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Abstract— Part handling in warehouse automation is chal-
lenging if a large variety of items must be accommodated
and items are stored in unordered piles. To foster research
in this domain, Amazon holds picking challenges. We present
our system which achieved second and third place in the
Amazon Picking Challenge 2016 tasks. The challenge required
participants to pick a list of items from a shelf or to stow
items into the shelf. Using two deep-learning approaches for
object detection and semantic segmentation and one item
model registration method, our system localizes the requested
item. Manipulation occurs using suction on points determined
heuristically or from 6D item model registration. Parametrized
motion primitives are chained to generate motions. We present
a full-system evaluation during the APC 2016 and component-
level evaluations of the perception system on an annotated
dataset.

I. INTRODUCTION

Bin-picking problems arise in a wide range of applications,

from industrial automation to personal service robots. In

the case of warehouse automation, the problem setting has

unique properties: While the surrounding environment is usu-

ally very structured—boxes, pallets and shelves—the sheer

number and diversity of objects that need to be recognized

and manipulated pose daring challenges to overcome.

In July 2016, Amazon held the second Amazon Picking

Challenge (APC)1, which provided a platform for compar-

ing state-of-the-art solutions and new developments in bin

picking and stowing applications. The challenge consisted of

two separate tasks, where contestants were required to pick

twelve specified items out of chaotically arranged shelf boxes

shelf—and to stow twelve items from an unordered pile in

a tote into the shelf. Amazon provided a set of objects from

39 categories, representing a large variety of challenging

properties, including transparency (e.g. water bottle), shiny

surfaces (e.g. metal or shrink wrap), deformable materials

(e.g. textiles), black surfaces (difficult to measure depth),

white textureless surfaces, heavy objects, and non-solid ob-

jects with many holes (not easy to grasp with a suction

cup). Also the shiny metal floors of the shelf boxes posed

a considerable challenge to the perception systems, as all

objects are also visible though their mirrored image. Before

the run, the system was supplied with a task file, which

specified the desired objects and the object location (in terms

of shelf boxes or the tote). After the run, the system was

expected to output the new locations of the items.

Our team developed a robotic system for the APC with

some unique properties, which will be presented in this work.
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Fig. 1. Picking objects from the APC shelf.

Our main contributions include:

1) Development of two deep-learning based object per-

ception methods that employ transfer learning to learn

from few annotated examples (Section V),

2) integration of said deep-learning techniques into a

robotic system,

3) and a parametrized-primitive-based motion generator

which renders motion planning unnecessary (Sec-

tion VI).

II. RELATED WORK

Bin picking is one of the classical problems in robotics

and has been investigated by many research groups in

the last three decades, e.g. [1]–[9]. In these works, often

simplifying conditions are exploited, e.g. known parts of

one type being in the bin, parts with holes that are easy

to grasp by sticking fingers inside, flat parts, parts composed

of geometric primitives, well textured parts, or ferrous parts

that can be grasped with a magnetic gripper.

During the APC 2015, various approaches to a more

general shelf-picking problem have been proposed and eval-

uated. Correll et al. [10] aggregate lessons learned during

the APC 2015 and show a general overview and statistics of

the approaches. For example, 36 % of all teams (seven of the

top ten teams) used suction for manipulating the objects.

Eppner et al. [11] describe their winning system for APC

2015. Mechanically, the robot consists of a mobile base and

a 7-DOF arm to reach all shelf bins comfortably. In contrast,

our system uses a larger arm and can thus operate without
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a mobile base (see Section III). The endeffector of Eppner

et al. [11] is designed as a fixed suction gripper, which

can execute top and side picks; front picks are, however,

not possible. For object perception, a single RGB-D camera

captures the scene. Six hand-crafted features are extracted for

each pixel, including color and geometry-based features. The

features are then used in a histogram backprojection scheme

to estimate the posterior probability for a particular object

class. The target segment is found by searching for the pixel

with the maximum probability. After fitting a 3D bounding

box, top or side grasps are selected heuristically. Similar

to our system, motion generation is based on parametrized

motion primitives and feedback is used to react safely

to collisions with the environment, rather than performing

complex motion planning beforehand. The system could not

manipulate the pencil cup object, which our system can pick

with a specialized motion primitive. The team performed

very well at APC 2015 and reached 148 out of 190 points.

