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Abstract— Robotic picking from cluttered bins is a demand-
ing task, for which Amazon Robotics holds challenges. The
2017 Amazon Robotics Challenge (ARC) required stowing items
into a storage system, picking specific items, and packing
them into boxes. In this paper, we describe the entry of
team NimbRo Picking. Our deep object perception pipeline
can be quickly and efficiently adapted to new items using
a custom turntable capture system and transfer learning. It
produces high-quality item segments, on which grasp poses are
found. A planning component coordinates manipulation actions
between two robot arms, minimizing execution time. The system
has been demonstrated successfully at ARC, where our team
reached second places in both the picking task and the final
stow-and-pick task. We also evaluate individual components.

I. INTRODUCTION

In order to successfully approach robotic bin picking,

multiple research fields ranging from computer vision to

grasp planning, motion planning, and execution control need

to be tightly coupled. Especially the case of cluttered bin

picking, i.e. the picking of randomly arranged items of

different types, is the focus of active research. In order to

advance the state of the art, Amazon hold annual challenges:

The Amazon Picking Challenges (APC) 2015 and 2016, and

the Amazon Robotics Challenge (ARC) 20171.

On a high level, the ARC required contestants to solve

two common warehouse tasks: The stowing of newly ar-

rived items into a storage system (“stow task”), and the

retrieval and packing of specific items from storage into

boxes (“pick task”). In contrast to the APC 2016, the 2017

ARC allowed participants much more leeway with regards to

system design. In particular, the storage system itself could

be built by the teams. On the other hand, the task was made

more challenging by not providing all items to the teams

well before the competition, instead requiring participants

to learn new items in short time (45 min). This forced the

development of novel object perception approaches.

Our team NimbRo Picking developed a robotic system for

the ARC 2017 (see Fig. 1). Contributions include:

• A method for quickly and efficiently capturing novel

items with minimal human involvement,

• a highly precise deep semantic segmentation pipeline

which can be adapted to new items on-the-fly, and

• a method for online dual-arm coordination planning and

execution control for complex picking or stowing tasks.

∗All authors are with the Autonomous Intelligent Systems group of
University of Bonn, Germany; schwarz@ais.uni-bonn.de

1http://phx.corporate-ir.net/phoenix.zhtml?c=

176060&p=irol-newsArticle&ID=2290376

Fig. 1. Our system at the Amazon Robotics Challenge 2017 in Nagoya,
performing the stow phase of the final task. Image by Amazon Robotics.

II. RELATED WORK

The Amazon Picking Challenge 2016 resulted in the de-

velopment of some very interesting systems for bin picking,

serving as inspiration for our system.

Hernandez et al. [1] won the picking and stowing chal-

lenges. Their system consisted of an industrial arm equipped

with a hybrid suction and pinch gripper. The team also

used, like a number of other teams, a fixed camera setup

for perception of items in the tote—allowing the perception

pipeline to run while the robot is putting an item away. This

motivated us to build a fixed sensor gantry for our system.

Matsumoto et al. [2] placed second in the pick task and

fourth in the stow task. Their system directly trains a neural

network to predict item grasp poses. We initially decided

against such an approach because item grasp annotations

would be expensive to obtain for new items and we were

not sure whether grasp affordances could be effectively

transferred from the known items.

Our own entry for the Amazon Picking Challenge 2016

[3], [4] placed second in the stow competition and third in the

pick competition. It used a single UR10 arm, could only use

suction for manipulation, and required manual annotation of

entire tote or shelf scenes for training the object perception

pipeline.

In recent years, research on semantic segmentation ad-

vanced significantly. Large datasets allow the training of

increasingly complex models (e.g. [5], [6]), but few works
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Fig. 2. CAD model of the entire system.

focus on fast item capture and training, as required for ARC.

Dual-arm manipulation has been investigated for a long

time, mostly inspired by the human physiology. Smith et al.

[7] survey different approaches and introduce the useful dis-

tinction of goal-coordinated manipulation (two arms working

towards a shared goal without direct physical interaction)

and bimanual manipulation (two arms manipulating the same

item). In this scheme, our system falls into the former cate-

gory. Since most works focus on the bimanual manipulation

case [8], [9] or consider sequential manipulation of one

item with two arms [10], our case of online coordination of

independent manipulation in a shared workspace is under-

researched. Other works focus on collision-free multi-robot

manipulation planned offline [11]. This is not sufficient in

our case, since the arm trajectories and timings are not fully

known in advance.

