
RGB-D Object Recognition and Pose Estimation based on
Pre-trained Convolutional Neural Network Features

Max Schwarz, Hannes Schulz, and Sven Behnke

Abstract— Object recognition and pose estimation from
RGB-D images are important tasks for manipulation robots
which can be learned from examples. Creating and annotating
datasets for learning is expensive, however. We address this
problem with transfer learning from deep convolutional neural
networks (CNN) that are pre-trained for image categorization
and provide a rich, semantically meaningful feature set. We
incorporate depth information, which the CNN was not trained
with, by rendering objects from a canonical perspective and
colorizing the depth channel according to distance from the
object center. We evaluate our approach on the Washington
RGB-D Objects dataset, where we find that the generated
feature set naturally separates classes and instances well and
retains pose manifolds. We outperform state-of-the-art on a
number of subtasks and show that our approach can yield
superior results when only little training data is available.

I. INTRODUCTION
The recent success of deep convolutional neural networks

(CNN) in computer vision can largely be attributed to
massive amounts of data and immense processing speed
for training these non-linear models. However, the amount
of data available varies considerably depending on the task.
Especially robotics applications typically rely on very little
data, since generating and annotating data is highly specific
to the robot and the task (e.g. grasping) and thus prohibitively
expensive. This paper addresses the problem of small datasets
in robotic vision by reusing features learned by a CNN on
a large-scale task and applying them to different tasks on a
comparably small household object dataset. Works in other
domains [1]–[3] demonstrated that this transfer learning is a
promising alternative to feature design.

Figure 1 gives an overview of our approach. To employ
a CNN, the image data needs to be carefully prepared. Our
algorithm segments objects, removes confounding background
information and adjusts them to the input distribution of the
CNN. Features computed by the CNN are then fed to a
support vector machine (SVM) to determine object class,
instance, and pose. While already on-par with other state-of-
the-art methods, this approach does not make use of depth
information.

Depth sensors are prevalent in todays robotics, but large
datasets for CNN training are not available. Here, we propose
to transform depth data into a representation which is easily
interpretable by a CNN trained on color images. After
detecting the ground plane and segmenting the object, we
render it from a canonical pose and color it according

All authors are with Rheinische Friedrich-Wilhelms-Universität Bonn,
Computer Science Institute VI, Autonomous Intelligent Systems, Friedrich-
Ebert-Allee 144, 53113 Bonn schwarzm@cs.uni-bonn.de,
schulzh@ais.uni-bonn.de, behnke@cs.uni-bonn.de

Color Masked color Pre-trained CNN

Depth Colorized depth Pre-trained CNN

C
N

N
fe

at
ur

es

CategoryInstancePose SVMSVMSVR

Fig. 1: Overview of our approach. Images are pre-processed
by extracting foreground, reprojecting to canonical pose, and
colorizing depth. The two images are processed independently
by a convolutional neural network. CNN features are then
used to successively determine category, instance, and pose.

to distance from the object center. Combined with the
image color features, this method outperforms other recent
approaches on the Washington RGB-D Objects dataset on
a number of subtasks. This dataset requires categorization
of household objects, recognizing category instances, and
estimating their pose.

In short, our contributions are as follows:

1) We introduce a novel pre-processing pipeline for
RGB-D images facilitating CNN use for object cat-
egorization, instance recognition, and pose regression.

2) We analyze features produced by our pipeline and a
pre-trained CNN. We show that they naturally separate
common household object categories, as well as their
instances, and produce low-dimensional pose manifolds.

3) We demonstrate that with discriminative training, our
features improve state-of-the-art on the Washington
RGB-D Objects classification dataset.

4) We show that in contrast to previous work, only few
instances are required to attain good results.

5) Finally, we demonstrate that with our method even
category level pose estimation is possible without
sacrificing accuracy.

After discussing related work, we describe our feature
extraction pipeline and supervised learning setup in Sec-
tions III and IV, respectively. We analyze the features and
their performance in Section V.

behnke
Text-Box
IEEE International Conference on Robotics and Automation (ICRA), Seattle, May 2015.



