1. The planner is implemented in C++. Communication

is realized via ROS. Code for the CNN, the training data

generator and the framework to use the CNN as a heuristic

is available online1.

VI. EXPERIMENTS

We evaluate the proposed approach in two experiments

which compare the abstraction quality to the manually

tuned abstraction of our previous work [10] and show

the performance of the proposed heuristic to plan hybrid

driving-stepping locomotion. A video which shows addi-

tional footage of the experiments is available online2.

A. Abstraction Quality

The abstraction quality is evaluated on three data sets:

• random: We generate 200 random maps of each cate-

gory resulting in a set of 1,124 maps with 24,728 tasks.

1https://github.com/AIS-Bonn/planning_

abstraction_net
2https://www.ais.uni-bonn.de/videos/ICRA_2019_

Klamt/

a) b) c)

Fig. 7. Example tasks of the random test set (a), simulated test set (b),
and real test set (c). Red arrows show start states (not fed into the CNN),
green arrows show goal states.

TABLE I

ABSTRACTION QUALITY EVALUATION

random simulated real

Ø Cd 0.476 0.466 0.509
Std. dev.(Cd) 0.222 0.202 0.236

feasibility correct, CNN 95.04% 96.69% 92.62%
Ø Ca,CNN 0.453 0.469 0.446
Ø Error(Ca,CNN) 0.027 0.013 0.081

feasibility correct, man.tuned 79.27% 65.35% 69.77%
Ø Ca,man.tuned 0.435 0.402 0.429
Ø Error(Ca,man.tuned) 0.057 0.021 0.103

• simulated: Height map patches of the desired size are

cut out from height maps of simulated planning scenes.

This set includes 77 maps with 1,694 tasks.

• real: Height map patches of the desired size are cut

out from height maps that were generated from laser

scanner measurements during real world experiments.

This set includes 109 maps with 2,398 tasks.

We compared the performance to the manually tuned ab-

straction approach from our previous work. Finally, costs

for the tasks in the detailed representation Cd are stated as

a base line. We evaluate the feasibility and costs output. A

correct feasibility assessment means that the abstract repre-

sentation outputs the same feasibility value as the detailed

representation. Only if both representations assess a situation

as feasible, costs are considered and give an evaluation of the

costs similarity of the two representations. Figure 7 shows

some example tasks. The abstraction performance of the

proposed CNN is shown in Tab. I.

The results indicate that the CNN feasibility output is sig-

nificantly better compared to the manually tuned abstraction.

While the latter has problems in simulated and real world

robot environments, the CNN assesses a correct feasibility

for > 92.62% of the tasks throughout all test sets.

Regarding the costs assessment, the average costs error

of the CNN is smaller compared to the manually tuned

abstraction on all test sets. The error is particular small when

seen in relation to the large distribution of the base line costs.

While the error of the proposed CNN is < 5.67% of the

absolute costs on the random and simulated test sets, it is

15.9% on the real test set. This might be explained by noisier

sensor measurements which result in noisier height maps.

B. Application to Planning

We designed a 10× 10 m arena in Gazebo simulation

which includes typical locomotion tasks for Centauro in

search and rescue missions (Fig. 8). Environment percep-

tion is realized through a continuously rotating Velodyne

Puck 3D laser scanner with spherical field-of-view at the



a)

b)

I) II)

III)

IV)

V)
VI)

VII)

Fig. 8. Locomotion planning experiment. a) Gazebo arena with Centauro.
b) Height map with start state (blue/red) and goals (arrows): I) Behind a
narrow door, II) next to stairs, III) on top of stairs, IV) behind some clutter,
V) on a platform, VI) inside a labyrinth, and VII) behind the robot. The red
path is the resulting path to VI with the proposed heuristic and W = 1.25.

robot head. Sensor measurements are processed to registered

point clouds and used for localization using the method by

Droeschel et al. [18]. Height maps are generated from these

point clouds. The used system is equipped with an Intel Core

i7-8700K@3.70 GHz, 64 GB RAM and an NVidia GeForce

GTX 1080Ti with 11 GB memory.

For all abstract states, map patches are extracted and

neighbors with costs are precomputed by the CNN. This

takes 239 s, is only required once per map, and can be

incrementally updated if parts of the map change. The one-

to-any Dijkstra search which starts from each goal state and

generates the heuristic takes 0.049 s in average. We use the

weighted-A* planner to plan paths to all goals while using

the learned abstract representation as a heuristic. We compare

the planning performance to a geometric heuristic. This

combines Euclidean distances with rotational differences

and is admissible. Hence, when used with a weight W =
1, results are optimal. Both heuristics are evaluated with

multiple W ≥ 1 to also obtain fast, sub-optimal solutions.

Figure 9 visualizes the planner performance for both

heuristics and different W . Table II summarizes the re-

sulting speedup and cost increase compared to the optimal

solution. The results indicate that the proposed abstraction-

based heuristic accelerates planning by multiple orders of

magnitude while, in particular for W = 1.25, path costs stay

comparable. This significantly outperforms the geometric

heuristic. Especially for challenging tasks such as the stairs

I II III IV V VI VII

10−2

10−1

100

101

102

103

104

P
la

n
n

in
g

ti
m

e
[s

]

Geom. heuristic W = 1 Abstr. rep. heuristic W = 1

Geom. heuristic W = 1.25 Abstr. rep. heuristic W = 1.25

Geom. heuristic W = 2 Abstr. rep. heuristic W = 2

I II III IV V VI VII

0

5

10

15

Goal

P
a

th
c
o

s
ts

[
-

]

Fig. 9. Planning times (including heuristic generation) and path costs
for all goal states. The heuristic which is based on the learned abstract
representation is compared to the geometric heuristic.