III. MECHATRONIC DESIGN

Our system design was driven by three objectives: task

completion, speed, and simplicity (in this order). It was

important to focus on task completion first, since any time

bonus would only be awarded if the task was complete. We

figured that it would be likely that only few, if any, teams

would complete the entire task—indeed, in the finals no team

completely stowed and picked all required items.

A. Arms and Grippers

Our experience from APC 2016 year told us that suc-

tion is a very powerful tool for bin picking—we could

manipulate all items using suction at APC 2016, but had

to develop special grasp motions for specific items. Since

for ARC 2017 half of the items in the competition were

unknown beforehand, we wanted to be prepared for items

requiring mechanical grasping. To this end, we developed a

hybrid gripper, similar to other top APC 2016 teams.

To address our second design goal, speed, we developed

a dual-arm system. In particular the pick task lends itself to

parallelization—three cardboard boxes have to be filled with

specific items, which can be done mostly independently as

long as multiple target items are visible, i.e. not occluded by

other items.

Our robot system consists of two 6 DoF Universal Robots

UR5 arm. Each arm is equipped with an end effector with

Fig. 3. System setup for both tasks. Storage system bins are depicted in
gray. Left: Configuration with tote (red) for the stow task. Right: Cardboard
boxes (orange) for the pick task.
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Fig. 4. Left: Gantry setup. Right: 3 DoF suction gripper.

a bendable suction finger and a 2-DoF second finger (see

Fig. 4). The high air flow needed for imperfectly sealed suc-

tion grasps is generated by two powerful vacuum cleaners,

one for each arm. The vacuum can be released through an

actuated bleed valve.

B. Storage System

The Amazon-provided red tote contains the items to be

stored. It is easily accessible from the top for perception

and manipulation. Our storage system meets the maximum

allowed volume and area constraints. To match the per-

ception and manipulation situation to the tote, we divided

the available volume into two similarly shaped bins and

made then red as well. Both parts of the storage system are

reachable by both arms (see Fig. 3) and are tilted by approx.

5
◦ towards the center of the robot system to increase the

visibility of items located close to the inner walls of the

bins. The tote (stow task) or one of the cardboard boxes

(pick task) is placed between the two storage system bins.

One remaining cardboard box for the pick task is placed next

to each arm and is only accessible by this arm. An industrial

scale (1 g absolute precision) is mounted under each of the

five possible pick and place locations for detecting contact

and for confirming picks by checking the item weight.

C. Gantry Sensors

For workspace perception, our robot system is equipped

with a 24 MPixel photo camera (Nikon D3400) and a

3.2 MPixel Photoneo PhoXi® 3D-Scanner XL (see Fig. 4).

The 3D scanner offers sub-millimeter absolute accuracy on

well-measurable surfaces2. Both sensors are mounted on

a gantry approx. 2 m above the storage system and tote.

This configuration allows for observing the entire workspace

without moving the sensors. Two LED panels provide diffuse

lighting to reduce the influence of uncontrolled outside light.

2http://photoneo.com/product-detail/phoxi-3d-scanner-xl



Fig. 5. Turntable capture and automatic segmentation. Left: Input image.
Right: Extracted segments in standing and lying configuration.

IV. OBJECT PERCEPTION

A. Item Capture & Modeling

During a competition run, our system has to quickly adapt

to the provided new items. We experimented with using only

the few images provided by Amazon, but obtained signifi-

cantly better results using more images (see Section VI-B).

The key issue is that capturing tote scenes and annotating

them manually as in our 2016 system [3] would be much

too time consuming.

Instead, we capture item views using an automated turn-

table setup (see Fig. 5), as used for many RGB-D object

datasets [12]. The turntable is equipped with a Nikon D3400

camera and LED panels (as on the gantry) and an Intel

RealSense SR300 RGB-D sensor. It captures twenty views

from all sides in 10 s. A typical item can be scanned in three

different resting poses in about a minute (including manual

repositioning), resulting in sixty views.

Before starting the item capture, we also record a frame

without the item. We then use a background subtraction

scheme to automatically obtain a binary item mask. The

masks are visualized and the mask generation parameters

can be quickly tuned using a graphical user interface. The

background color is exchangeable, but we did not need to do

so during the ARC 2017 competition—even objects with red

parts could be reliably extracted from red background after

manual tuning of the extraction thresholds. Note that a red

background creates similar effects on transparent objects as

if they were placed in the red tote or storage system.