II. RELATED WORK

Deep convolutional neural networks (CNN) [4]–[6] became
the dominant method in the ImageNet large scale image clas-
sification challenge [7] since the seminal work of Krizhevsky
et al. [8]. Their success can mainly be attributed to large
amounts of available data and fast GPU implementations,
enabling the use of large non-linear models. To solve the
task of distinguishing 1000, sometimes very similar object
categories, these networks compute new representations of
the image with repeated convolutions, spatial max-pooling
[9], and non-linearities [8]. The higher-level representations
are of special interest, as they provide a generic description
of the image in an increasingly semantic feature space [10].
This observation is supported by the impressive performance
of CNN features learned purely on classification tasks applied
to novel tasks in computer vision such as object detection [1],
[2], subcategorization, domain adaptation, scene recognition
[3], attribute detection, and instance retrieval [2]. In many
cases, the results are on par with or surpass the state of the
art on the respective datasets.

While Girshick et al. [1] report improvements when fine-
tuning the CNN features on the new task, this approach
is prone to overfitting in the case of very few training
instances. We instead follow Donahue et al. [3] and only
re-interpret features computed by the CNN. In contrast to the
investigations of Donahue et al. [3] and Razavian et al. [2],
we focus on a dataset in a robotic setting with few labeled
instances.

We use pre-trained CNN in conjunction with preprocessed
depth images, which is not addressed by the works discussed
so far. Very recently, Gupta et al. [11] proposed a similar
technique, where “color” channels are given by horizontal
disparity, height above ground, and angle with vertical. In
contrast to their method, we propose an object-centered
colorization scheme, which is tailored to the classification
and pose estimation task.

Previous work on the investigated RGB-D Objects dataset
begins with the dataset publication by Lai et al. [12], who
use a combination of several hand-crafted features (SIFT,
Texton, color histogram, spin images, 3D bounding boxes)
and compares the performance of several classifiers (linear
SVM, Gaussian kernel SVM, random forests). These baseline
results have been improved significantly in later publications.

Lai et al. [13] propose a very efficient hierarchical
classification method, which optimizes classification and
pose estimation jointly on all hierarchy levels. The method
uses stochastical gradient descent (SGD) for training and is
able to warm-start training when adding new objects to the
hierarchy. While the training method is very interesting and
could possibly be applied to this work, the reported results
stay significantly behind the state of art.

Finally, Bo et al. [14] show a very significant improvement
in classification accuracy and reduction in pose estimation
error. Their method learns hierarchical feature representations
from RGB-D Objects data without supervision using hierar-
chical matching pursuit (HMP). This work shows the promise

(a) Region of interest (b) Mask distance (c) Faded output

Fig. 2: Overview of the RGB preprocessing pipeline, with ROI
from object segmentation, distance transform from the object
mask and faded output used for CNN feature extraction.

of feature learning from raw data and is the current state-
of-the-art approach on the RGB-D Objects dataset. However,
the number of training examples must be suitably large to
allow for robust feature learning—in contrast to our work,
which uses pre-learned features and is thus able to learn
from few examples. Of course, the feature learning process
is not needed in our case which leads to a significant runtime
advantage for our method. Finally, our method generates less
feature dimensions (10,192 vs. 188,300) and thus is also
faster in the classifier training and recall steps.

III. CNN FEATURE EXTRACTION PIPELINE
In order to use a pre-trained CNN for feature extraction, it

is necessary to preprocess the input data into the format that
matches the training set of the neural network. CaffeNet [15],
which we use here, expects square 227×227 RGB images
depicting one dominant object as in the ImageNet Large Scale
Visual Recognition Challenge [7].

A. RGB Image Preprocessing
Since the investigated CNN was trained on RGB images,

not much pre-processing is needed to extract robust features
from color images. Example images from the preprocessing
pipeline can be seen in Fig. 2.

We first crop the image to a square region of interest
(see Fig. 2a). In a live situation, this region of interest is
simply the bounding box of all object points determined by
the tabletop segmentation (Section III-B). During evaluation
on the Washington RGB-D Objects dataset (Section V), we
use the provided object segmentation mask to determine the
bounding box.

