
Focused Online Visual-Motor Coordination
for a Dual-Arm Robot Manipulator

Seongyong Koo and Sven Behnke

Abstract— Coordination between visual sensors and robot
manipulators is necessary for successful manipulation. This
paper proposes a novel visual-motor coordination method that
performs online parameter estimation of an RGB-D camera
mounted in a robot head without any external markers.
Through self-observation of a dual-arm robot manipulator, the
method updates parameters to reduce the discrepancy between
observed point cloud data and 3D mesh models of the current
robot configuration. With the estimated parameters at each
time step, visual data is adjusted to the focused workspace of
the 14 DOF dual-arm robot manipulator. The online and real-
time algorithm was developed by using a GPU-based particle
filtering method. Experimental results show that our method
outperforms state-of-the-art offline registration methods in
terms of accuracy and computation time. We also analyzed the
dependence of the results on prior parameters to demonstrate
the online capability of our method.

I. INTRODUCTION

The ability to control hand movements guided by vision
enables robots to manipulate objects precisely. Visual-motor
coordination (eye-hand coordination), which refers to inte-
grating vision information with the movements of the body
or parts of the body [1], is a prerequisite step to generate vi-
sually accurate, energy and time-efficient robot movements.
However, as shown in the top of Fig. 1, self-observation
and simulation of the robot body are frequently mismatched
due to kinematic errors between robot manipulators and the
vision sensor. With the discrepancy between the expected
and observed bodies, the robot cannot perform accurate
manipulation tasks. In Fig 1, for example, the two vectors
from both end-effectors to the target object estimated from
the uncalibrated scene are inconsistent with the ones from
the calibrated scenes shown at the bottom. This calls for
robot calibration methods that estimate uncertain parameters
of kinematic chains from external sensors [2].

Traditionally, robot calibration is performed once as an
initial step by using marker-based computer vision tech-
niques [3], but this approach has three issues: First, the
marker-based camera calibration results, which are used as a
reference input for the robot calibration, include errors that
cannot be ignored for manipulation. This error propagates to
the robot calibration step, which in turn estimates incorrect
robot kinematic information. Second, in the case of pose
changes of sensors by unwanted physical disturbances, the
calibration step should be conducted again. This frequently
happens to the sensors mounted on the robot while the

The authors are with the Autonomous Intelligent Systems Group,
Computer Science Institute VI, University of Bonn, Germany. Email:
koosy@ais.uni-bonn.de, behnke@cs.uni-bonn.de

Unfocused scene

Focused on the left hand Focused on the right hand

Fig. 1: Example of the focused visual-motor coordination of
3D models of a dual-arm robot manipulator and the measured
point cloud data. From the unfocused visual scene (top),
the method calibrates visual measurements such that the
observed body parts best match the 3D mesh body model,
focused on the given body coordinate. The focus frame can
be changed according to the task, e.g. grasping a cup by the
left hand (bottom left) or by the right hand (bottom right).

robot operates. Third, a small perturbation of the kinematic
model at the calibration phase can cause large position
error in different robot configurations. This restricts robot
manipulability unless the calibration process is performed
in the entire workspace, which is inefficient and sometimes
infeasible for unseen areas.

This paper proposes a novel visual-motor coordination
method that performs online adjustment of visual mea-
surements such that they are fitted to the expected robot
body of interest without any external markers. In order to
overcome the aforementioned difficulties of robot calibration,
it features:

• estimating extrinsic parameters of an RGB-D camera
on the robot head by comparing a 3D mesh model of
the manipulator with measured point cloud data of the
robot body,

• online estimation that is robust to external disturbances
and model uncertainty, and

• continuous parameter updates adaptive to the manipu-
lation area of interest.