B. Semantic Segmentation Architecture

In our previous APC 2016 entry [3], we demonstrated

gains from enhancing semantic segmentation with results

from object detection, which produces less spatial detail in its

bounding box outputs, but has a better notion of “objectness”

and detects entire object instances—which helps to eliminate

spurious segmentation results. For ARC 2017, we decided to

go with a pure semantic segmentation pipeline. This decision

was motivated by i) the small gain obtained by the hybrid

pipeline and ii) the fact that Amazon removed the possibility

of multiple items of the same class being in the same

container, making true instance segmentation unnecessary. In

our experience, having pixel-precise segmentation instead of

just bounding box-based object detection is a big advantage

for scene analysis and grasp planning.

As a basis, we reimplemented the RefineNet architecture

proposed by Lin et al. [5], which gave state-of-the-art results

on the Cityscapes dataset. It uses intermediate features from

Fig. 6. Generated synthetic scenes. All scenes were generated with the
same annotated background frame (left column) for easier comparison. Top
row: RGB. Bottom row: Color-coded generated segmentation ground truth.

a pretrained ResNet-101 network [13], extracted after each

of the four ResNet blocks. Since the features become more

abstract, but also reduce in resolution after each block, the

feature maps are sequentially upsampled and merged with the

next-larger map, until the end result is a both high-resolution

and highly semantic feature map. The classification output is

computed using a linear layer and pixel-wise SoftMax. For

our purposes, we replaced the backbone network with the

similar but newer ResNeXt-101 network [14].

C. Cluttered Scene Synthesis & Fast Training

As mentioned above, a key requirement for our system is

the fast adaption to new items. Since the amount of training

images we can capture is very limited and the item images

are recorded on a turntable without occlusions, we generate

new synthetic scenes for training (see Fig. 6).

This scene generation is done on-the-fly during training,

so that we can immediately start training and add new

turntable captures as they become available. Manually anno-

tated dataset frames are used as background, with five new

items placed randomly on top. The new items are allowed

to occlude each other to simulate complex arrangements.

The scene generation part runs purely on CPU and is mul-

tithreaded to achieve maximum performance. As the scene

generation is faster than CNN training, we can generate a

new scene for every training iteration—ensuring that the

model does not overfit to specific arrangements.

The network training itself is distributed over N GPUs. We

train on N images (one image per card) and then average and

synchronize the weight gradients using the NCCL library3.

Using one scene generation pipeline per GPU card, we

can obtain 100% GPU utilization. During ARC 2017, the

network was trained on four Titan X (Pascal) cards.

While the ResNeXt backbone network is kept fixed during

training, all other RefineNet layers and the final classification

layer are trained with a constant learning rate. Weight updates

are computed using the Adam optimizer [15]. We pretrain the

network on the set of 40 known objects, and then finetune

during the competition for the new objects. After every

3https://github.com/NVIDIA/nccl



a) b) c)

Fig. 7. Object perception example from the picking phase of our finals run at ARC 2017. The original model trained during the run was used. a) RGB
image captured by the Nikon camera. b) Segmentation output. c) Processed item contours with average confidences, polygon center of mass (small points),
and suction spots (large points). Best viewed in color.

epoch, the filesystem is scanned for new turntable captures

and, if required, the classification layers are adapted to a

new number of classes by extending the weight tensors with

random near-zero values.

D. Heuristic Grasp Selection

Since it is infeasible to manually specify grasp positions

for the large number of items, especially for the new items

in each competition run, we built a robust grasp pose heuris-

tic for 2D grasp proposal. The heuristic is tuned towards

suction grasps. To avoid the dangerous item boundaries, the

heuristic starts with the contour predicted by the segmenta-

tion pipeline. As a first guess, it computes the point with

maximum distance dp to the item contour, the so-called

pole of inaccessibility [16]. For fast computation, we use

an approximation algorithm4.

For most lightweight items, the pole of inaccessibility

suffices, which reduces the risk of missed grasps. For heavy

items, it is more important to grasp close to the center of

mass. To this end, we also check the 2D polygon center

of mass and compute its distance dm to the contour. If
dm

dp

> τ , we prefer to grasp at the center of mass. We use a

threshold τ=0.8 for lightweight and τ=0.4 for heavy items

(weight>800 g). See Fig. 7 for examples.