Yu et al. [12] reached second place with Team MIT in

the APC 2015. Their system uses a stationary industrial arm

and a hybrid suction/gripping endeffector. The industrial arm

provides high accuracy and also high speed. Similar to our

approach, an Intel RealSense sensor mounted on the wrist is

used for capturing views of the bin scenes (together with

two base-mounted Kinect2 sensors). A depth-only GPU-

based instance registration approach is used to determine

object poses. Again, motion primitives were chosen in favor

of motion planning. Specialized motion primitives can be

triggered to change the configuration inside the bin when no

picking action can be performed (such as tipping an object

over). Team MIT achieved 88 points in the competition.

In contrast to the APC 2015, the 2016 challenge intro-

duced more difficult objects (e.g. the heavy 3 lb dumbbell),

increased the difficulty in the arrangements, and introduced

the new stowing task.

III. MECHATRONIC DESIGN

Our robot consists of a 6-DOF arm, a 2-DOF endeffector,

a camera module, and a suction system.

To limit system complexity, we chose to use a stationary

manipulator. This means the manipulation workspace has

to cover the entire shelf, which places constraints on the

possible robotic arm solutions. In our case, we chose the

UR10 arm from Universal Robotics, because it covers the

workspace nicely, is cost-effective, lightweight, and offers

safety features such as an automatic (and reversible) stop

upon contact with the environment.

Attached to the arm is a custom-built endeffector (see

Fig. 2). For reaching into the deep and narrow APC shelf

bins, we use a linear actuator capable of 37 cm extension.

On the tip of the linear extension, we mounted a rotary joint

to be able to carry out both front and top grasps. The rotary

joint is actuated by a pulley mechanism, with the servo motor

residing on the other end of the extension (and thus outside

of the shelf during picking). This means that the cross section

that needs to be considered during motion generation is only

3 cm×3 cm.

Linear Joint

Rotary Joint

Dual RGB-D
Camera

Fig. 2. Endeffector with suction finger and dual camera setup.

Fig. 3. Bleed actuator for suction regulation. Left: CAD model. Right:
Final installation.

For grasping the items, we decided to employ a suction

mechanism. This choice was motivated by the large success

of suction methods during the last APC [10], and also due

to the presented set of objects for the APC 2016, most of

which could be manipulated easily using suction. Our suction

system is designed to generate both high vacuum and high

air flow. The former is needed to lift heavy objects, the latter

for objects on which the suction cup cannot make a perfect

vacuum seal.

Air flow is guided from a suction cup on the tip of the

endeffector through the hollow linear extension, and then

through a flexible hose into the robot base. The vacuum

itself is generated by a 3100 W vacuum cleaner meant for

central installation. For binary on/off control, it offers a

12 V control input. Since it overheats quite easily if the air

flow is completely blocked, we added a “bleed” actuator

(see Fig. 3), which can regulate the amount of air sucked

into an additional intake. By closing the intake, we achieve

maximum suction strength, while complete opening reduces

suction to zero. Air flow is measured by a pitot tube inside

the linear extension. This is used to detect whether an object

was successfully grasped or lost during arm motion.

In summary, our kinematic design allows us to apply

suction on all points of the object hemisphere facing the

robot, control suction power quickly and precisely, and

monitor air flow to recognize success or failure.