II. RELATED WORK

Robot calibration has been considered as a part of the
system development process by trying to find true parameter

behnke
Text-Box
IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, May 2016.

values accurately at the initial step [4]. Marker-based com-
puter vision techniques have been widely used to estimate
not only the 6D pose of a camera, but also its kinematic
relation to the robot coordinates. Asfour et al. [5] proposed
a head-eye calibration method to estimate a stereo camera
pose relative to the joints of a humanoid head by using a
marker and a least-squares optimization approach. Hubert et
al. [6] developed a Bayesian approach to calibrate hand-eye
kinematics of a 7 DOF arm and 2 DOF neck. They introduced
an efficient method that incorporates prior model knowledge
to optimize a multitude of parameters from only a few
observations. More recently, a similar marker-based approach
was applied to calibrate multiple sensors [7] and multiple
kinematic chains [8]. Birbach et al. [7] used specially de-
signed markers on wrists to calibrate a pair of cameras, an
RGB-D camera, and an Inertial Measurement Unit mounted
on a humanoid head, with respect to its kinematic chain.
Maier et at. [8] calibrated a whole-body kinematic model of a
humanoid robot. They used markers attached to the four end-
effectors and a least-square optimization method to estimate
all the parameters.

With the assumption that the initially estimated parameters
possibly contain uncertain values due to the measurement
error and external disturbances, online calibration methods
have been studied to compensate the uncertainty. In many
cases of the online approach, marker-based methods cannot
be applied due to their requirements of special spaces and
procedures for setup. Park et al. [9] proposed a structured
laser module attached to the end-effector, and its accurate
position was detected by a stationary camera. With the
measured position, Extended Kalman Filtering was used to
estimate kinematic parameters of a 7 DOF humanoid manip-
ulator. In order to compensate kinematic parameter errors
of a humanoid robot head, Moutinho et al. [10] proposed
an online estimation process from relative encoders, inertial
sensors, and visual data. This method showed robustness to
noise and abrupt changes in the parameters, and it was further
extended to the stereo camera calibration. Vicente et al.
[11] more recently proposed an online hand-eye calibration
method with GPU acceleration. They utilized a 3D CAD
model of a robot hand and a particle filter approach to
estimate its pose and a set of joint offsets to calibrate the
arm.

While these online methods estimated the true pose of a
robot body part (a head in [10] and a hand in [11]), our
approach introduces a novel concept of virtual coordinate
that moves around a focus frame to coordinate visual scene
around the frame to the best of nearby body parts. The online
estimation of the virtual coordinate is more accurate and
flexible for dual-arm robot manipulators that dynamically
change the manipulator in a wide working space. Moreover,
the markerless approach is not only more precise than
marker-based approaches, but it is also easier to configure
the robot system without an initial complex calibration step.

V-M Coordination

trajectory

Motion Planning

Joint angles

Self body expectation

point-cloud

Self body observation

Camera

Robot

Controller

Comparison

Robot model

Joint velocity

Planner

Visual
Calibration

calibrated
scene

Segmentation Focus frame

Fig. 2: Architecture of the focused online visual-motor
coordination. The coordination is the process of reducing
the discrepancy between two sets of point cloud data from
the self body observation and self body expectation mod-
ules, concentrated on the given focus frame. It produces a
calibrated scene to be used in the motion planning module
at each time step.

III. FOCUSED ONLINE VISUAL-MOTOR COORDINATION

Fig. 2 gives an overview of the proposed visual-motor
coordination framework. Visual measurements come from an
RGB-D camera on the robot head and motor information
is given by measured joint angles and robot descriptions
including kinematic structure and 3D mesh data. The Self
body observation module extracts body-related visual in-
formation which will be compared with expected body
information from the self body expectation module. The
visual data captured from the camera is adjusted to reduce
the discrepancy between the two body representations, and
the calibrated visual information will be used for motion
planning with the robot model. This process is performed
every time any part of the robot body is observed.

A. Self Body Expectation

At each time step t, joint angles of the robot qt yield a
configuration of the robot body posture with a predefined
robot model that consists of kinematic chain parameters and
3D mesh models for each link Rt = {Θt,M}. Here, the
kinematic chain is represented as a tree structure, Θ =
{θji |i < j ≤ n− 1}, where n is the total number of degrees
of freedom (DOF) and i, j are the indices of each joint
starting from the base (0) to the end effector (n − 1). Each
θji = {eji ,x

j
i} refers to the relative pose of the frame j to

the frame i, which is defined by Euler angles e = {r, p, y}
and link parameters x = {x, y, z}. Given joint angles
qt, corresponding Euler angles can be specified, but the
parameters of the robot link X = {xj

i |i < j ≤ n−1} should
be predefined. Fig. 3a shows the n = 14DOF kinematic
chain of the Baxter dual-arm robot.

