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Efficient Deformable Registration of Multi-Resolution Surfel Maps for
Object Manipulation Skill Transfer

Jorg Stiickler and Sven Behnke

Abstract— Endowing mobile manipulation robots with skills
to use objects and tools often involves the programming or
training on specific object instances. To apply this knowledge to
novel instances from the same class of objects, a robot requires
generalization capabilities for control as well as perception. In
this paper, we propose an efficient approach to deformable
registration of RGB-D images that enables robots to transfer
skills between object instances. Our method provides a dense
deformation field between the current image and an object
model which allows for estimating local rigid transformations
on the object’s surface. Since we define grasp and motion
strategies as poses and trajectories with respect to the object
models, these strategies can be transferred to novel instances
through local transformations derived from the deformation
field. In experiments, we demonstrate the accuracy and run-
time efficiency of our registration method. We also report on
the use of our skill transfer approach in a public demonstration.

I. INTRODUCTION

Devising manipulation control and perception capabilities
for robots that generalize well to novel objects and tools is
a challenging task. In this paper, we mainly focus on the
perception part. Objects with the same function frequently
share a common topology of functional parts such as handles
and tool-tips. In this case, shape correspondences can be
interpreted to also establish correspondences between the
functional parts. In many object manipulation scenarios,
controllers can be specified for specific object instances
through grasp poses and 6-DoF trajectories relative to the
functional parts. One can pose the problem of skill transfer
as establishing correspondences between the object shapes,
i.e., between the functional parts. Grasps and motions are
then transferrable to novel object instances according to the
shape deformation.

We propose an efficient deformable registration method
that provides a dense displacement field between object
shapes observed in RGB-D images. From the displacements,
local transformations can be estimated between points on
the object surfaces. We apply these local transformations to
transfer grasps and motion trajectories between the objects.

Our registration approach is based on the coherent point
drift (CPD) [1] algorithm. We extend it through efficient
coarse-to-fine registration of RGB-D measurements. Instead
of processing the raw pixels of the images, we represent the
images in multi-resolution surfel maps (MRSMaps) [2], a
compact 3D multi-resolution representation that stores the
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Fig. 1. We estimate local transformations between objects using deformable
registration. This allows to transfer grasp poses and motion trajectories
defined on local reference frames (e.g., handles or tool-tips) on model
objects to novel object instances.

joint shape and color statistics contained in the image within
an octree. In experiments, we demonstrate the accuracy and
run-time efficiency of our registration method, being superior
to plain processing of RGB-D images. We also report on the
public demonstration of our approach as a key component
for object manipulation skill transfer.

II. RELATED WORK

Many approaches to deformable registration represent
scene and model surface by meshes or point clouds and
estimate the local deformation of vertices or points. For
example, Allen et al. [3] learn a shape-space of human
bodies through deformable registration. They adapt the it-
erative closest points (ICP) algorithm to perform deformable
registration between measured meshes of persons. Instead
of estimating a single global rigid transformation, they de-
termine a local rigid transformation at each vertex through
energy minimization. The data terms of the energy capture
the squared distance of vertices towards the closest coun-
terparts in the other mesh after the transformation has been
applied. To enforce smoothness of local transformations of
neighboring vertices in the mesh, the difference between
the local transforms is minimized concurrently. Amberg et
al. [4] take a similar approach to align arbitrary meshes.
They, however, allow for local affine transformations at the
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vertices. In addition to local transforms at each vertex, Li et
al. [5] include a global rigid transformation that acts on the
complete mesh. Their energy formulation facilitates rigidness
of the local affine transformations. The approach of Willimon
et al. [6] enforces alignment of boundaries to register RGB-D
images of clothing.

The above methods establish only a single correspondence
for each point or vertex. It has been observed that both the
basin of convergence and the accuracy can be improved by
allowing each surface element to be softly assigned with
multiple elements of the other surface. Anguelov et al. [7]
model the correspondence of vertices between scene and
model in a Markov random field (MRF) and infer the maxi-
mum likelihood (ML) correspondences through loopy belief
propagation. The unary potentials measure the similarity in
spin image descriptors [8], while pairwise potentials prefer
to keep discrete nearness and farness relations. Myronenko
and Song [1] and Jain and Vemuri [9] model the point clouds
in Gaussian mixture models (GMMs). The CPD method [1]
estimates probabilistic assignments of points and optimizes
for the displacement field between source and model. Spatial
smoothness of the solution is obtained through regularizing
higher-order derivatives in the displacement field using a
Gaussian kernel. Jain and Vemuri [9] impose GMMs on
both point sets and minimize the Ly-norm between the
mixture densities. Sagawa et al. [10] extend the non-rigid
ICP method in [3] with soft assignments. Very recently, [11]
also proposed an approach based on non-rigid registration
in which motion trajectories are transfered between shape
variants of objects. They use thin-plate splines to regularize
the displacement field.