For control and computations, two computers are con-

nected to the system. The first one, tasked with high- and

low-level control of the robot, is equipped with an Intel

Core i7-4790K CPU (4 GHz). The second one is used for

vision processing, and contains two Intel Xeon E5-2670 v2



(a) RGB frame (b) Upper depth (c) Lower depth (d) Stereo depth (e) Fused result

Fig. 4. RGB-D fusion from two sensors. Note the corruption in the left wall in the lower depth frame, which is corrected in the fused result.
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Fig. 5. Architecture of the object detection pipeline. Adapted from Johnson et al. [13].

(2.5 GHz) and four NVIDIA Titan X GPUs. For training, all

four GPUs can be used to accelerate training time. At test

time, two GPUs are used in parallel for the two deep learning

approaches (see Section V).

IV. RGB-D PREPROCESSING

After testing multiple sensors in the APC setting, we

settled on the Intel RealSense SR300 RGB-D sensor due

to its lightweightness, high resolution, and short-range capa-

bilities. However, we noticed that the depth sensor produced

systematic artifacts on the walls of the shelf. The artifacts

seem to depend on the viewing angle, i.e. they were present

only on the right side of the image. To rectify this situation,

we designed a dual sensor setup, with one of the sensors

rotated 180◦ (see Fig. 2).

Using two separate sensors also makes a second RGB

stream available. To exploit this, we also calculate dense

stereo disparity between the two RGB cameras using LIB-

ELAS [14]. The three depth sources are then projected into

a common frame and fused using a majority voting scheme.

Figure 4 shows an exemplary scene with the fused depth

map. The final map is then filled and regularized using a

guided TGV regularizer [15] implemented in CUDA.

V. PERCEPTION

For perceiving objects in the shelf or tote, we developed

two independent methods. The first one solves the object

detection problem, i.e. outputs bounding boxes and object

classes for each detection. The second one performs semantic

segmentation, which provides a pixel-wise object classifica-

tion.

Since training data and time is limited, it is crucial

not to train from scratch. Instead, both methods leverage

convolutional neural networks (CNNs) pre-trained on large

image classification datasets and merely adapt the network

to work in the domain of the APC.

A. Object Detection

We extend an object detection approach based on the

DenseCap network [13]. DenseCap approaches the prob-

lem of dense captioning, i.e. providing detailed textual

descriptions of interesting regions (bounding boxes) in the

input image. Figure 5 shows the general architecture of the

DenseCap network. A large number of proposals from an

integrated region proposal network are sampled to a fixed

number (1000 in our case) using an objectness score network.

Intermediate CNN feature maps are interpolated to fixed size

for each proposal. The proposals are then classified using a

recognition CNN. The underlying CNN was pretrained on

the ImageNet [16] dataset. Afterwards, the entire pipeline

was trained end-to-end on the Visual Genome dataset [17]. In

order to make use of this pretraining, we use a trained model

distributed by the DenseCap authors and either train a custom

classifier or finetune the entire pipeline (see Sections V-A.1

and V-A.2).

Since the region proposals do not make use of depth,

we augment the network-generated proposals with proposals

from a connected components algorithm running on the

RGB and depth frames (see Fig. 6). Two pixels are deemed

connected if they do not differ more than a threshold in terms

of 3D position, normal angle, saturation and color. Final



Fig. 6. RGB-D based additional region proposals. Left: RGB frame. Center: Regions labeled using the connected components algorithm. Right: Extracted
bounding box proposals.

Fig. 7. Our network architecture for semantic object segmentation.

bounding boxes are extracted from regions which exceed an

area threshold.

While the textual descriptions are not interesting for bin-

picking scenarios, the descriptions are generated from an

intermediate feature vector representation, which is highly

descriptive. To exploit the power of this feature represen-

tation, we use the network without the language model for

feature extraction, and do classification using a linear SVM.

As an alternative, we investigate a soft-max classifier layer,

which allows us to fine-tune the network during training.

