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Abstract— Modern 3D laser-range scanners have a high data
rate, making online simultaneous localization and mapping
(SLAM) computationally challenging. Recursive state estima-
tion techniques are efficient but commit to a state estimate
immediately after a new scan is made, which may lead to
misalignments of measurements. We present a 3D SLAM
approach that allows for refining alignments during online
mapping. Our method is based on efficient local mapping and
a hierarchical optimization back-end. Measurements of a 3D
laser scanner are aggregated in local multiresolution maps by
means of surfel-based registration. The local maps are used in
a multi-level graph for allocentric mapping and localization. In
order to incorporate corrections when refining the alignment,
the individual 3D scans in the local map are modeled as a
sub-graph and graph optimization is performed to account for
drift and misalignments in the local maps. Furthermore, in
each sub-graph, a continuous-time representation of the sensor
trajectory allows to correct measurements between scan poses.
We evaluate our approach in multiple experiments by showing
qualitative results. Furthermore, we quantify the map quality
by an entropy-based measure.

I. INTRODUCTION

Laser-based mapping and localization has been widely

studied in the robotics community and applied to many

robotic platforms [1], [2], [3], [4]. The variety of approaches

that exists either focus on efficiency, for example when used

for autonomous navigation, or on accuracy when building

high-fidelity maps offline. Often, limited resources—such as

computing power on a micro aerial vehicle—necessitate a

trade-off between the two. A popular approach to tackle this

trade-off is to leverage other sensor modalities to simplify the

problem. For example, visual odometry from cameras and

inertial measurement units (IMU) are used, to estimate the

motion of the laser-range sensor over short time periods. The

motion estimate is used as a prior when aligning consecutive

laser scans, allowing for fast and relatively accurate mapping.

Often inaccuracies remain, for example caused by wrong

data associations in visual odometry. These inaccuracies lead

to misalignments and degeneration in the map and require

costly reprocessing of the sensor data. To this end, graph-

based optimization is popular to minimize accumulated er-

rors [5], [6], [7]. However, depending on the granularity of

the modeled graph, optimization is computationally demand-

ing for large maps.

Another difficulty in laser-based SLAM is the sparseness

and distribution of measurements in laser scans. As a result,

pairwise registration of laser scans quickly accumulates
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Fig. 1: We propose a hierarchical continuous-time SLAM

method, allowing for online map refinement. It generates

highly accurate maps of the environment from laser mea-

surements. Yellow squares: coarse nodes; Blue circles: fine

nodes; Red dots: continuous-time trajectory.

errors. Registering laser scans to a map, built by aggregating

previous measurements, often minimizes accumulated error.

However, errors remain, e.g., due to missing informa-

tion. For example, incrementally mapping the environment

necessitates bootstrapping from sparse sensor data at the

beginning—resulting in relatively poor registration accuracy,

compared to aligning with a dense and accurate map.

In our previous work [8], we showed that local multireso-

lution in combination with a surfel-based registration method

allows for efficient and robust mapping of sparse laser scans.

The key data structure in our previous work is a robot-

centric multiresolution grid map to recursively aggregate

laser measurements from consecutive 3D scans, yielding

local mapping with constant time and memory requirements.

Furthermore, modeling a graph of local multiresolution maps

allows for allocentric mapping of large environments [9].

While being efficient, the approach did not allow reassessing

previously aggregated measurements in case of registration

errors and poor or missing motion estimates from visual

odometry.

In this paper, we extend our previous approach, allowing

for reassessing the registration of previously added 3D scans.

By modeling individual 3D scans of a local map as a sub-

graph, we build a hierarchical graph structure, enabling

refinement of the map in case misaligned measurements
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Fig. 2: Schematic illustration of our mapping system. Laser measurements are preprocessed and assembled to 3D point

clouds. The resulting 3D point cloud is used to estimate the transformation between the current scan and map. Registered

scans are stored in a local multiresolution map. Local multiresolution maps from different view poses are registered against

each other in a SLAM graph. During mapping, parts of the graph are refined and misaligned 3D scans are corrected.

when more information is available. Furthermore, the ap-

proach preserves efficient local and allocentric mapping, as

with our previous method. In summary, the contribution of

our work is a novel combination of a hierarchical graph

structure—allowing for scalability and efficiency—with local

multiresolution maps to overcome alignment problems due

to sparsity in laser measurements, and a continuous-time

trajectory representation.

II. RELATED WORK

Mapping with 3D laser scanners has been investigated

by many groups [1], [2], [3], [4]. While many methods

assume the robot to stand still during 3D scan acquisition,

some approaches also integrate scan lines of a continuously

rotating laser scanner into 3D maps while the robot is mov-

ing [10], [11], [12], [13], [14]. The mentioned approaches

allow creating accurate maps of the environment under

certain conditions, but do not allow an efficient assessment

and refinement of the map.