In the context of stereo and depth image processing, scene
flow methods also recover displacement fields. For instance,
the approach by Herbst et al. [12] computes 3D flow in RGB-
D image pixels in a regularized variational framework. It
requires about 8 to 30 seconds on a CPU for processing a
320240 image.

Most of the presented methods focus on best accuracy but
often neglect run-time efficiency. In this work, we develop
an efficient deformable registration method based on CPD
that aligns RGB-D images efficiently while being sufficiently
accurate for robotic applications. To gain efficiency, we
transform the RGB-D images into MRSMaps and match
surfels from coarse to fine resolutions. Our approach seam-
lessly integrates color and contour cues with shape alignment
to guide the soft assignments between the images and to
improve accuracy. If a model is given a-priori, significant
computational load can be transferred to pre-processing that
only needs to be done once for the model. Our method then
aligns images at a rate of 1 to 5Hz on a CPU.

IIT. COHERENT POINT DRIFT

The CPD method [1] performs deformable registration
between two point clouds: We denote X = (x1,...,x N)T as
the scene and Y = (y1, ... ,yM)T as the model point cloud
with D-dimensional points z;,y; € RP. We assume that the
surface underlying the model point cloud has been deformed

towards the scene surface according to the displacement field
v : RP — RP such that points y; in the model cloud
transform to a point y; + v(y,) on the scene surface. The
aim of the CPD method is to recover this displacement field.

A. Mixture Model for Observations

CPD explains the scene point cloud X as a set of samples
from a mixture model on the deformed model cloud Y,
M+1
Z p(cz}j) p(!Ej | Ci,jvvao)v (1)

j=1
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where ¢; ; is a shorthand for the I-of-(M + 1) encoding
binary variable ¢; € B+ with j-th entry set to 1. Naturally,
c¢; indicates the association of z; to exactly one of the
mixture components. The model is a Gaussian mixture on
the M deformed model points and an additional uniform
component,
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where o is a standard deviation which is shared across
all Gaussian mixture components. The uniform component
generates each sample in X with equal probability p(z; |
ciM+1) = 7. lts prior probability w := p(c;p41) is a
parameter that is chosen according to the noise inherent to
the data. If we further assume equal prior likelihood for
the association to each Gaussian mixture component, we
obtain p(c; ;) = (1 — w)4; for all j € {1,...,M}. By
modeling the scene points as samples from a mixture model
on the model cloud, the CPD method does not make a
hard association decision between the point sets, but a scene
point is associated to every model point. The probability
p(ci,j | i,v,0) quantifies the likelihood of the assignment
of z; to the model point y;.

B. Registration through Expectation-Maximization

The displacement field v is estimated through maximiza-
tion of the logarithm of the joint data-likelihood
MA+1

Zlnz cLJ
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Inp(X |v,0) p(x; | cij,v,0). (3)
While a direct optimization of this objective function is
not feasible, it lends itself to the EM method [13]. The
component associations ¢ = {c1,...,cy} are treated as the
latent variables to yield the EM objective
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by exploiting ¢(c) = Hfil Hj\/p{l q(ci ;). In the M-step,
the latest estimate g for the distribution over component
associations is held fixed to optimize for the displacement
field v and standard deviation o

{v,6} = argmax L(g,v,0) ®)

v,0



with
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The E-step obtains a new optimum ¢ for the distribution
q by the conditional likelihood of the cluster associations
given the latest displacement field estimate ¥ and standard
deviation &
N p(eiy) p(@i| ciy,0,0)
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For the Gaussian mixture components this corresponds to
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with v := (2mo?)P/2 A

C. Regularized Deformation Field

It is a well known fact that estimating a function with
many degrees of freedom from a set of samples purely
from the data-likelihood easily is an ill-posed problem [14].
Myronenko and Song [1] augment the joint data-likelihood
in Eq. (3)