1) Linear SVM: In the first case, we remove the language

generation model and replace it with a linear SVM for

classification. We also introduce two primitive features based

on depth: The predicted bounding box is projected into 3D

using the center depth value. The metric area and size are

then concatenated to the CNN features. Since linear SVMs

can be trained very efficiently, the training can happen just-

in-time before actual perception, exploiting the fact that the

set of possible objects in the bin is known. Restricting the

set of classes also has the side-effect that training time and

memory usage are constant with respect to the set of all

objects present in the warehouse.

The SVM is used to classify each predicted bounding

box. To identify a single output, the bounding box with the

maximum SVM response is selected. This ignores duplicate

objects, but since the goal is to retrieve only one object, this

reduction is permissible.

2) Finetuning: For finetuning the network, we use a soft-

max classification layer instead of the SVM. All layers

except the initial CNN layers (see Fig. 5) are optimized. In

contrast to SVM training, the training is performed offline

on all object classes. At test time, all predicted boxes are

classified and the bounding box with the correct class and

highest objectness score is produced as the final output.

B. Semantic Segmentation

Manipulation of real-world objects requires a more precise

localization that goes beyond a bounding box prediction.

Therefore, we also investigated pixel-level segmentation ap-

proaches. To that end, we adapt our previous work [18] to

the scenario at hand. The method employs a 6-layer fully

convolutional neural network (CNN) similar to OverFeat

[19]. The full network architecture is illustrated in Fig. 7.

As a first step, low-level features are extracted from the

captured RGB-D images using a set of filters that was

pretrained on ImageNet [20]. We then finetune the network

to the APC domain by training the last three layers of the

network.

C. Combination

During APC, we used a combination of the SVM ob-

ject detection approach and the semantic segmentation. The

bounding boxes predicted by the object detection were

rendered with a logistic estimate of their probability and

averaged. This process produced a “probability map” that

behaved like a pixel-wise posterior. In the end, we simply

multiplied this probability map with the class probabilities

determined in semantic segmentation. A pixel-wise max-

probability decision then resulted in the final segmentation

mask used in the rest of the pipeline.

After APC, we replaced the hard bounding box rendering

with a soft gaussian, which yielded better results.

D. Item Pose Estimation

For certain objects, manipulation in the constrained space

of the shelf is only possible if the 6D object pose is known.

For example, large objects such as the pack of socks can

only be grasped near the center of mass. Other grasps will

result in tilting the object, making it impossible to remove it

in a controlled manner and without collisions.

To that end, we modeled a dense representation of such

objects using the method and implementation by Prankl et al.

[21], where we capture a 360◦ turntable sequence of point

clouds of the object with the robot’s sensors. We select a

subset of frames that fully captures the object from various

angles. Subsequently, the extrinsic camera parameters are

estimated given the correspondences between frames, which

are finally refined using bundle adjustment. Based on a

manually positioned bounding box, the scene is filtered

to exclude background and false measurements. From the

camera poses and masks of the selected frames, a 3D model

of the object is reconstructed by optimizing correspondences

between frames. Once the object geometry is captured,



Fig. 8. Pose registration. Left column: Turntable capture, resulting model.
Center column: Scene, scene with initializations. Right column: Final
registered model.

Fig. 9. Heuristic grasp selection. Left: Top grasp on an extension cord.
Right: Front grasp on the kleenex tissue box.

we manually attach the desired grasping poses for each

object in turn in order to guarantee a stable grasp. We

experimented with multiple 6D pose estimation methods, and

finally adopted an ICP-based approach, which gave fastest

and most accurate results in our setting.

From the segmentation mask for the particular object, we

can extract object points from the scene point cloud. As we

know that particular models are likely to be positioned in

few orientations (e.g. standing or lying on the ground), we

can define a set of predefined orientations to initialize the

registration. At the moment of performing registration, we

position the model at the center of mass of the filtered point

cloud and perform Generalized ICP [22] on the predefined

set of orientations and choose the 6D pose with the shortest

Euclidean registration distance between scene and model.

Figure 8 shows a tote scene with the tube socks object.