Another component of the robot model, M consists of a
3D mesh model for each link,M = {Mi}ni=0. Here, we use

(a) The kinematic chain of our
14 DOF dual-arm robot manipulator

(b) An example of the expected body
with 3D CAD models

Fig. 3: Expected body given joint angles, a robot model can
be represented by a kinematic chain (a) and 3D models for
each link (b).

triangle meshes that comprise a set of triangle faces with
a face normal, Mi = {fj ,nj}ni

j=0, where ni is the number
of triangle faces in the mesh model of link i. Each face has
three vertices f = {v0,v1,v2}, where v,n ∈ R3. Given Θt,
all elements Mi can be transformed into the Cartesian space
with each corresponding link coordinate to the robot base,
θio. Let M̂o,t denote the transformed mesh model at time t,
which we refer to as the expected body. Fig. 3b shows an
example of the expected body.

B. Self Body Observation

From an RGB-D camera, point cloud data is obtained
at each time step, Pt = {p1, ...,pn}, each of which
contains the 3-dimensional position and RGB color of points
on the object surface, pi = {x, c}, where x, c ∈ R3.
With the assumption that the camera pose relative to the
robot base frame in the previous time step θco,t−1 has no
considerable errors, the measurement point cloud, Pt can be
transformed into the Cartesian space of the robot base frame,
thus, producing Po, each point of which is transformed to
become pi

o = {T (x, θco,t−1), c}. Here, T (x, θ) indicates a
homogeneous transformation of the point x ∈ R3, given the
6-dimensional parameters θ. Because the parameters θco,t can
be continuously updated in the online estimation process,
which will be explained in the visual calibration step in
the next section, the assumption holds only with a proper
selection of the initial parameters θc0,t0 . Note that to improve
readability in the remainder of this paper, notations without
any specified time variable indicate that the value is at the
current time t.

Self body observation is the process of extracting the part
of the point cloud that most likely contains the robot body
itself at each time t, the so called observed body Zo. This set
can be computed by comparing a distance of each point in
Po to the expected body M̂o, because both are represented
in the robot base frame. Here, we define the point cloud
of the observed body to be a set of points within a certain
distances from the mesh model:

Zo = {pi|d(pi,M̂t) ≤ δ,pi ∈ Po}, (1)

d(pi,M̂o) = min
vj∈M̂o

||pi − vj ||. (2)

(a) Visual focus on the left arm (b) Visual focus on the right arm

Fig. 4: Visual data coordinated to two different focus frames.
Discrepancies between the model and the visual data increase
with the distance from the focus frame.

The distance of a point to the mesh model is calculated by
comparison of vertices, instead of faces, for computational
simplicity.

C. Virtual Coordinate in the Focus Frame

With inperfect models, measurement errors in the joint
angles in Rt, and camera intrinsic parameter estimation
errors, the visual information and robot models cannot be
perfectly matched. As shown in Fig. 4, the visual measure-
ments and the robot model produce a discrepancy, which
has different errors in different parts of the workspace.
Due to intrinsic camera calibration errors, it is frequently
not possible to achieve a perfect alignment everywhere. To
compensate for this, we introduce here the concept of a focus
frame where the errors should be minimized so as to improve
the manipulability near the frame origin. In most cases, the
frame for manipulation is far from the camera frame, which
makes it hard to coordinate the visual measurements close to
the focus frame by calibrating the camera pose. We introduce
a virtual coordinate moving in the focus frame to calibrate the
visual data directly from the frame. Fig. 5 shows an example
of the concept. Using the kinematic chains of four frames,
the visual data will be calibrated according to the estimation
of the virtual frame with the following relations:

Po = T (Pc, θ
c
o), (3)

Pf = T (Po, θ
o
f), (4)

Pv = T (Pf , θ
f
v). (5)