In order to generate a 5D suction pose (rotations around

the suction axis are not considered), depth information is

needed. We upsample and filter the depth map generated

by the PhoXi 3D scanner by projecting it into the camera

frame and running a guided upsampling filter [4], [17]. The

resulting high-resolution depth map is used to estimate local

surface normals. Finally, the 5D suction pose consists of the

3D grasp contact point and the local surface normal.

For pinch grasps, the rotation around the suction axis has

to be determined. Here, we point the second finger towards

the bin center, to avoid collisions. We add Gaussian noise on

translation (σ = 1.5 cm) and rotation (σ = 60
◦), in order to

obtain different grasp poses for each manipulation attempt.

4https://github.com/mapbox/polylabel

Fig. 8. Clutter graph for the scene in Fig. 7. The bottom half is cut off,
leaving only the items on top of the pile. Vertices contain the class name
and detection confidence. Green vertices have no predecessor. Edges are
labelled with the point count (predecessor higher than successor).

E. The Clutter Graph

For high-level planning, it is quite important to estimate

which items are currently graspable and which are occluded

by other items that would need to be removed to get access to

the item of interest. For this reason, we generate a directed

graph that we call clutter graph. All perceived items are

vertices in this graph, with an edge from A to B indicating

that A is occluding B. See Fig. 8 for an example.

The graph is initially generated by examining the item

contours. Along the contour, we check the upsampled depth

map for points on the outer side which are higher than the

corresponding points on the inner side. These points are

counted and an edge is inserted into the graph, directed from

the occluding item to the item under consideration. The point

count (as evidence for the occlusion) is attached to the edge.

After simplifying cycles of length two (edges and back

edges) by reducing them to one edge with the difference in

point counts, the graph may still contain cycles, which would

block certain items from ever being removed. We resolve this

situation by deleting the set of edges with minimum point

count sum (i.e. minimum evidence) that makes the graph

acyclic. This is called the minimum feedback arc set and

is NP-hard [18], but for our small graphs we can quickly

compute a brute-force solution. This method both reliably
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Fig. 9. Pose estimation network architecture.

removes cycles caused by measuring errors and forces an

acyclic solution in cases where the occlusion is actually

cyclic—allowing the system to try and extract an item from

the cycle, since no other action is possible. The result is a

directed acyclic graph containing the occlusion information.

F. Object Pose Estimation

During preparation for the ARC 2017, we anticipated more

difficult items which would be graspable only at very specific

grasp poses. To make this possible, we developed a 6D pose

estimation module, which would allow specifying grasps

relative to an item frame. Our method does not compute

a fused 3D item model, which can be difficult to obtain for

transparent objects. Instead, we train an additional CNN on

predicting the pose from individual views.

The architecture of the pose estimation network is shown

in Fig. 9. It predicts the 3D orientation of the item relative

to the camera frame in the form of an unit quaternion. A

second branch predicts the 2D pixel location of the item co-

ordinate frame origin. The network consists of the RefineNet

backbone as in the semantic segmentation network, followed

by three convolution layers and two fully connected layers.

For M item classes, the network predicts 6M values—one

quaternion and translation offset per item class. In this way,

the predictor is conditioned on the object class, which is

inferred by the segmentation network.

During training, the object segment captured on the turn-

table is placed on top of a randomly cropped storage system

scene. Furthermore, the background is shifted towards red

to emphasize the item currently under consideration (see

Fig. 9). The output of the pose estimation network is pro-

jected to a full 6D pose using the depth map.

V. DUAL-ARM MOTION GENERATION

A. Parametrized Motion Primitives

The UR5 arms and the endeffectors are controlled with

parametrized motion primitives. A motion is defined by

a set of keyframes which specify the kinematic group(s)

manipulated by this motion. Each keyframe either defines

an endeffector pose in Cartesian space or the joint state of

the kinematic group(s). The keyframes are either manually

designed beforehand or generated and adapted to perception

results at runtime. This motion generation has been used on

other robot systems in our group before (see [3] and [19]).

B. Inverse Kinematics

For keyframes defined in Cartesian space, we use a

selectively damped least square (SDLS) solver, as in [3].