Note that 6D pose registration was only required for three

objects: the duct tape (little supports for suction), the pack of

tube socks (large), and the paper towel roll (large). All other

APC objects can be grasped using generic grasp positions

directly computed from the segmentation mask, which is

described in Section VI-A.

VI. MOTION GENERATION

At first glance, the kinematic constraints imposed on

motions in the shelf appear quite severe: The available

space is very narrow, and objects can be partially occluded,

meaning that the robot has to reach around other objects.

A. Heuristic Grasp Selection

For objects which are not registered (see Section V-D),

we select grasps heuristically. Our system supports two basic

grasps: Top grasp and center grasp.

The top grasp is determined using the 3D bounding box of

the object. We select the point belonging to the segmentation

mask, whose projection onto the ground plane is closest to

the projection of the 3D bounding box center. The grasp

height is chosen as the maximum height of object points in

a cylinder around the chosen position. The grasp position is

then refined to the next object point.

Center grasps are defined as grasps close to the 2D image-

space bounding box center. Again, the closest object point to

the center is chosen, this time in image space. The surface

normal is estimated using the local neighborhood and used

as grasp direction.

Figure 9 shows center and top grasps on exemplary scenes.

B. Inverse Kinematics

In order to simplify the problem, we focused on an

intelligent inverse kinematics solver first. The solver is driven

by two ideas: First, the suction pose itself is invariant to

rotations around the suction axis, and second, the solver

should resolve the inherent redundancy in the kinematic

chain so as to minimize the chance of collisions with the

environment.

As a basis, we use a selectively damped least squares

(SDLS) solver [23]. We augment it with a null-space op-

timization step, which projects the gradient of a secondary

objective f to the null space of the SDLS Jacobian J .

We first define a joint-level null space objective g:

gi(q) = wl max{0, q − (q+i − qδ)}
2

+ wl min{0, q − (q−i + qδ)}
2

+ wc(q − q
(c)
i )2,

(1)

where i is the joint index, q is the joint position, q+i and

q−i are the upper and lower joint limits, qδ is a joint limit

threshold, q
(c)
i is the “convenient” configuration for this joint,

and w is used to form a linear combination of the costs. As

can be seen, this objective prefers a convenient configuration

and avoids joint limits.

More interestingly in this application, we also specify

Cartesian-space costs using a plane-violation model:

h~n,d(~x) = (max{0, (−~n~xT + d)})2, (2)

where ~n and d specify an oriented plane ~n~xT −d = 0, and ~x

is some Cartesian point. This model is used to avoid specified

half-spaces with parts of the robot.

Finally, we obtain the combined costs f :

f(~q, ~xl, ~xw) =
∑

i∈Q

gi(~qi) + h~ns,ds
(~xl)

+ h~nt,dt
(~xl) + h~nb,db

( ~xw),

(3)

where ~q is the vector of joint positions, ~xl and ~xw are

Cartesian positions of the linear extension and the camera

module, and ~ni, di describe three half spaces which are

avoided (see Fig. 10). This half space penalization ensures

that we do not enter the shelf with the cameras, that the linear



Fig. 10. Penalizing planes in IK solver. The red/blue planes penalize
violation by the red/blue spheres, respectively.

Fig. 11. Nullspace-optimizing IK. Left: Front grasp. Right: Side grasp.

extension is horizontal during manipulation in the shelf2, and

that collisions with the robot base are avoided.

One iteration of the solver calculates the update δq as

follows:

J̄ , J̄+ = SDLS(RPRTJ) (4)

N = I − J̄+J̄ (5)

δq = J̄+∆x− αN∇f(~q, ~xl, ~xw), (6)

where R is the target orientation of the endeffector, P is

a projector zeroing the roll component (allowing rotation

around the suction axis), J is the 6× n kinematic Jacobian

matrix, N is the null space projector of J̄ , ∆x is the

remaining 6D pose difference, and α is the step size for

null space optimization.