Fig. 5b shows the case of virtual coordinate updates

camera

org

focus

virtual

Pc
θo
c

θo
f

θ f
v

Pv

Po Pf

(a) Visual coordinate

camera

org focus

virtualPc

θo
c

θo
f

θ f
v

Pv

Po

virtualPv
∗

θ f
v

Po

Pc Pf

Pf

∗

∗ ∗

∗

(b) Moving virtual coordinate

Fig. 5: Virtual coordinate on the focus frame.

from θvf to
∗
θvf , relative to the focus frame. After estimating

the updated virtual coordinate, where the captured visual
measurements are now attached, the calibrated visual data
can be obtained based on the base frame and the camera
frame as follows:

∗
Pf = T (Pv,

∗
θvf), (6)

∗
Po = T (

∗
Pf , θ

f
o), (7)

∗
Pc = T (

∗
Po, θ

o
c). (8)

Initially, the virtual frame is located at the same pose as the
focus frame. As the estimation proceeds at each time step, θvf
is updated with the newly observed body points Zv to find

the best match of Zf to the model M̂o, which results in
∗
θvf

and
∗
Pf . Note that while the robot moves, the movement of

the virtual frame would be feasibly small to update since it
is attached to the moving focus frame.

The body model M̂o should also be transformed to the
focus frame to be fairly comparable with the visual measure-
ments. In order to compute the comparison efficiently, we ap-
plied an occupancy grid method to represent the presence of
the surface of the robot body in the 3D space, similar to [12].
This is an efficient method to compare multiple hypotheses
of θvf with the constructed grid model at once, without
expensive correspondence searches for each hypothesis. The
evenly spaced field of the grid, which can be accessed easily
by its ordered index, contains position information by grid
index itself, and surface normal information where the grid
is involved.

Fig. 6 shows an example of the occupancy grid from
triangle mesh faces. First, a 3D grid space is constructed
from the mesh model transformed to the focus frame:

Gf ∈ R3sxsysz . (9)

The size of the space is defined by sx, sy, sz , each of which
is the length of the model divided by the given grid size, λg .
Each entity of the grid, g(x, y, z) ∈ R3, which is initialized
with the zero vector, is filled by a three-dimensional surface
normal vector if it is involved in one of the triangle faces
in the transformed model M̂f = T (M̂o, θ

o
f). First, for

each face fi, a set of indices of grids in the 3D area
X(fi), Y (fi), Z(fi) that completely covers the 3D triangle
face are searched with the position values of the three
vertices in the face. Each grid cell is assigned with the normal
vector of the closest vertex:

g(x, y, z|x ∈ X(fi), y ∈ Y (fi), z ∈ Z(fi)) = n(vcls), (10)

vcls = argmin
vi∈fi

||{x(vi), y(vi), z(vi)}> − {x, y, z}>||.

(11)

D. Particle Filtering for Visual Calibration

With the expected body M̂o as motor-related, and the
observed body Zt as visual-related data, the visual calibration
process estimates the virtual frame θ = {r, p, y, x, y, z} at
each time step so that the coordinate frame of the visual

Fig. 6: Example occupancy grid from triangle mesh faces.

data matches that of the robot. Note that for the remainder
of the paper, we use only θ to denote the virtual frame θvf .
In order to estimate the six-dimensional parameters in real-
time, we used a GPU-based particle-filtering approach with
a likelihood function of p(Gf |θ,Zf) as in [12], [13].

Following a particle filtering framework, a set of weighted
particles St = {θ(n)t , π

(n)
t }Nn=1 represent the posterior prob-

ability density function of the virtual frame parameters,
p(θt|Z1:t,M̂1:t). After the weighted particles have been ob-
tained, the virtual frame pose can be estimated by summing
all particles with their weights:

∗
θt =

N∑
n=1

π
(n)
t θ

(n)
t . (12)

At each time step, the particles {θ(n)t }Nn=1 are generated
by following the Sampling Importance Resampling (SIS)
method [14]. The most important part is to define a proper
weight evaluation function that is proportional to the likeli-
hood of the expected body, given the observed body and the
particle θ

(n)
t ,

π
(n)
t ∝ p(Gf |θ,Zf), (13)

satisfying the normalization condition,
∑N

i=1 π
(n)
t = 1. The

evaluation function means that a hypothesis of the virtual
frame pose that transforms the observed body close to the
expected body scores a high value of probability to generate

the estimated parameter
∗
θt. Thus, the likelihood function

should be defined according to the closeness of Zf and Gf ,
given the camera pose hypothesis θ

(n)
t .