Since the arm including the suction finger has seven DoF,

Fig. 10. Cost function planes for the IK solver. The planes affect the wrist
of the robot. The vertical plane keeps the endeffector vertical, as long as the
horizontal planes are not active (purple robot). The horizontal planes keep
the wrist away from the robot base to prevent self-collisions.

Fig. 11. Planning for the pick task. Left: Visualization of manipulation
tasks. Chosen tasks are marked in green and purple. Right: Timeline of
actions including perception time and arm motions.

we can optimize secondary objectives in the null-space of

the Jacobian matrix. In our case, we want to keep the wrist

as high as possible and thus keep the endeffector roughly

vertical in order to reduce the horizontal space needed while

manipulating. Hence, we define a horizontal plane above the

robot and use the squared distance from the wrist to the plane

as cost function. In the stow task, two additional vertical

planes are added (see Fig. 10) to prevent the wrist getting

too close to the manipulator base. For further details, we

refer to [3].

C. High-Level Planning for Picking

The high-level planner for the pick task triggers the

perception pipeline, processes the segmentation results and

assigns manipulation tasks to the arms. The perception

pipeline is started for a particular bin whenever no possible

tasks are left and the bin is not occluded by an arm. Item

detections are sorted according to a per-item fail counter, the

number of items occluding the target item, and the perception

confidence. The two best ranked target items are marked as

possible tasks for this bin. If no target items are detected

or the fail counter for the best items is too large, new tasks

moving non-target item out of the way are generated.

Whenever an arm is free, we assign the best marked task

considering collision avoidance with the other arm. A task

consists of a set of waypoints of endeffector poses starting

with the current arm pose, grasp pose, place pose, home pose

of the arm and some intermediate waypoints (see Fig. 11).

Since we assume the last link of the arm to be always



vertical, we only consider the 2D endeffector pose for

collision checking. Hence, all waypoints are projected into

2D. Next, we compute the shortest Euclidean distance for

each line segment defined by two consecutive waypoints of

one task to all line segments of the other task. If the minimum

of all these distances is larger than a threshold, the tasks can

be executed in parallel. Since the number of possible tasks

is limited, we can test all possible task combinations as long

as an arm is free. If multiple collision-free tasks exist, we

prefer tasks which can only executed by the free arm (i.e.

the place location is in one of the corner boxes). We delete

reached waypoints from current tasks to allow the second

arm to start on new tasks as soon as possible.

D. Placement Planning

Since the space inside the cardboard boxes is limited, our

system finds optimal placement poses inside the boxes. The

placement planner uses bounding box dimensions provided

by Amazon for each item. It considers three disjoint sets of

items per box: Already placed items A, currently possible

task items B, and items which will be picked later C. The

planner finds a brute-force solution in the form of a 3D

stacking of the item bounding boxes, under the constraint

that items from A have a fixed position and items from B

have to be placed before items from C. The bounding boxes

may be rotated by 90
◦ around the vertical axis. The solution

with minimum total stacking height is then used to determine

the target poses for each item from B.

Objects of oblong shape are always placed such that

the height dimension is the smallest dimension. This may

necessitate a rotating motion during placement, since the

items are always grasped roughly from above. If required,

we place an additional constraint on the grasp pose which

ensures that the items are grasped in a way that allows the

later rotation using our single DoF on the suction finger.

E. High-Level Planning for Stowing

In the stow task, the single pick location (the tote) limits

the possibility to parallelize the manipulation work, since

precise weight change measurements require sequential pick-

ing actions in the tote. To enable parallel work, we assign

each bin of the storage system to one arm as its associated

stow location. This at least allows us to place an item with

the first arm while grasping the next item with the second.

Since we have to stow all of the given items, we start

with objects where we are confident that they are lying

on top. Thus, the item detections are first sorted by the

confidence reported by the perception pipeline. Next, the best
3

4
detections are sorted by the total number of items lying

on top (from the clutter graph) and, finally, the best half of

these are considered as possible tasks.