Measurements from laser scanners are usually subject to

rolling shutter artifacts when the sensor is moving during

acquisition. These artifacts are expressed by a deformation of

the scan and, when treating laser scans as rigid bodies, these

artifacts degrade the map quality and introduce errors when

estimating the sensor pose. A common approach to address

this problem is to model a deformation in the objective

function of the registration approach. Non-rigid registration

of 3D laser scans has been addressed by several groups [15],

[16], [17], [18], [19].

Ruhnke et al. [17] jointly optimize sensor poses and

measurements. They extract surface elements from range

scans, and seek for close-by surfels from different scans.

This data association contributes to the error term of the

optimization problem but also results in a relatively high

state space. Thus, their approach can build highly accurate

3D maps but does not allow for online processing.

Furthermore, rolling shutter effects can be addressed by

modeling the sensor trajectory as a continuous function over

time, instead of a discrete set of poses. Continuous-time

representations show great advantages when multiple sen-

sors with different temporal behavior are calibrated [20] or

fused [21], but also to compensate for rolling shutter effects,

e.g., for data from a RGB-D camera [22]. Continuous-time

trajectory representations have been used for laser-based

mapping in different works [23], [24], [25]. While most

of the continuous-time approaches use a spline to represent

the trajectory, Anderson et al. [19] employ Sparse Gaussian

Process Regression.

Kaul et al. [18], [25] present a continuous-time mapping

approach using non-rigid registration and global optimization

to estimate the sensor trajectory from a spinning laser scanner

and an industrial-grade IMU. The trajectory is modeled as

a continuous function and a spline is used to interpolate

between the sensor poses.

Recently, Hess et al. presented Google’s Cartogra-

pher [26]. By aggregating laser scans in local 2D grid maps

and an efficient branch-and-bound approach for loop closure

optimization. Results of Google’s Cartographer have been

improved by Nüchter et al. [27]. Their method refines the

resulting trajectory by a continuous-time mapping approach,

based on their previous work [28].

Grisetti et al. present a hierarchical graph-based SLAM

approach [29]. Similar to our approach, a hierarchical pose

graph represents the environment on different levels, allow-

ing for simplifying the problem and optimizing parts of it

independently.

Following Grisetti et al. [29], we model our problem as

hierarchical graph, allowing us to optimize simplified parts of

the problem independently. Compared to their approach we

aggregate scans in local sub-maps to overcome sparsity in the

laser scans. Furthermore, we augment the local sub-graphs

with a continuous-time representation of the trajectory, al-

lowing to address the mentioned rolling shutter effects.



Fig. 3: Hierarchical graph representation of the optimization problem at hand: The vertex sets M,S , and L correspond to

the estimation variables, i.e., the poses of the local multiresolution maps (M), the 3D scans (S), and scan lines (L) of the

Velodyne VLP-16. The edge sets EP and ED represent constraints from registration: EP from aligning two local maps to

each other and ED from aligning a 3D scan to a surfel map. From S a continuous-time representation of the trajectory is

estimated by a cubic B-spline, allowing to interpolate the pose for each measurement of the 3D scan (L).

III. SYSTEM OVERVIEW

Our system aggregates measurements from a laser scanner

in a robot-centric local multiresolution grid map—having

a high resolution in the close proximity to the sensor and

a lower resolution with increasing distance [30]. In each

grid cell, individual measurements are stored along with

an occupancy probability and a surface element (surfel). A

surfel summarizes its attributed points by their sample mean

and covariance.

If available, we incorporate information from other sen-

sors, such as an inertial measurement unit (IMU) or wheel

odometry, to account for motion of the sensor during acqui-

sition. Furthermore, these motion estimates are used as prior

for the registration.

To register acquired 3D scans to the so far aggregated map,

we use our surfel-based registration method [30], [31]. The

registered 3D scan is added to the local map, replacing older

measurements. Similar to [32] we use a beam-based inverse

sensor model and ray-casting to update the occupancy of

a cell. For every measurement in the 3D scan, we update

the occupancy information of cells on the ray between the

sensor origin and the endpoint with an approximated 3D

Bresenham algorithm [33]. Since local multiresolution maps

consist of consecutive scans from a fixed period of time, they

allow for efficient local mapping with constant memory and

computation demands.