The extracted image region is then scaled to fit the CNN
input size, in our case 227×227 pixels. To reduce the CNN’s
response to the background, we apply a fading operation to
the image (Fig. 2c). Each pixel is interpolated between its
RGB color c0 = (r0, g0, b0) and the corresponding ILSVRC
2011 mean image pixel cm = (rm, gm, bm) based on its
pixel distance r to the nearest object pixel:

c := α · c0 + (1− α) · cm , (1)

where

α :=


1 if r = 0,

0 if r > R,

(R− r)β else.
(2)



(a) Depth image (b) Object segmentation

(c) Region of interest (d) Fill-in result

(e) Generated mesh (f) Canonical view (g) Colorized image

Fig. 3: Overview of the depth preprocessing pipeline. (a) input
depth map, (b) extracted segmentation mask after tabletop
segmentation [16], (c) region of interest containing only the
object with unavailable depth pixels shown in red, (d) missing
depth values filled in, (e) mesh extracted from point cloud,
(f) reprojection of mesh to a canonical camera pose, (g) final
image used for CNN feature extraction.

The fade radius R = 30 was manually tuned to exclude as
much background as possible while keeping objects with
non-optimal segmentation intact. The exponent β = 0.75
was later roughly tuned for best cross-validation score in the
category level classification.

B. Depth Image Preprocessing

Feeding depth images to a CNN poses a harder problem.
The investigated CNN was trained on RGB images and is thus
not expected to perform well on raw depth images. To address
this, we render image-like views of the object from the depth
data using a five-step pipeline, which will be detailed below.
Figure 3 illustrates all steps for an example.

In the first step, we perform a basic segmentation to extract
the horizontal surface the object is resting on. Following Holz
et al. [16], we estimate surface normals from the depth image,
discard points from non-horizontal surfaces and register a
planar model using Random Sample Consensus (RANSAC).
The main objective here is to construct a local reference
frame which is fixed in all dimensions, except for rotation

around the vertical axis. To this end, we find points on the
plane and extract object clusters with Euclidean Clustering
(see Fig. 3b).

In a second step, we fill-in holes in the depth map. We
employ a common scheme based on the work of Levin et al.
[17], who investigated the colorization of grayscale images
from few given color pixels. The colorization is guided by
the grayscale image in such a way that regions with similar
intensity are colored the same. We fill-in depth values using
the same technique guided by a grayscale version of the RGB
image. This has the advantage of using the RGB information
for disambiguation between different depth layers, whereas
the standard approach of depth image median filtering cannot
include color information.

In detail, the objective of the fill-in step is to minimize the
squared difference between the depth value D(p) with p =
(u, v) and the weighted average of the depth at neighboring
pixels,

J(D) =
∑
p

D(p)−
∑

s∈N(p)

wpsD(s)

2

, (3)

with

wps = exp
[
−(G(p)−G(s))2/2σ2

p

]
, (4)

where G(p) is the grayscale intensity of p and σp is the
variance of intensity in a window around p defined by N(·).
Minimizing J(D) leads to a sparse linear equation system,
which we solve with the BiCGSTAB solver of the Eigen
linear algebra package. A result of the fill-in operation can
be seen in Fig. 3d.

After the fill-in operation, we filter the depth map using a
shadow filter, where points whose normals are perpendicular
to the view ray get discarded. This operation is only executed
on the boundaries of the object to keep the object depth map
continuous.

To increase invariance of the generated images against
camera pitch angle changes, we normalize the viewing angle
by an optional reprojection step. The goal is to create a view
of the object from a canonical camera pitch angle. To enable
reprojection, we first create a mesh using straight-forward
triangulation from the filled depth map (Fig. 3e). We then
render the mesh from the canonical perspective to create
a new depth image. Our naı̈ve meshing approach creates
a linear interpolation for previously hidden surfaces of the
object (see Fig. 3f). We believe this to be a plausible guess of
the unknown geometry without making further assumptions
about the object, such as symmetries.

The final preprocessing step is to calculate a color C for
each depth image pixel p = (u, v) with the 3D reprojection
p∗ = (x, y, z). We first estimate a 3D object center q from
the bounding box of the object point cloud. The points are
then colored according to their distance r from a line g
through q in the direction of the plane normal n from tabletop
segmentation (Fig. 4):

C(p) = P (distg(p∗)). (5)



n

Fig. 4: Coordinate system used for colorization. The detected
plane normal n through the object center is depicted as a
green bar, while an exemplary distance to a colorized point
is shown as a red bar.