A2
lnp(X,v|o)=lnp(X |o,v) — 3 lv]|5, - (11)
with Tikhonov regularization [14] by choosing the norm
in a reproducing kernel Hilbert space (RKHS) H. It is
straightforward to extend the EM approach of the previous
Sec. III-B to the joint likelihood of data and displacement
field:

Lregularized(q7v 0_) =
aRha pleiy) p(ai | cijyv,0)
Inp(v +ZZ (¢;,5) In =2 LD (12)
= = q(ciz)

Myronenko and Song [1] apply a Gaussian reproducing
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kernel g(y,y’) := exp to penalize high fre-

quencies in the displacement field. A norm ||Pv||® on the
outcome of a linear differential operator P applied to v
also induces a RKHS [15]. The reproducing kernel k(y,y')
is equivalent to the Green’s function of the differential
operator P* P, where P* is the adjoint operator to P. The
kernel hence defines a right-inverse integral operator to the
differential operator P* P. Conversely, we can find a linear
differential operator P for any RKHS [15], [16].

D. Regularized Maximization Step

In the M-step, we optimize (12) for the displacement field
v and the standard deviation o. Since a joint closed-form
solution is not available, we optimize for v and o alternately.

1) Standard Deviation: Setting the derivative of Eq. (12)
for the standard deviation o to zero yields

—(y; +o))ll3,  (3)

where we define Np := Zf\]:l Zfil q(ci ;)
2) Deformation Field: Analogous to the derivation
in [16], the Euler-Lagrange equation for the functional in

Eq. (12) is obtained:
1 N M
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This partial differential equation can be solved using the
Green’s function k(y,y’) of the operator P*P
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with weights w; := —}; Zf\;l qlci ;) (xs — (y; +0(y5))).

To obtain a solution, we need to evaluate U(y) at the
model points %J and solve for the weights w;. Let W :=
(wi,...,wp)” € RM*P 1o write v(y) = GW using the
Gram matrix G € RM*M with G;; = k(y;,y;). The
weights for the solution V(y) are

W = (dP1G + \o®)"' (PX — dP1Y),

where Pj; :=q(c; ;) and dP1 := diag(P 1yx1) [1].

Note that the solution for the weights W in Eq. (18)
requires the inversion of a potentially large M x M matrix
whose size depends on the size of the model point cloud.
To reduce complexity, Myronenko and Song [1] propose
to utilize a low-rank approximation of G, G = QAQ”
with the matrix @) of eigenvectors and the diagonal matrix
A containing the K largest eigenvalues of G. Using the
Woodbury identity, Eq. (18) is reformulated to arrive at

(18)

W A ﬁ (I dP1Q (A\o?A™ +QTdP1Q) " QT)
(PX —dP1Y). (19)

The outer inversion acts on a K x K matrix, such that we can
drastically improve run-time over the M xM matrix inversion



in Eq. (18) by choosing K < M. The low-rank approxima-
tion constrains the solution for the displacement field in a
low-dimensional embedding, which further regularizes the
displacement field.

IV. EFFICIENT DEFORMABLE REGISTRATION OF
MULTI-RESOLUTION SURFEL MAPS

We propose a multi-resolution extension to the CPD
method for efficient deformable registration of RGB-D im-
ages. Instead of processing the dense point clouds of the
RGB-D images directly, we utilize multi-resolution surfel
maps (MRSMaps) [2] to perform deformable registration
on a compressed image representation. This image repre-
sentation stores the joint color and shape statistics of points
within 3D voxels (coined surfels) at multiple resolutions in
an octree. The maximum resolution at a point is limited
proportional to its squared distance in order to capture the
error properties of the RGB-D camera. In effect, the map
exhibits a local multi-resolution structure which well reflects
the accuracy of the measurements and compresses the image
from 640x480 pixels into only a few thousand surfels. !

We further improve the performance of the algorithm by
aligning maps from coarse to fine resolutions. The registra-
tion on finer resolutions is initialized from the result on the
coarser one. In addition to depth, we also utilize cues such
as color and contours. We improve robustness and efficiency
of our algorithm by using a modified Gaussian kernel with
compact support.

A. Coarse-To-Fine Deformable Registration

The run-time complexity of the CPD algorithm depends at
least quadratically on the size of the two point sets. If we do
not apply the low-rank approximation, it is even cubic in the
size of the model cloud—due to the inversion of the Gram
matrix. By processing the resolutions from coarse to fine, we
can keep the size of the point clouds as small as possible.
The displacement field of coarse resolutions can be used to
initialize the displacement on the next finer resolution such
that the number of iterations required to converge is greatly
decreased.