Local multiresolution maps from different view poses are

aligned with each other by means of surfel-based registration

and build an allocentric pose graph. The registration result

from aligning two local maps constitutes an edge in this pose

graph. Edges are added when the pose graph is extended by

a new local map and between close-by local maps—e.g.,

when the robot revisits a known location. The later allows

for loop closure and minimizes the drift accumulated by the

local mapping.

Local maps that are added to the pose graph are subject

to our refinement method, reassessing the alignment of 3D

scans when more information is available. After realigning

selected 3D scans from a local map, the sensor trajectory

is optimized: first for refined local maps, then for the

complete pose graph. Figure 2 shows an overview of our

mapping system. Since local mapping, allocentric mapping

and refinement are independent from each other, our system

allows for online mapping while refining previously acquired

sensor data when more information is available.

IV. HIERARCHICAL REFINEMENT

We model our mapping approach in a hierarchical graph-

based structure as shown in Figure 3. The coarsest level is

a pose graph, representing the allocentric 6D pose of local

maps M = {m1, . . . ,mM} with nodes. Each local map

aggregates multiple consecutive 3D scans and represents the

robot’s vicinity at a given view pose.

They are connected by edges EP imposing a spa-

tial constraint from registering two local maps with each

other by surfel-based registration. We denote edges E =
((ME ,M

′
E), TE , IE) ∈ EP as spatial constraint between the

local maps ME and M ′
E with the relative pose TE and the

information matrix IE , which is the inverse of the covariance

matrix from registration.

The scan poses of a local map Mj are modeled by vertices

S = {s1, . . . , sS} in a sub-graph Gj . They are connected by

edges ED. Registering a scan SE to a local map ME poses a

spatial constraints E = ((SE ,ME), TE , IE) ∈ ED with the

relative pose TE and the information matrix IE .

The 3D scans of the local maps consist of a number of so-

called scan lines. A scan line is the smallest element in our

optimization scheme. Depending on the sensor setup, a scan

line consists of measurements acquired in a few milliseconds.

For the Velodyne VLP-16 used in the experiments, a scan

line is a single firing sequence (1,33 ms). We assume the

measurements of a scan line to be too sparse for robust

registration. Thus, we interpolate the poses of scan line



acquisitions with a continuous-time trajectory representation

for each sub-graph, as described later.

Optimization of the sub-graphs and the pose graph is

efficiently solved using the g2o framework by [5], yielding

maximum likelihood estimates of the view poses S and

M. On their local time scale, sub-graphs are independent

from each other, allowing to minimize errors independent

from other parts of the graph. Optimization results from

sub-graphs are incorporated in the higher level pose graph,

correcting the view poses of the local maps. Therefore, we

define the last acquired scan node in a local sub-graph

as reference node and update the pose of the map node

according to it.

During operation, we iteratively refine sub-graphs in par-

allel, depending on the available resources. Global opti-

mization of the full graph is only performed when the

local optimization has changed a sub-graph significantly or

a loop closure constraint was added. Similarly, if global

optimization was triggered by loop closure, sub-graphs are

refined when the corresponding map node changed. To

determine if optimization of a sub-graph necessitates global

optimization or vice-versa, we compare the refined pose of

the representative scan node sr in a sub-graph to the view

pose of the corresponding map node. For our experiments,

we choose a threshold of 0.01m in translation and 1◦in

rotation.

A. Local Sub-Graph Refinement

After a local map has been added to the pose graph, the

corresponding sub-graph GM is refined by realigning se-

lected 3D scans with its local map. Realigning only selected

3D scans, instead of all scans in a sub-graph, allows for fast

convergence while resulting in similar map quality, as shown

later in the experiments.

For a sub-graph, we determine a 3D scan sk for refinement

by the spatial constraints and their associated information

matrix, which is the inverse of the covariance matrix Σ of

the registration result. Following [34], we determine a scalar

value for the uncertainty in the scan poses based on the

entropy H(T,Σ) ∝ ln
(∣∣Σ

∣∣). It allows to select the 3D scan

with the largest expected alignment error.

Furthermore, the same measure is used to compare the

spatial constraints that have been added to the local map after

sk, to determine if realigning sk can decrease the alignment

error. The selected 3D scan is then refined, by realigning

it to its local map, resulting in a refined spatial constraint

in the sub-graph. From the sub-graph of spatial constraints,

we infer the probability of the trajectory estimate given all

relative pose observations

p(GM | ED) ∝
∏

edij∈ED

p(sji | si, sj). (1)

We optimize the sensor trajectory for each local sub-graph

independently. Results from sub-graph optimization are later

incorporated when optimizing the allocentric pose graph.

Fig. 4: Scan line poses (green squares) originated from

odometry measures are refined (red squares) by interpolating

with a continuous-time trajectory representation built from

scan poses (blue dots) in a local sub-graph (gray).