We chose a fixed RGB interpolation from green over red and
blue to yellow as palette function P . Since the coloring is not
normalized, this allows the network to discriminate between
scaled versions of the same shape. If scale-invariant shape
recognition is desired, the coloring can easily be normalized.

Note that depth likely carries less information than color
and could be processed at a coarser resolution. We keep
resolution constant, however, since the input size of the
learned CNN cannot be changed.

C. Image Feature Extraction

We investigated the winning CNN from ImageNet Large-
Scale Visual Recognition Challenge (ILSVRC) 2011 by
Krizhevsky et al. [8]. The open-source Caffe framework [15]
provides a pre-trained version of this network.

We extract features from the previous-to-last and the last
fully connected layer in the network (named fc7 and fc8
in Caffe). This gives us 4 096 + 1 000 = 5 096 features per
RGB and depth image each, resulting in 10 192 features per
RGB-D frame.

Reprojection and coloring are only used for instance-level
classification and pose regression, since object categoriza-
tion cannot benefit from a canonical perspective given the
evaluation regime of the Washington RGB-D dataset.

Figure 5 shows responses of the first convolutional layer
to RGB and depth stimuli. The same filters show different
behavior in RGB and depth channels. As intended by our
preprocessing, the activation images exhibit little activity in
faded-out background regions.

IV. LEARNING METHOD

A. Object Classification

For classification, we use linear Support Vector Machines
(SVMs). We follow a hierarchical approach as in Lai et al.
[13]: In a first level, a linear multiclass SVM predicts the
object category. The next level contains SVMs predicting the
instance in each particular category.

B. Object Pose Estimation

The RGB-D object dataset makes the assumption that
object orientation is defined by a single angle α around
the normal vector of the planar surface. This angle is
consistently annotated for instances of each object category.
However, annotations are not guaranteed to be consistent
across categories.

Instead of regressing α directly, we construct a hierarchy for
pose estimation to avoid the discontinuity at α = 0◦ = 360◦,
which is hard for a regressor to match. We first predict
a rough angle interval for α using a linear SVM. In our
experiments, four angle intervals of 90◦ gave best results. For
each interval, we then train one RBF-kernel support vector
regressor to predict α. During training, we include samples
from the neighboring angle intervals to increase robustness
against misclassifications on the interval level.

This two-step regressor is trained for each instance. We
further train the regressor for each category to provide pose
estimation without instance identification, which is supported
by the dataset but is not reported by other works, albeit being
required in any real-world household robotics application.

V. EVALUATION

A. Evaluation Protocol

We evaluate our approach on the Washington RGB-D
Objects dataset [12]. It contains 300 objects organized in
51 categories. For each object, there are three turntable
sequences captured from different camera elevation angles
(30◦, 45◦, 60◦). The sequences were captured with an ASUS
Xtion Pro Live camera with 640×480 resolution in both RGB
and depth channels. The dataset also contains approximate
ground truth labels for the turntable rotation angle.

Furthermore, the dataset provides an object segmentation
based on depth and color. We use this segmentation mask
in our pre-processing pipeline. However, since our RGB pre-
processing needs background pixels for smooth background
fading (Section III-A), we could not use the provided
pre-masked evaluation dataset but instead had to use the
corresponding frames from the full dataset. Since our method
fades out most of the background, only features close to
the object remain. This includes the turntable surface, which
is not interesting for classification or pose regression and
the turntable markers, which do not simplify the regression
problem since the objects are placed randomly on the turntable
in each view pose. Thus, we believe that our results are still
comparable to other results on the same dataset.

For evaluation, we follow the protocol established by Lai
et al. [12] and Bo et al. [14]. We use every fifth frame for
training and evaluation. For category recognition, we report
the cross-validation accuracy for ten predefined folds over
the objects, i.e. in each fold the test instances are completely
unknown to the system.

For instance recognition and pose estimation, we employ
the Leave-Sequence-Out scheme of Bo et al. [14], where
the system is trained on the 30◦ and 60◦ sequences, while
evaluation is on the 45◦ sequence of every instance.