TABLE II

HEURISTIC PERFORMANCE

Abstract representation Geometric
W 1.0 1.25 2.0 1.25 2.0

speedup factor 27.80 708.5 10,860 12.00 27.88
costs increase +4.77% +10.5% +33.1% +6.07% +33,9%

(III) and the labyrinth (VI), our heuristic was mandatory to

obtain a solution in feasible time. This can be explained by

the fact that the geometric heuristic has no information about

the environment and thus the planner may expand many

states before considering expensive actions. In contrast, the

proposed abstraction-based heuristic uses its costs assess-

ments to support the planner in its goal-directed behavior

by including knowledge about the environment.

VII. CONCLUSION

In this paper, we propose a 3-dimensional abstract repre-

sentation for a high-dimensional locomotion planning prob-

lem which employs a CNN to learn the cost function. The

CNN maps a local planning task, consisting of a map patch

and goal state, to a costs assessment for this task. We

demonstrate how such an abstract representation can generate

an informed heuristic for search-based high-dimensional

planning. Experiments show that such a heuristic accelerates

planning by multiple orders of magnitude, especially for

challenging tasks. We further show that the learned represen-

tation outperforms a manually tuned abstract representation

from previous work while eliminating tuning efforts.



REFERENCES

[1] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Computer Science Dept., Iowa State University, 1998.

[2] L. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566–580, 1996.

[3] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions

on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107,
1968.

[4] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” The Journal of Machine Learning

Research (JMLR), vol. 17, no. 1, pp. 1334–1373, 2016.
[5] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,

P. Goyal, et al., “End to end learning for self-driving cars,” arXiv

preprint arXiv:1604.07316, 2016.
[6] A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel, “Value

iteration networks,” in Advances in Neural Information Processing

Systems (NIPS), 2016.
[7] P. Karkus, D. Hsu, and W. S. Lee, “QMDP-Net: Deep learning

for planning under partial observability,” in Advances in Neural

Information Processing Systems (NIPS), 2017.
[8] A. Srinivas, A. Jabri, P. Abbeel, S. Levine, and C. Finn, “Universal

planning networks,” arXiv preprint arXiv:1804.00645, 2018.
[9] T. Klamt and S. Behnke, “Anytime hybrid driving-stepping locomo-

tion planning,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2017.
[10] T. Klamt and S. Behnke, “Planning hybrid driving-stepping locomo-

tion on multiple levels of abstraction,” in IEEE/RSJ International

Conference on Robotics and Automation (ICRA), 2018.
[11] J. Li, S. Liu, B. Zhang, and X. Zhao, “RRT-A* motion planning

algorithm for non-holonomic mobile robot,” in IEEE Society of

Instrument and Control Engineers Annual Conference (SICE), 2014.
[12] S. Behnke, “Local multiresolution path planning,” in RoboCup 2003:

Robot Soccer World Cup VII, ser. Lecture Notes in Computer
Science, Springer, vol. 3020, 2003, pp. 332–343.

[13] A. Dornbush, K. Vijayakumar, S. Bardapurkar, F. Islam, M. Ito, and
M. Likhachev, “A single-planner approach to multi-modal humanoid
mobility,” in IEEE International Conference on Robotics and Au-

tomation (ICRA), 2018.
[14] R. C. Holte, M. Perez, R. Zimmer, and A. MacDonald, “Hierarchical

A*: searching abstraction hierarchies efficiently,” in Symposium on

Abstraction, Reformulation, and Approximation, 1995.
[15] A. Faust, O. Ramirez, M. Fiser, K. Oslund, A. Francis, J. Davidson,

and L. Tapia, “PRM-RL: long-range robotic navigation tasks by
combining reinforcement learning and sampling-based planning,”
in IEEE/RSJ International Conference on Robotics and Automation

(ICRA), 2018.
[16] M. Schwarz, T. Rodehutskors, D. Droeschel, M. Beul, M. Schreiber,

N. Araslanov, I. Ivanov, C. Lenz, J. Razlaw, S. Schüller, D. Schwarz,
A. Topalidou-Kyniazopoulou, and S. Behnke, “NimbRo Rescue:
Solving disaster-response tasks with the mobile manipulation robot
Momaro,” Journal of Field Robotics, vol. 34, no. 2, pp. 400–425,
2017.

[17] T. Klamt, D. Rodriguez, M. Schwarz, C. Lenz, D. Pavlichenko,
D. Droeschel, and S. Behnke, “Supervised autonomous locomotion
and manipulation for disaster response with a centaur-like robot,”
in IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2018.
[18] D. Droeschel, M. Schwarz, and S. Behnke, “Continuous mapping and

localization for autonomous navigation in rough terrain using a 3D
laser scanner,” Robotics and Autonomous Systems, vol. 88, pp. 104
–115, 2017.