B. Local Window Alignment

Registration errors are often originated from missing infor-

mation in the map, e.g., due to occlusions or unknown parts

of the environment. Thus, registration quality can only in-

crease if the map has been extended with measurements that

provide previously unknown information. In other words,

realigning a 3D scans can only increase the map quality if

more scans—in best case from different view poses—have

been added to the map. Therefore, we increase the local

optimization window by adding 3D scans to a local map from

neighboring map nodes in the higher level. For example,

when the robot revisits a known part of the environment,

loop closure is performed and scan nodes from neighboring

map nodes are added to a local map.

C. Continuous-Time Trajectory Representation

Acquiring 3D laser scans often involves mechanical actu-

ation, such as rotating a mirror or a diode/receiver array,

during acquisition of the scan. Especially for 3D laser

scans—where the acquisition of measurements for a full

scan can take multiple hundred milliseconds or seconds—a

discretization of the sensor pose to the time where the scan

was acquired, leads to artifacts degrading the map quality.

However, since a finer discretization of the scan poses makes

the state size intractable, temporal basis functions have been

used to represent the sensor trajectory [35].

We represent the trajectory of the sensor as cubic B-spline

in SE(3) due to their smoothness and the local support

property. The local support property allows to interpolate

the trajectory from the discrete scan nodes in our local

sub-graph. Following [36], we parameterize a trajectory by

cumulative basis functions using the Lie algebra.

To estimate the trajectory spline, we use the scan nodes

s0, . . . , sm with the acquisition times ts0 , . . . , tsm as control

points for the trajectory spline and denote the pose of a scan

node si as Tsi . In our system, scan poses follow a uniform

temporal distribution. In other words, the difference between

the acquisition times of consecutive scans can be assumed

to be constant.

As illustrated in Figure 4, we use 4 control points to

interpolate the sensor trajectory between two scan nodes si



Fig. 5: The resulting 3D map from an out/in-door environment. Color encodes height from the ground.

and si+1. For time t ∈
[
tsi , tsi+1

)
the pose along the spline

is defined as

T (u(t)) = Tsi−1

3∏

j=1

exp
(
B̃j(u(t))Ωi+j

)
. (2)

Here, B̃ is the cumulative basis, Ω is the logarithmic map,

and u(t) ∈ [0, 1) transforms time t in a uniform time [36].

Finally, the spline trajectory is used to update the scan line

poses between two scan nodes.

D. Loop-Closure and Global Optimization

After a new local map has been added to pose graph,

we check for one new constraint between the current ref-

erence mref and other map nodes mcmp. We determine a

probability

pchk(vcmp) = N
(
d(mref,mcmp); 0, σ

2
d

)
(3)

that depends on the linear distance d(mref,mcmp) between

the view poses mref and mcmp. According to pchk(m), we

choose a map node m from the graph and determine a spatial

constraint between the nodes.

When a new spatial constraint has been added, the pose

graph is optimized globally on the highest level. When

the optimization modifies the estimate of a map node, the

changes are propagated to the sub-graph. Similarly, when a

sub-graph changed significantly, global optimization of the

highest level is carried out.

V. EXPERIMENTS

We assess the accuracy of our refinement method on two

different data sets with different sensor setups. The first data

has been recorded with a MAV equipped with a Velodyne

VLP-16 lidar sensor. The second data set has been recorded

in the Deutsches Museum in Munich and is provided by the

Google Cartographer team [26]. Throughout the experiments,

we use a distance threshold of 5 m for adding new map nodes

to the graph.

To measure map quality, we calculate the mean map

entropy (MME) [30] from the points Q = {q1, . . . , qQ}

of the resulting map. The entropy h for a map point qk is

calculated by

h(qk) =
1

2
ln |2πeΣ(qk)|, (4)

where Σ(qk) is the sample covariance of mapped points in

a local radius r around qk. We select r = 0.5m in our

evaluation. The mean map entropy H(Q) is averaged over

all points of the resulting map

H(Q) =
1

Q

Q∑

k=1

h(qk). (5)

It represents the crispness or sharpness of a map. Lower

entropy measures correspond to higher map quality.

To examine the improvement of the map quality and the

convergence behavior of our method, we first run the exper-

iments without online refinement and perform the proposed

refinement as a post-processing step. In each iteration, we

refine one scan in every sub-graph and run local graph opti-

mization. Local sub-graphs are refined in parallel and after

refining all sub-graphs, global optimization is performed. To

assess the number of iterations necessary for refinement,

entropy measurements are plotted against the number of

iterations. Afterwards, we run the proposed method with

online refinement and compare the resulting map quality.