We represent both images by a scene and model MRSMap.
The means of the surfels within each resolution p(d) at depth
d of the maps define scene and model point clouds X4 :=
(xd’l, . 7xd,Nd) and Yd = (yd,b . 7yd,Md,)-

We iterate from coarse to fine resolutions, starting at the
coarsest resolution p(0) at depth 0 in the map. Let d be the
current depth processed. Our aim is to find the displacement
field vy from scene to model point clouds X, Yy and the
standard deviation og.

1) Per-Resolution Initialization: When transiting to the
next finer resolution, the standard deviation o4 < o4_1 1S
initialized from the result o4_; of the previous iteration.
from

'Our MRSMap implementation is available

http://code.google.com/p/mrsmap/ .

open-source

2) Full-Rank Optimization: We initialize the registration
on each depth with the displacement field vg_; of the
previous coarser resolution. Each mean y4; on the current
depth is mapped to its displacement

Mg
Va—1(Yd,i) = Z Wa—1,j k(Yd,isYa—1,5) (20)
j=1
according to the coarser resolution displacement field which
we abbreviate as

va-1(Yq) = G(Ya, Yg—1) Wa-1, 21

where G(Yy,Yy_ 1) € RMaxMa-1 jg 3 Gram matrix with
9ij = k(Ydi,Yia—1,7). Subsequently, we utilize v(Yy) =
G4W to solve for the initial weight matrix

Wy G;' G(Ya, Yao1) Was (22)

on the current depth.

3) Low-Rank Approximation: We compensate for the ef-
fect of the low-rank approximation on the found weights
through

Wy < é;l G(Yy,Ya_1) G;El éd_1Wd_1. (23)

This approach requires the inversion of the low-rank approx-
imation (G4 and the full-rank Gram matrix Gg_ll. While the
former is in O(K?) due to G;' = QA~1QT, the latter is
in O(M?). Notably, both inversions could be precomputed
once, for instance, if the model cloud is an object map, or
for sequential registration of scene maps towards a persisting
model map. For the inversion of the Gram matrix, it must
be well-conditioned.

4) Resolution-Dependent Kernel with Compact Support:
Gaussian kernels produce a dense Gram matrix with poten-
tially very small entries. The smaller the scale 3, the larger
the condition number of the Gram matrix and, hence, the
less numerically stable is the inversion of the Gram matrix
[17]. Furthermore, sparse matrices can be inverted much
more efficiently than dense matrices using sparse matrix
factorizations such as the LU- or Cholesky-decompositions.
We therefore use a modified Gaussian kernel with compact
support [18] instead, i.e.,

k(y,v") = ek, v) 9(y,v"), (24)

where ¢, € C?* is a Wendland kernel [19] with [ =
|D/2] + k+1 € N. Due to our 7-dimensional points, we
choose 5.1 (y, ')

We adapt the scale 34 = By p(d)~! of the kernel kq(y, ')
to the current resolution p(d). This way, spatial smoothing
is performed from low to high frequencies which is required
as high frequencies in the displacement field are only ob-
servable on fine resolutions due to the sampling theorem.

5) Handling of Resolution-Borders: Since we use a
distance-dependent resolution limit in MRSMaps, surfels
have redundant counterparts in ancestor nodes on coarser res-
olutions, but they may not be represented at finer resolutions.
This leads to surfels whose local context is in parts only



present at coarser resolutions. We denote the set of surfels
with this property as resolution border surfels.

We still constrain the deformation of resolution border
surfels to the displacement field in the complete local context
of the surfels. We include the means X, _; of the scene
surfels from the previous coarser resolution. Secondly, we
add a prior on the displacement field v4 to Eq. (11),

lnp(Xd,'Ud | 0d7vd—l) =

A
Inp(Xq | 0q,vq) +Inp(vg | va—1) — 2 lvall3,, (25

to favor compatibility with the displacement field v4—; of the
coarser resolution at the resolution border surfels. We need
to consider this prior in the M-step.
Let Yd C Y, be the means of the resolution border surfels
at the current resolution. We model the prior
Mg

1
np(vg | vi-1) = —3 > W) lva(a;) = va1(ya;)ll3
j=1
(26)
072 ifyg; € f’d
with v(yg ) == 4 7 g 27
?(bas) {0 otherwise. @7
We adapt o, := 0., p(d)~! to the current resolution.
With this additional prior term, we obtain
1 &
* D o _ ’ )
P'P0aly) = o ;wd,j Sy —v;)  (28)
where we now define
1 (&
Wy ;= PRY (Z q(cij) (Td,i — (Ya,j +5d(yd,j)))>
d i=1
1 ~
+ 3 7(aj) (va-1(ya;) = va(ya;)) - (29)