Fig. 5: CNN activations for sample RGB-D frames. The first column shows the CNN input image (color and depth of a
pitcher and a banana), all other columns show corresponding selected responses from the first convolutional layer. Note that
each column is the result of the same filter applied to color and pre-processed depth.

classes (CNN) classes (PHOW)

instant noodles (CNN) instant noodles (PHOW)

Fig. 6: Visualization of our CNN-based features. Top row
shows t-SNE embedding of 1/10 of the Washington RGB-D
Objects dataset using CNN and PHOW features, colored by
class. CNN separates classes better than PHOW. Bottom row
shows a separate t-SNE embedding of the instant noodles
class (45◦ sequence), colored and connected by pose. The
CNN separates instances and creates pose manifolds.

B. Results

In addition to the work of Bo et al. [14], we compare our
proposed method to a baseline of dense SIFT features (PHOW,
[18]), which are extracted at multiple scales, quantized using
k-means and histogrammed in a 2×2 and a 4×4 grid over
the image. We used vlfeat1 with standard settings, which are
optimized for the Caltech 101 dataset. We then apply SVM
training for classification and pose estimation as described
in Section IV.

Without any supervised learning, we can embed the features
produced by the CNN and PHOW in R2 using a t-SNE

1http://www.vlfeat.org

TABLE I: Comparison of category and instance level classifi-
cation accuracies on the Washington RGB-D Objects dataset.

Category Accuracy (%) Instance Accuracy (%)

Method RGB RGB-D RGB RGB-D

Lai et al. [12] 74.3± 3.3 81.9± 2.8 59.3 73.9
Bo et al. [14] 82.4± 3.1 87.5± 2.9 92.1 92.8
PHOW[18] 80.2± 1.8 — 62.8 —
Ours 83.1± 2.0 89.4± 1.3 92.0 94.1

embedding [19]. The result is shown in Fig. 6. While the
upper row shows that CNN object classes are well-separated
in the input space, the lower row demonstrates that object
instances of a single class also become well-separated. Similar
poses of the same object remain close in the feature-space,
expressing a low-dimensional manifold. These are highly
desirable properties for an unsupervised feature mapping
which facilitate learning with very few instances. In contrast,
PHOW features only exhibit these properties to a very limited
extent: Classes and instances are less well-separated, although
pose similarities are largely retained.

Table I summarizes our recognition results and compares
them with other works. We improve on the state-of-the-
art in category and instance recognition accuracy for RGB
and RGB-D data. The exception is RGB-based instance
recognition, where the HMP approach by Bo et al. [14]
wins by 0.1%.

Analyzing the confusion matrix (Fig. 7), the category level
classification exhibits few systematic errors. Some object
categories prove to be very difficult, since they contain
instances with widely varying shape but only few examples
(e.g. mushroom), or instances which are very similar in color
and shape to instances of other classes (e.g. pitcher and
coffe mug). Telling apart the peaches from similarly rounded
but brightly colored sponges would likely profit from more
examples and detailed texture analysis.

Classification performance degrades gracefully when the
dataset size is reduced, which is shown in Fig. 8. We
reduce the dataset for category and instance recognition by
uniform stratified sampling on category and instance level,
respectively. With only 30% of the training set available,
category classification accuracy decreases by 0.65 percentage



12

3

0 25 50
0

25

50

Prediction

C
at

eg
or

y

0

0.2

0.4

0.6

0.8

Fig. 7: Top: Confusion matrix for category recognition,
normalized by number of samples for each ground truth
label. Selected outliers: 1) pitcher recognized as coffee mug,
2) peach as sponge, 3) keyboard as food bag. Bottom: Sample
images for pitcher, coffe mug, peach, and sponge.

CNN: RGB-D CNN: RGB
Bo et al. [14] (RGB-D) PHOW (RGB)

0.7

0.8

0.9

C
at

eg
or

y
ac

c.

0.85

0.9

0.95

In
st

an
ce

ac
c.