Evaluation was carried out on an Intel R© Core
TM

i7-

6700HQ quadcore CPU running at 2.6GHz and 32GB of

RAM. For the reported runtime, we average over 10 runs for

each data set.

A. Courtyard

The first data set has been recorded by a MAV during

flight in a building courtyard. The MAV in this experiment

is a DJI Matrice 600, equipped with a Velodyne VLP-16 lidar

sensor and an IMU, measuring the attitude of the robot. The

Velodyne lidar measures ≈ 300,000 range measurements per

second in 16 horizontal scan rings, has a vertical field of view

of 30◦ and a maximum range of 100m.
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Fig. 6: The resulting map entropy with and without

continuous-time trajectory interpolation (CT) Section IV-C.

It measures the environment with 16 emitter/detector pairs

mounted on an array at different elevation angles from the

horizontal plane of the sensor. The array is continuously

rotated with up to 1200 rpm. In our experiments, a scan

line corresponds to one data packet received by the sensor,

i.e., 24 so-called firing sequences. During one firing sequence

(1,33 ms) all 16 emitter/detector pairs are processed.

In total, 2000 scans were recorded during 200 s flight

time. Controlled by a human operator, the MAV traversed

a building front in different heights. The resulting graph

consists of 16 map nodes with several loop closures, resulting

in 27 edges between map nodes.

Figure 5 shows the environment and a resulting map. In a

first experiment, we compare the method from our previous

work with the proposed method. The resulting point clouds

are shown in Figure 7. The figure shows, that the proposed

method corrects misaligned 3D scans and increases the map

quality. Figure 6 shows the resulting entropy plotted against

the number of iterations when running the refinement as post-

processing step. During one iteration, a single 3D scan in

each map node is refined. We measure an average runtime

of 54ms per iteration for refining a single map node and

380ms per iteration for refining all 16 map nodes in parallel.

B. Deutsches Museum

For further evaluation, we compare our method on a

data set that has been recorded at the Deutsches Museum

in Munich. The data set is provided by Hess et al. [26].

Two Velodyne VLP-16 mounted on a backpack are carried

through the museum. Parts of the data set contain dynamic

objects, such as moving persons. The provided data set

includes a calibration between the two laser scanners—

one mounted horizontal, one vertical. We use the provided

calibration between the two sensors as initial calibration

guess and refine it by adding additional constraints to our

pose graph and the local sub-graphs. Similar to the alignment

of two local maps, we refine the calibration parameters by

our surfel-based method, registering the scans of the graph

TABLE I: Resulting best mean map entropies (MME) for

the data set recorded at Deutsches Museum.

Method MME

Cartographer [26] -2.04
Droeschel et al. [8] -2.12
Nüchter et al. [27] -2.34
Ours -2.42

from the horizontal scanner to the scans of the graph from

the vertical scanner.

Following [27], we select a part of the data set and run

our method on it. Besides visual inspection of the resulting

point cloud we compute the entropy as described before.

Figure 8 shows the convergence behavior of our method

with and without the covariance-based scan selection. It

indicates that our covariance-based scan selection leads to

faster convergence. Furthermore, we compare the presented

method with the method from our previous work. We also

compare our method to Google’s Cartographer [26] and

the continuous-time slam method from [28] that has been

evaluated in [27]. We summarize our results for each method

in Table I.

VI. CONCLUSIONS

In this paper, we proposed a hierarchical, continuous-time

approach for laser-based 3D SLAM. Our method is based on

efficient local mapping and a hierarchical optimization back-

end. Measurements of a 3D laser scanner are aggregated in

local multiresolution maps, by means of surfel based regis-

tration. The local maps are used in a graph-based structure

for allocentric mapping. The individual 3D scans in the

local map model a sub-graph to incorporate corrections when

refining these sub-graphs. Graph optimization is performed

to account for drift and misalignments in the local maps. Fur-

thermore, a continuous-time trajectory representation allows

to interpolate measurements between discrete scan poses.

Evaluation shows that our approach increases map quality

and leads to sharper maps.
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[17] M. Ruhnke, R. Kümmerle, G. Grisetti, and W. Burgard, “Highly
accurate 3D surface models by sparse surface adjustment,” in Robotics

and Automation (ICRA), IEEE International Conference on. IEEE,
2012, pp. 751–757.

[18] R. Zlot and M. Bosse, “Efficient large-scale three-dimensional mobile
mapping for underground mines,” Journal of Field Robotics, vol. 31,
no. 5, pp. 758–779, 2014.

[19] S. Anderson, T. D. Barfoot, C. H. Tong, and S. Särkkä, “Batch non-
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