Using this custom IK solver, it is possible to reach difficult

target poses in the shelf and tote without collisions (see

Fig. 11). Note that we used a null-space optimizing solver

before [24], but limited the cost function to joint-space

posture costs. In contrast, the null-space costs are now used

to avoid collisions in task space.

C. Retract planner

For approaching an object, we can follow the camera ray

to the object to get a collision-free trajectory. Retracting with

the object, however, can be more difficult, especially in the

shelf, since other objects might be in front of our target

object.

2This also uses the penalization of linear extension in Eq. (1).

Fig. 12. Retract planning. Left: RGB image of the scene. Center: Front-
projected collision mask for retrieval of the black pencil cup. The sippy
cup is not fully masked because of missing depth values on the transparent
surface. Right: Distance transform.

As gravity keeps the objects on the floor of the shelf bin,

we can always lift the object as high as possible to increase

the chance of collision-free retraction. For simplicity, we

decided to restrict further retract planning to find an optimal

Y coordinate (with the Y axis pointing sideways).

To do this, we first calculate a 2D “skyline” view of the

potential colliding objects (see Fig. 12). After performing

a distance transform, we can easily identify an ideal Y

coordinate with the maximum distance to colliders.

D. Parametrized Motion Primitives

For actual motion generation we use our keyframe-based

interpolation system [24]. Each keyframe specifies either

joint- or Cartesian space configurations for parts of the robot.

It also specifies joint and/or Cartesian velocity and acceler-

ation constraints which limit the motion to this keyframe.

Keyframes can be edited in a dedicated 3D GUI for pre-

defined motions such as dropping items into the tote, or

adapted live to perception results, such as grasp motions.

Finally, motions are smoothly interpolated in joint space and

executed on the robot.

Since our motion generation—while very robust—makes

several strong assumptions, it is still possible that unwanted

collisions with the shelf or other objects are generated. In

particular, there is no mechanism that detects whether it is

actually possible to retrieve the target object. For example,

it may be necessary to move other occluding objects before

attempting actual retrieval. In our experience, however, the

combination of the inverse kinematics solver and the retract

planner are sufficient to solve most situations. As a final pre-

emptive measure, we configure the UR10 to stop and notify

the control software whenever the exerted force exceeds a

threshold. The software then releases the stop, executes a

retract primitive, and continues with the next object. Failed

objects are retried at the end of the picking sequence.

VII. RESULTS

A. Amazon Picking Challenge 2016

The system proposed in this work attempted both the

picking and stowing task successfully during the APC 2016.

For stowing, our system stowed eleven out of twelve items

into the shelf.3 However, one of the successfully stowed

items was misrecognized, which meant that the system could

not recognize the final item (a toothbrush). Even though a

3Video at https://youtu.be/B6ny9ONfdx4

https://youtu.be/B6ny9ONfdx4


TABLE I

PICKING RUN AT APC 2016

Bin Item Pick Drop Report

A duct tape × × ×

B bunny book X X ×
2

C squeaky eggs X × X

D crayons1 X × X

E coffee X X ×
2

F hooks X × X

G scissors × × ×

H plush bear X × X

I curtain X × X

J tissue box X × X

K sippy cup X × X

L pencil cup X X ×
2

Sum 10 3 7

1 Misrecognized, corrected on second attempt.
2 Incorrect report, resulting in penalty.

fallback mechanism was built in, which would attempt to

recognize all known objects, this method failed due to an

object size threshold. The misrecognition of the item led to

the attainment of the second place in the stow task.

In the picking task, our system picked ten out of twelve

items.4 Despite the high success rate (the winning team

DELFT achieved a success pick-up rate of only nine items),

only a third place was achieved as a consequence of dropping

three items during picking. While this was recognized using

the air velocity sensor, the system incorrectly deduced that

the items were still in the shelf, while they actually dropped

over the ledge and into the tote. Since the system was

required to deliver a report on the final object locations, the

resulting penalties dropped our score from 152 points to 97

points—just behind the first and second place with both 105

points.