Since manipulation is performed open-loop after percep-

tion, we allow only two manipulation attempts before the

scene is measured again. We try to find a pair of items

containing one of the two best detection results, respecting a

minimum distance between the two items to prevent the first

manipulation attempt affecting the second item. If such a pair

TABLE I

TIMINGS AND SUCCESS RATES FROM ARC 2017

Individual Challenges Final Challenge

# Time [s] Stddev # Time [s] Stddev

S
to

w

Vision 19 11.1 0.0
Stows not comparable 14 29.8 5.4
Fails 12 14.0 6.9

Sum 45 13:17 min
Runtime 45 10:33 min

P
ic

k

Vision 13 12.0 0.9 32 13.1 1.3
Picks 10 38.3 7.6 8 39.1 10.0
Moves 4 34.5 9.0 10 30.3 3.0
Fails 5 20.4 3.2 22 28.9 10.9

Sum 32 12:59 min 72 27:52 min
Runtime 32 8:56 min 72 19:22 min

exists, we assign the items randomly to the arms, otherwise

we stow only the item with higher confidence.

In contrast to the pick task, no collision avoidance at

the high-level planning is needed since each arm has its

dedicated workspace and access to the tote is granted se-

quentially.

F. Grasp Execution

In both tasks (pick and stow) after each perception run,

a predefined per-object probability decides which grasp type

(suction or pinch) should be performed. Our 2016 system

suffered from grasping wrongly identified items during the

stowing task—a failure case which easily leads to incorrect

internal states of the high-level control, cascading the failure

and creating even more problems. Due to this experience,

we wanted to eliminate false positives for ARC 2017 by

double-checking perception and manipulation using a second

modality. To this end, after grasping and lifting an item, the

item weight is measured with the scale mounted below the

container and compared with the expected item weight. If the

weight difference is under 5 g or 10% of the item weight,

we accept the item and place it. Otherwise, we drop it again

and increment the fail counter. This check also protects the

system from accidentally grasping more than one item.

VI. EVALUATION

We evaluated our work on a system level at the Amazon

Robotics Challenge 2017, which was held at RoboCup in

Nagoya, Japan. We augment this evaluation with separate

experiments for the object perception pipeline and the dual-

arm planner.

A. Amazon Robotics Challenge 2017

At the ARC 2017, our team had four chances to demon-

strate the abilities of our system. In our practice slot, we

successfully attempted the pick task and obtained a score of

150 points, the maximum of all practice scores.

Unfortunately, the evening before our official stow run we

experienced a short in the power supply wiring, damaging

our control computer and a few microcontrollers beyond

repair. The necessary replacement and reconfiguration work
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Fig. 12. Segmentation experiments. Left: Training image throughput
depending on the number of GPUs. Right: Test set IoU during training.

TABLE II

ABLATION EXPERIMENTS FOR SCENE SYNTHESIS

Variant full amazon single isolated

Turntable images1 X X X

Rendered objects2 5 5 1 1

Complex background3 X X X

Mean IoU 0.720 0.571 0.642 0.375

1 Otherwise the scene generation only uses Amazon images.
2 Number of rendered objects per synthetic scene. Note that one

object means that this object is never occluded.
3 Whether complex images (full totes / storage systems) or empty

totes are used as background for synthetic scenes.

did not leave us any time for full system tests before our

stow run. Consequently, due to a series of operator mistakes

caused by the new configuration, our system operated with

wrong item weights during the stow task and discarded

nearly all grasped items.

We were able to fix these remaining issues for the pick

task, where our team scored 245 points, which led to a

second place in the pick competition, behind Team Nanyang

with 257 points. The third placed team achieved 160 points.

Our system also performed very well in the final task,

which combined the stow and pick tasks sequentially. In the

stow phase, we were able to stow fourteen out of sixteen

items. The remaining two items could not be picked because

a bug resulted in an unfortunate gripper orientation, which

was prevented from execution by collision checks. In the

picking phase, we picked eight out of ten target items. One

of the target items had not been stowed in the stow phase,

so it was impossible to pick. The other one was a cup made

out of thin and sparse wires, making it both very difficult

to perceive and to grasp. The system succeeded once in

grasping it, but discarded it due to an imprecise weight

measurement. We scored 235 points in the final task, which

placed us second behind the winning Team ACRV with 272

points and in front of Team Nanyang (225 points).

Table I shows a summary of the successes and failures

per task and recorded times for perception and manipulation

actions. Generally, having two arms for manipulation low-

ered the overall runtime and allowed for more manipulation

attempts in a given time. Overall, our system performed very

well and showcased all of its abilities at the ARC 2017.

TABLE III

POSE ESTIMATION ERRORS

Translation [pix] Angular [◦]

train val train val

Salts 2.28 3.32 1.80 3.19
Paper 2.41 3.79 1.68 3.09

Windex 2.25 3.41 1.86 2.78

Average 2.31 3.51 1.78 3.02

B. Semantic Segmentation

After the ARC, we annotated the collected images during

our final run with ground truth segments to be able to quanti-

tatively judge segmentation performance. We then recreated

the segmentation training run from our final.