The likelihood of a set of points Zf to the mesh model
Gf can be expressed as the product of a set of likelihoods of
points pi to the corresponding grid gi, which can be found
by the grid index matched to the point pi:

p(Gf |θ(n)t ,Zf) =
∏
i

p(gi|θ(n)t ,pi). (14)

The likelihood evaluation for each point in (14) is defined
as the distance from a point to a grid cell. Here, it can be
simply calculated as an average distance of all vertices in

(a) π(1) = 0.1964 (b) π(2) = 0.0003776 (c) π(3) = 0.00002274

(d) π(4) = 0.0001030 (e) π(5) = 0.1020 (f) π(6) = 0.7010

Fig. 7: Examples of weight evaluations given six virtual coor-
dinate hypotheses. They were generated with a translational
variance of 0.01m and a rotational variance of 5 degrees. The
normalized weight values are proportional to the likelihood
of the transformed scene to the mesh model (Green).

the grid. There are two ways to define the distance:

dpoint−to−point(p,g) =
1

n

∑
vk∈g

||p− vk||2, (15)

dpoint−to−plane(p,g) =
1

n

∑
vk∈g

((p− vk) · n(vk))
2, (16)

where n(v) is the normal vector of a vertex v, which can be
easily obtained by the mesh model. We used both distances
and compared them in the experiments. The likelihood of
each point and the corresponding face is defined as

p(gi|θ(n)t ,pi) = exp−d(T (pi,θ
(n)
t),gi) . (17)

Fig. 7 shows a series of examples of the evaluated weights.
The different camera pose hypotheses are evaluated accord-
ing to the similarity between the mesh and the point cloud
data. Weight values are proportional to the closeness of two
point clouds.

E. Visual Calibration

After the virtual coordinate
∗
θvf is estimated by (12), the

original scene measured from camera Pc is transformed by
(3)-(8), producing the calibrated scene relative to the origin.

∗
Po = T (Pc, θ

f
o ·

∗
θvf · θ

f
v,t−1 · θof,t−1 · θco,t−1), (18)

where T (·, θ1 · θ2) := T (T (·, θ2), θ1).
The online visual-motor coordination algorithm running

at each time step t was implemented with a Graphics
Processing Unit (GPU). Algorithm 1 gives details of the
implementation and consideration points. First, given the
initialized parameters, λ = {δ, λg, (λvarp, λvarr), λp}, and
the focus frame, the visual-motor coordination algorithm
executes each time a new point cloud measurement Pc is

received, and produces the calibrated scenes
∗
Po, and the

updated virtual coordinate
∗
θvf .

Algorithm 1 Online Visual-Motor Coordination

1: Initialization θco,S0, focus
2: procedure VISMOT(θco, θ

v
f,t−1,St−1,Pc,Rt, λ)

3: function BODYEXPECT(Rt)
4: Mi

t ← T (Mi, θ
i
o), ∀i

5: return M̂t = {Mi
t}ni=1

6: function BODYOBSERVE(θc,Pc,M̂t, δ)
7: Po ← T (Pc, θ

c
o)

8: execute (1) and (2)
9: return Zt

10: Zf ← T (Zo, θ
f
v,t−1 · θof) . visual focus

11: Gf ← grid(M̂t, θ
f
v,t−1 · θof , λg) . body focus

12: function VISCALB(Pc,St−1,Zf ,Gf , λ)
13: θ

(n)
t ∼ SIS(St−1, λvarp, λvarr), ∀n

14: π
(n)
t ← weight(θ

(n)
t ,Zf ,Gf) . GPU

15:
∗
θvf from St = {θ(n)t , π

(n)
t }

λp

n=1 in (12)

16:
∗
Po ← transform(Pc) in (18)

17: return
∗
Po,

∗
θvf ,St

IV. EXPERIMENTS AND RESULTS

In order to verify the performance of the proposed cal-
ibration method, the accuracy, robustness, and computation
time were evaluated through a recalibration task with three
different robot configurations. For reproducibility, we make
our software available open-source1.