0 0.2 0.4 0.6 0.8 1

20

40

60

Relative training set size

Po
se

er
ro

r
(◦

) CNN: RGB-D (Instance)
CNN: RGB-D (Category)

Fig. 8: Learning curves for classification accuracy (top and
center) and median pose estimation error (bottom). We
report cross validation accuracy for category recognition and
accuracy on the 45◦ sequence for instance recognition.

0

50

100

150
Category level

Category

Po
se

er
ro

r
(m

ed
ia

n)

lemon
lime

tomato

Instance level

Category

Fig. 9: Distribution of median pose error over categories. Left
plot shows median pose error over categories, right plot over
instances. Median over all categories is shown in red. Some
objects of type lemon, lime, and tomato exhibit high rotation
symmetry and do not support pose estimation.

TABLE III: Runtimes of various algorithm steps per input
frame in seconds. We measured runtime on an Intel Core
i7-4800MQ @ 2.7 GHz and a standard mobile graphics
card (NVidia GeForce GT 730M) for CUDA computations.
Timings include all preprocessing steps.

Step Our work Bo et al. [14]

Feature extraction (RGB) 0.013 0.294
Feature extraction (depth) 0.173 0.859
Total 0.186 1.153

points only (PHOW: 2.2%), while instance classification
decreases by roughly 2% (PHOW: 25.2% from 62.6%, not
shown). This supports our observation that the CNN feature
space already separates the categories of the RGB-D objects
in a semantically meaningful way.

We also performed an categorization experiment with the
Leave-Sequence-Out evaluation protocol. When training on
the two camera pitch angles of 30◦ and 60◦ and testing the
same objects for the pitch angle of 45◦, our method achieves
near perfect category recognition accuracy (99.6%).

We also improve the state-of-the-art in pose estimation by a
small margin. Table II reports the pose estimation error of the
instance-level estimation and the category-level estimation.
Notably, our average pose error is significantly lower than
the pose error of the other methods. We were not able to
produce reasonable accuracies for pose based on the PHOW
features, since the large instance classification error strongly
affects all pose estimation metrics.

Surprisingly, our category-level pose regression achieves
even lower median pose error, surpassing the state-of-the-art
result of Bo et al. [14]. The category-level estimation is less
precise only in the MedPose(I) and AvePose(I) categories,
where its broader knowledge is not as useful as precise fitting
to the specific instance. Figure 9 shows the distribution of
pose errors over categories. We note that the dataset contains
objects in at least three categories which exhibit rotation
symmetries and do not support estimating pose. This effect is
mitigated by category level pose estimation, which shows that
pose estimation can greatly benefit from the generalization
across instances provided by category-level training.



TABLE II: Median and average pose estimation error on Washington RGB-D Objects dataset. Wrong classifications are
penalized with 180◦ error. (C) and (I) describe subsets with correct category/instance classification, respectively.

Angular Error (◦)

Work MedPose MedPose(C) MedPose(I) AvePose AvePose(C) AvePose(I)

Lai et al. [13] 62.6 51.5 30.2 83.7 77.7 57.1
Bo et al. [14] 20.0 18.7 18.0 53.6 47.5 44.8
Ours – instance level pose regression 20.4 20.4 18.7 51.0 50.4 42.8
Ours – category level pose regression 19.2 19.1 18.9 45.0 44.5 43.7

The MedPose error is the median pose error, with 180◦ penalty if the class or instance of the object was not recognized. MedPose(C) is the median pose
error of only the cases where the class was correctly identified, again with 180◦ penalty if the instance is predicted wrongly. Finally, MedPose(I) only
counts the samples where class and instance were identified correctly. AvePose, AvePose(C) and AvePose(I) describe the average pose error in each case
respectively.

TABLE IV: Color palettes for depth colorization with
corresponding instance recognition accuracy.

Accuracy (%)

Palette Depth Only RGB-D

Gray 41.8 93.1

Green 38.8 93.3

Green-red-blue-yellow 45.5 94.1

The color palette choice for our depth colorization is a cru-
cial parameter. We compare the four-color palette introduced
in Section III to two simpler colorization schemes (black
and green with brightness gradients) shown in Table IV and
compared them by instance recognition accuracy. Especially
when considering purely depth-based prediction, the four-
color palette wins by a large margin. We conclude that more
colors result in more discriminative depth features.