To investigate the scalability of our training pipeline, we

ran 10 training epochs (with one epoch defined by 140

background images) on a varying number of Nvidia Titan

Xp cards. Figure 12 shows that our pipeline scales nicely to

up to eight GPUs (and possibly more).

Figure 12 also shows a typical test result curve recorded

during training. We measure the intersection over union

(IoU) separately for each class and then average over the

classes present in the test set. One can see that after 5,000

to 10,000 iterations the curve saturates. Using four GPUs, as

during the ARC, this occurs after approx. 15–30 min. Note

that during a real training run, the system starts training with

the images provided by Amazon and turntable captures are

added over a period of 20 min, extending the needed time.

We performed an ablation study to determine the useful-

ness of individual scene synthesis steps (see Table II). Train-

ing on scenes with objects rendered from our own turntable

images strongly outperforms using only the Amazon-

provided object images. This may be due to both insufficient

number of views (up to six in the Amazon data vs. 40–60

in ours) and our red turntable background, yielding realistic

transparency response for objects in the red tote or storage

system. Creating occlusions on the rendered objects is impor-

tant. Finally, training on isolated scenes with only one object

in an empty tote yields poor performance, maybe indicating

that our background images with complex arrangements help

regularizing the segmentation.

C. Pose Estimation

During the ARC 2017, pose estimation was not necessary.

Our grasp heuristic was able to find good suction or pinch

grasps on all of the encountered items. Nevertheless, we

evaluated the pose estimation network by training it on

three different items. Table III shows quantitative results of

these experiments. Our pose estimator is able to predict the

translation of the item origin within a few pixels and the

orientation within a few degrees.

D. Dual-Arm Experiments

We also investigated the speedup of our system achieved

by using a second arm. For both tasks (pick and stow) several

full runs were performed in simulation.
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Fig. 13. Averaged run time with standard deviation (10 runs each) in
simulation for stow and pick task with one (red) and two arms (blue) used.

The perception pipeline was not simulated; instead the

planner was supplied with the item poses after a certain

time—11 s for stow and 13 s for pick, since this was the

average perception time needed in the ARC final. Object

poses were generated by uniformly sampling positions inside

the storage bin and the tote with fixed orientation.

We averaged the time needed for solving the task with

different grasp success probability values over ten runs each.

For the one arm pick task experiments, the unreachable box

was symmetrically placed next to the used arm.

Figure 13 shows the results. If only one arm is used, the

system needs on average 1.2 to 1.3 times longer to complete

the task. The large configuration space of grasp success rate,

item locations, requested order, and order of detection result

in a high standard deviation. Nevertheless, the trend is clearly

observable.

VII. LESSONS LEARNED & CONCLUSION

The ARC 2017 also allowed us to evaluate our fundamen-

tal design choices. Our strong focus on the object perception

pipeline and efficient execution of the tasks, as opposed to

more complicated mechanical solutions, was very successful.

We also learned that even such dynamic tasks requiring fast

adaption to new items are within reach of current mainstream

deep learning approaches, if one can parallelize the training

and makes proper use of pretraining.

In retrospect, we could have reduced the execution time

further by optimizing our storage system layout. The dual-

arm speed-up from factor 1.3 to 1.2 is slightly disappointing

and is mostly limited due to resource conflicts, e.g. both

arms wanting to place in the central box. In our design,

we minimized the arms’ common workspace while ensuring

that storage bins and tote could be reached by both arms.

However, a different placement of boxes or more global

planning could potentially alleviate the conflicts.

As always with robotics competitions, proper full-scale

testing is important, both for the system as well as the opera-

tors. On the operator side, we made mistakes during our stow

slot. On the system side, we noticed precision problems with

our scales quite late in the competition, which might have

cost us the first place in the finals.

Overall, we demonstrated a successful solution for the

ARC 2017. Our object perception pipeline is able to be

quickly adapted to new items, to produce precise item

contours, infer grasp poses, and predict 6D item poses. We

demonstrated how to quickly plan and coordinate two arms

operating in the same workspace. Our very good results at

the ARC 2017 and our quantitative experiments show the

effectiveness of our approach.
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