A. Recalibration Task by Changing Visual Focus to Another
Arm

When a dual-arm robot changes from a manipulation
task with one hand to the next task with another hand,
visual measurements should be recalibrated with focus on
the new target hand, due to the errors from camera and robot
kinematic models. While in related work the recalibration
task was performed with specially designed markers on both
robot wrists [7], our method can be applied to calibrate any
robot arms only using their 3D mesh data, anytime, even if
the wrists are not visible.

To show the validity of the method, the recalibration task
was designed to change the robot’s visual focus from its
well-calibrated left hand to its right hand. Fig. 8 shows the

calibrated visual data,
∗
Po, in three test configurations. As

shown in the results of the recalibration task, the calibration
is sufficiently adjusted to reduce the errors between the 3D
model and the visual measurements. Quantitative results are
analyzed in the following two sections.

B. Performance Analysis

Online calibration requires high performance in terms
of both accuracy and computation time to support real-
time manipulation tasks. Here, we conducted comparative

1The software, which is available from https://github.com/AIS-
Bonn/vismotcoord, was implemented based on C++ using ROS, PCL, and
CUDA libraries.

(a) Cross task (b) Stretch task (c) Upward task

Fig. 8: Three recalibration tasks and calibration results by Onlinep. The three top figures show the initial state of the tasks,
where the visual measurements are well calibrated on the left lower forearm as the focus frame. The three bottom figures
depict calibrated visual data focused on the right lower forearm.

assessments of the proposed method to another markerless
calibration method that works by robust Iterative Closest
Point (ICP) registration [15].

The metric to measure the errors between the calibrated
visual measurements and the motor coordinates is defined as
averaged point-to-point distance between the points in the

calibrated scene pi ∈
∗
Po and the vertices of the focused

expected body vi ∈Mf
o at each time step:

E =
1

N

N∑
k=1

||pk − vk||, (19)

where each (pk,vk) is a k-th pair of the selected N
correspondences by using closest points correspondence
estimation, rejecting pairs with duplicate target matches
(CorrespondenceRejectorOneToOne), implemented
in [15].

We tested our two online methods with or without face
normals (Onlinep, Onlinen), compared with two offline meth-
ods with or without face normals (Offlinep, Offlinen). The
two online methods were implemented as described in Al-
gorithm 1 with parameters (δ = 0.05 m, λg = 0.005 m, λp =
1024, λvarp = 0.005 m, λvarr = 1.8°) which were determined
by the sensitivity analysis described in the next section.
Onlinep takes only the first part of (17) for computational
efficiency, while Onlinen takes the full (17) to test its
robustness. The two offline methods were realized by point-
to-point ICP and point-to-plane ICP [15] with the same
rejection method of the error metric (19).

For fair comparison, all methods used the same termina-
tion criteria, a relative mean square error (MSE) of 0.00052,
and computation time was measured through all pipelines,
from obtaining raw sensor images to finding the converged

TABLE I: Calibration Performance

Metric Method Cross Stretch Upward

Error [m]

Onlinep 0.003915 0.004258 0.002792
Onlinen 0.003892 0.004042 0.002823

Offlinep 0.003195 0.004108 0.003088

Offlinen 0.003090 0.003826 0.003134

Computation
time [s]

Onlinep 2.19972 0.76239 1.35464

Onlinen 2.17244 0.80218 1.14884
Offlinep 6.95031 5.55796 2.08794

Offlinen 8.14364 6.03880 3.84839

calibrated point cloud scene. We used a PrimeSense VGA
(640 × 480) RGB-D camera running at 30 Hz and an Intel
2.5 GHz i7-4710HQ CPU with a NVidia GeForce GTX
960M GPU.

Table I shows the converged point-to-point error and
computation time of the four methods in the three tasks.
The error differences between the online and offline methods
are not significant. However, in terms of computation time,
the two online methods are always faster than the offline
methods. Especially in the stretch case, the online methods
converged in the minimum time while offline methods took
longer than in the upward case. This effect is due to the
size of the point cloud measurements. The speed of the
offline methods is determined by the input size, whereas
the proposed online methods with the help of GPU are able
to process multiple points in parallel. For online methods,
more points actually improve the convergence time, because
additional evidences increase the chance of finding high-
likelihood particles.