Since computing power is usually very constrained in
robotic applications, we benchmarked runtime for feature
extraction and prediction on a lightweight mobile computer
with an Intel Core i7-4800MQ CPU @ 2.7 GHz and a
common mobile graphics card (NVidia GeForce GT 730M)
for CUDA computations. As can be seen in Table III, the
runtime of our approach is dominated by the depth pre-
processing pipeline, which is not yet optimized for speed.
Still, our runtimes are low enough to allow frame rates of
up to 5 Hz in a future real-time application.

VI. CONCLUSION

We presented an approach which allows object categoriza-
tion, instance recognition and pose estimation of objects on
planar surfaces. Instead of handcrafting or learning features,
we relied on a convolutional neural network (CNN) which was
trained on a large image categorization dataset. We made use
of depth features by rendering objects from canonical views
and proposed a CNN-compatible coloring scheme which
codes metric distance from the object center. We evaluated
our approach on the challenging Washington RGB-D Objects
dataset and find that in feature space, categories and instances
are well separated. Supervised learning on the CNN features
improves state-of-the-art in classification as well as average
pose accuracy. Our performance degrades gracefully when
the dataset size is reduced.

REFERENCES
[1] R. Girshick, J. Donahue, T. Darrell, and J. Malik. (2013). Rich feature

hierarchies for accurate object detection and semantic segmentation.
arXiv: 1311.2524.

[2] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN
features off-the-shelf: an astounding baseline for recognition,” CVPR
DeepVision Workshop, 2014.

[3] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and
T. Darrell, “Decaf: a deep convolutional activation feature for generic
visual recognition,” in Proceedings of International Conference on
Machine Learning (ICML), 2014, pp. 647–655.

[4] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[5] M. Riesenhuber and T. Poggio, “Hierarchical models of object recog-
nition in cortex,” Nature neuroscience, vol. 2, no. 11, pp. 1019–1025,
1999.

[6] S. Behnke, Hierarchical neural networks for image interpretation,
ser. Lecture Notes in Computer Science (LNCS). Springer, 2003,
vol. 2766.

[7] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. (2014).
ImageNet large scale visual recognition challenge. arXiv: 1409.
0575.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems (NIPS), 2012, pp. 1097–1105.

[9] D. Scherer, A. Müller, and S. Behnke, “Evaluation of pooling
operations in convolutional architectures for object recognition,” in
Artificial Neural Networks (ICANN), Springer, 2010, pp. 92–101.

[10] M. D. Zeiler and R. Fergus, “Visualizing and understanding con-
volutional networks,” in European Conference on Computer Vision
(ECCV), 2014, pp. 818–833.

[11] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik, “Learning rich
features from RGB-D images for object detection and segmentation,”
in Europ. Conf. on Computer Vision (ECCV), 2014, pp. 345–360.

[12] K. Lai, L. Bo, X. Ren, and D. Fox, “A large-scale hierarchical multi-
view RGB-D object dataset,” in International Conference on Robotics
and Automation (ICRA), 2011, pp. 1817–1824.

[13] K. Lai, L. Bo, X. Ren, and D. Fox, “A scalable tree-based approach
for joint object and pose recognition.,” in Proceedings of Conference
on Artificial Intelligence (AAAI), 2011.

[14] L. Bo, X. Ren, and D. Fox, “Unsupervised feature learning for RGB-
D based object recognition,” in International Symp. Experimental
Robotics, 2013, pp. 387–402.

[15] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S.
Guadarrama, and T. Darrell. (2014). Caffe: convolutional architecture
for fast feature embedding. arXiv: 1408.5093.

[16] D. Holz, S. Holzer, R. B. Rusu, and S. Behnke, “Real-time plane
segmentation using RGB-D cameras,” in RoboCup 2011: Robot
Soccer World Cup XV, 2012, pp. 306–317.

[17] A. Levin, D. Lischinski, and Y. Weiss, “Colorization using optimiza-
tion,” in Transactions on Graphics (TOG), vol. 23, 2004, pp. 689–694.

[18] A. Bosch, A. Zisserman, and X. Munoz, “Image classification using
random forests and ferns,” in Int. Conf. on Computer Vision, 2007.

[19] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
Journal of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.