On the final day of the competition, the teams had the

chance to showcase their system in an open demonstration.

We chose to retry the picking task in a slightly different

configuration, which allowed us to show our ability to handle

the most difficult objects: The pencil cup, which can only be

suctioned on the bottom side, and the dumbbell, which is

quite heavy (3 lb) for suction-based systems. For the former,

we first push it over on the side. The latter is possible using

our powerful vacuum system.

B. Object Detection

Apart from the system-level evaluation at the APC, we

evaluated our perception approaches on our own annotated

dataset, which was also used for training during APC. The

dataset contains 190 shelf frames, and 117 tote frames. The

frames vary in the number of objects and location in the

shelf. As far as we are aware, this number of frames is

quite low in comparison to other teams, which highlights

the effectiveness of our transfer learning approach. Figure 13

shows an exemplary scene from the dataset with object

detection and segmentation results.

4Video at https://youtu.be/q9YiD80vwDc

Fig. 13. Object perception example. Upper row: Input RGB and depth
frames. Lower row: Object detection and semantic segmentation results
(colors are not correlated).

TABLE II

F1 SCORES FOR OBJECT PERCEPTION

Shelf Tote

Method Uninformed Informed Uninformed Informed

SVM (plain) - 0.654 - 0.623
SVM (tailor) - 0.661 - 0.617
Finetuned CNN 0.361 0.783 0.469 0.775

Segmentation 0.757 0.787 0.789 0.816

Combination 0.787 0.805 0.813 0.829

SVM (plain): trained on all object classes.
SVM (tailor): trained just-in-time for the objects present in the image.
Combination: Finetuned CNN + Segmentation.

For evaluation, we define a five-fold cross validation split

on the shelf dataset. To see the effect of each design choice,

we evaluate each approach in an informed case (the set of

objects in the bin is known) and in an uninformed case.

For object detection, we calculate area-based precision and

recall from the bounding boxes. For segmentation, pixel-

level precision and recall are calculated. Resulting F1 scores

are shown in Table II. As expected, knowledge of the set

of possible objects improves the performance. Finetuning

the network yields a large gain compared to the SVM

approach. As far as the box-level and pixel-level scores can

be compared, the finetuning object detection approach and

the semantic segmentation approach yield similar results.

Finally, the combination of the finetuned object detector
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Fig. 14. F-Score distribution over the objects for object detection. Results
are averaged over the cross validation splits using the finetuned model.

https://youtu.be/q9YiD80vwDc


TABLE III

PERCEPTION RUNTIMES

Phase Object detection Segmentation

RGB-D proposal SVM Finetuned

Train - - 45 min ~5 h

Test 1006 ms 3342 ms1 340 ms ~900 ms

1 Includes just-in-time SVM training

and the semantic segmentation yields a small but consistent

increase in performance.

Figure 14 gives an impression of the distribution of

difficulty across the objects. We also measured the runtime

of the different modules on our setup (see Table III). Note

that the two perception approaches usually run in parallel.

VIII. CONCLUSION

In this work, we described our system for the APC 2016,

explained design choices, and evaluated the system in the

competition and on our own dataset. As always, the results of

single-trial competitions are very noisy. Teams may fail due

to technical problems, misunderstandings, and pure chance.

During training, we had better runs than in the competition.

Still, our result proves that the components work in isolation

and together under competition conditions.

As this was the first time in our group that deep-learning

techniques were actually used in a live robotic system, this

was a valuable learning opportunity for us. Indeed, only

the tight integration of perception and action made success

possible—as already noted by Eppner et al. [11]. Maybe

for this reason, there are few ready-to-use deep-learning

implementations for robotics contexts. We hope to reduce

this problem with our source-code release which is planned

together with the publication of this paper. Finally, we will

also release our APC dataset annotated with object polygons

and class labels.
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