0 2 4 6 8 10 12 14 16
time (s)

0.00

0.01

0.02

0.03

0.04

0.05

0.06
E

rr
or

Unfocused left-focused right-focused

Left arm
Right arm
Both arms

Fig. 9: Three calibration errors of two arms in the cross
posture. Two blue-dashed vertical lines indicate the moments
the focus phase changed. The online calibrations with new
focus frames were converged at the time on the red-dashed
vertical lines.

In the offline methods, using face normals reduces errors
but sacrifices computation time. In the online methods,
however, it was hard to find the differences between the two.
Because the grid size λg restricts the maximum distance of
pairs, there is not much difference between point-to-point
and point-to-plane distances between two close points.

C. Calibration Errors of the Focused and Unfocused Frames

Fig. 9 shows how calibration errors of the two arms
fluctuates with changes in the focus frame. Initially, the
camera was globally calibrated (unfocused) with an external
marker. After five seconds, the focus frame was assigned to
the left arm (left-focused) and then to the right arm (right-
focused) for five seconds each. For the three phases, three
calibration errors (two errors with the 3D model of each arm,
and one error with those of both arms) were continuously
measured by (19).

When the online calibration started in the left-focused
phase, the measurement errors of the left arm decreased and
converged to the minimum observed calibration error while
those of the right arm increased. On the other hand, when the
focus frame is changed in the right-focused phase, the two
errors became opposite. Even though the error of both arms,
which is the averaged error sum of two arms, is possible to
increase in the focused phase (left-focused case in Fig. 9), the
visual-motor discrepancy near to the focus frame is always
smaller than any errors in the unfocused phase. This helps to
perform more accurate manipulation with the focused arm.

D. Sensitivity Analysis

The performance of the proposed method is subject to the
priors, λ = {δ, λg, (λvarp, λvarr), λp}. We found that δ was
not critical and used 0.005 m for all other experiments. To
investigate the sensitivity of the performance to the other

0 1 2 3 4 5 6
time (s)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

E
rr

or

λg = 0.002
λg = 0.003
λg = 0.004
λg = 0.005
λg = 0.010

(a) Varying grid size λg . (λvarp=0.005, λvarr=1.8, λp=1024)

0 1 2 3 4 5 6
time (s)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

E
rr

or

0.5%:λvarp=0.0025, λvarr=0.9
1%:λvarp=0.005, λvarr=1.8
2%:λvarp=0.01, λvarr=3.6
3%:λvarp=0.015, λvarr=5.4

(b) Varying resampling variance λvarp, λvarr . (λg = 0.005, λp=1024)

0 1 2 3 4 5 6
time (s)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

E
rr

or

λp = 1024
λp = 512
λp = 256
λp = 128

(c) Varying particle number λp. (λg=0.005, λvarp=0.005, λvarr=1.8)

Fig. 10: Systematic exploration of the three parameters in
the cross task to find optimal performance of convergence
error and computation time.

parameters, the two metrics were measured exhaustively by

all possible sets of the parameters in the cross task. With
the goal of finding empirically optimal parameters, three
experiments were performed to find each optimal parameter.
Here, each pair of (λvarp, λvarr) was determined by a
certain percentage to the maximum permitted variance of
transition and rotation, which were set to 0.5 m and 180°.
Each experiment also takes the optimal value found from
other experiments.

As shown in Fig. 10a, the grid size is an important
factor to control the trade-off between the accuracy and
computation time. If the grid size is relatively big, such as
0.010 m, the error cannot converge to the minimum value
(0.003915 in Table I). The second experiment in Fig. 10b
illustrates the trade-off relation of the variance of particle
samples. Similar to the first experiment, where the variances
are large, the error cannot reach the minimum value. The
third experimental result in Fig. 10c indicates that increasing
the number of particles improves both accuracy and speed
of convergence. These results support our optimal parameter
choice, which is identical for the three tasks, which produced
the minimum error and convergence time in Table I. With
the selected parameters, the online algorithm runs an average
at 5 Hz.

V. CONCLUSION

Camera calibration is necessary to operate robot ma-
nipulators. Instead of struggling with estimation of many
unknown and possibly changing parameters, we proposed
a fast and easy-to-use auto-calibration method by making
use of the 3D robot model. The online and focusing features
of the algorithm are expected to facilitate various dynamic
manipulation tasks without the burden of camera calibration.
It is a matter of future work to apply this capability to a dual-
arm robot manipulator in such a way that it enables dexterous
object manipulation tasks with both hands.

ACKNOWLEDGMENT

This work was supported by the German Research Foun-
dation (DFG) under the grant “ALROMA - Autonomous
active object learning through robot manipulation” in the
priority programme SPP 1527 Autonomous Learning.

REFERENCES

[1] A. Shumway-Cook and M. H. Woollacott, Motor control: translating
research into clinical practice. Lippincott Williams & Wilkins, 2007.

[2] Z. Roth, B. Mooring, and B. Ravani, “An overview of robot calibra-
tion,” IEEE Journal on Robotics and Automation, vol. 5, no. 3, pp.
377–385, 1987.

[3] G.-Q. Wei and S. De Ma, “Implicit and explicit camera calibration:
Theory and experiments,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 16, no. 5, pp. 469–480, 1994.

[4] A. Elatta, L. P. Gen, F. L. Zhi, Y. Daoyuan, and L. Fei, “An overview
of robot calibration,” Information Technology Journal, vol. 3, no. 1,
pp. 74–78, 2004.

[5] T. Asfour, K. Welke, P. Azad, A. Ude, and R. Dillmann, “The
karlsruhe humanoid head,” in 8th IEEE-RAS International Conference
on Humanoid Robots (Humanoids). IEEE, 2008, pp. 447–453.

[6] U. Hubert, J. Stückler, and S. Behnke, “Bayesian calibration of the
hand-eye kinematics of an anthropomorphic robot,” in 12th IEEE-RAS
International Conference on Humanoid Robots (Humanoids). IEEE,
2012, pp. 618–624.

[7] O. Birbach, U. Frese, and B. Bäuml, “Rapid calibration of a multi-
sensorial humanoids upper body: An automatic and self-contained
approach,” The International Journal of Robotics Research, vol. 34,
no. 4-5, pp. 420–436, 2015.

[8] D. Maier, S. Wrobel, and M. Bennewitz, “Whole-body self-calibration
via graph-optimization and automatic configuration selection,” in 2015
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2015, pp. 5662–5668.

[9] I.-W. Park, B.-J. Lee, S.-H. Cho, Y.-D. Hong, and J.-H. Kim, “Laser-
based kinematic calibration of robot manipulator using differential
kinematics,” IEEE/ASME Transactions on Mechatronics, vol. 17, no. 6,
pp. 1059–1067, 2012.

[10] N. Moutinho, M. Brandao, R. Ferreira, J. A. Gaspar, A. Bernardino,
A. Takanishi, and J. Santos-Victor, “Online calibration of a humanoid
robot head from relative encoders, imu readings and visual data.” in
2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). Citeseer, 2012, pp. 2070–2075.

[11] P. Vicente, R. Ferreira, L. Jamone, and A. Bernardino, “Gpu-enabled
particle based optimization for robotic-hand pose estimation and self-
calibration,” in 2015 IEEE International Conference on Autonomous
Robot Systems and Competitions (ICARSC). IEEE, 2015, pp. 3–8.

[12] S. Li, S. Koo, and D. Lee, “Real-time and model-free object track-
ing using particle filter with joint color-spatial descriptor,” in 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2015, pp. 1084–1091.

[13] C. Choi and H. I. Christensen, “Rgb-d object tracking: A particle
filter approach on gpu,” in 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2013, pp. 1084–
1091.

[14] Z. Chen, “Bayesian filtering: From kalman filters to particle filters,
and beyond,” Statistics, vol. 182, no. 1, pp. 1–69, 2003.

[15] D. Holz, A.-E. Ichim, F. Tombari, R. B. Rusu, and S. Behnke, “A
modular framework for aligning 3D point clouds - registration with the
point cloud library,” Robotics & Automation Magazine, IEEE, vol. 22,
no. 4, pp. 110–124, 2015.