A
Using the Green’s function k(y,y’), we solve for U4(y) and
obtain the linear system of equations

(3N + (dP1+ 03dl) Gy) W)=
PX,—dP1Yy+o3dlvg_1(Yy), (30)

where we use the shorthand dT" := diag(y(Yy)). It’s low-
rank approximation is

Wi 1 (1= (dP1+o3dr) Qu

Aog
-1
(\r3A7" + Q7 (dP1+ 03 dT) Q) Q)
(PXq—dP1Yy+ 05dlva—1(Yy)) (31
with @d = QdAng
B. Color and Contour Cues
The CPD method is not limited to registration in the spatial
domain. We use the full six-dimensional spatial and color
mean of the surfels. In addition, we add contours determined
as surfels at foreground borders as a seventh point dimension.
We set the contour value of a point to Sy if it is on a

foreground border, or 0 otherwise. This places points closer
in feature space that are either on or off contours.

C. Convergence Criterion

Our convergence criterion examines the relative change

Lt — Lt,1 1 2
ALy = |——— |, Ly := =)\ 32
t Li ) it 9 Hvd,t”H (32)
in the norm of the displacement field
lva.ell3, = tx(Wiy Gae Wa)- (33)

If this rate decreases below a threshold, the estimate of the
displacement field is assumed to have converged.

V. LOCAL DEFORMATIONS

The continuous displacement field allows us to estimate
the local infinitesimal deformation at any point in terms of
translation and rotation between both surfaces. These local
deformation quantities can be estimated in each direction
between scene and model surface. Since the displacement
field is defined to act on points on the model surface, we
begin our investigation in the direction from model to scene.

A. Local Deformations from Model to Scene

1) Full-Rank Optimization: It is well known in contin-
uum mechanics [20] how infinitesimal local deformations
can be estimated from a continuous deformation function
¢ : R® — R3 that maps the position of infinitesimal
particles in an elastic body to their deformed location. Our
displacement field v defines such a deformation function in
a straightforward way,

(y) =y +v(y).

The infinitesimal deformation at a point y is then specified
by the Jacobian of the deformation function at y,

Vyo(y) = I+ Vyu(y).

As long as we use differentiable kernels in our estimation
algorithm, we may write

(34)

(35)

M
Vyd(y) =T+ wiVyk(y,y).

i=1

(36)

Rotation R(y) and strain S(y) are obtained through polar
decomposition of the Jacobian V,¢(y) = RU, ie., R(y) =
UVT and S(y) = VEVT, where V,é(y) = USVT is the
singular value decomposition of the Jacobian. The translation
t(y) = v(y) is set to the displacement at y.

To query the local deformation of a point y from a
deformable registration result for MRSMaps, we first find
the finest resolution p(d) in which the point y is represented
in the model map. Translation, rotation, and strain are then
determined via the displacement field vg.

2) Low-Rank Approximation: If we use a low-rank-
approximation, the weights W of the displacement field v are
computed with respect to a low-dimensional embedding of
the kernel k(y, y’). Hence, Eq. (36) is not directly applicable.
Instead we estimate translation and rotation from the local
displacements around y using the method in [21]. We locally
weigh neighboring displacements with a Gaussian window
function.



B. Local Deformations from Scene to Model

1) Full-Rank Optimization: A closed-form solution to the
local deformations from scene to model would require the
inverse v~ !(z) of the displacement field v for a scene point
z. Since such an inverse is not available, we approximate the
inverse displacement

Zf\il 9(@, yi +o(y:), m)v(yi)
S g, i+ v(yi), )
with the displacements of model points y; that deform close
to x. We can then use the closed-form approach in Sec. V-
A.1 to determine the local rotation R(z) = R(z+v~(x))T.

The translation is t(z) = v (x).

2) Low-Rank Approximation: For estimating rotation and
translation while using low-rank-approximations, we deter-
mine rotation and translation from displacements local to the
queried scene point as in Sec. V-A.

v () = —

(37

VI. TRANSFER OF OBJECT MANIPULATION
SKILLS

We apply our deformable registration method for object
manipulation skill transfer. Once pre-grasp and grasp poses
are defined for an object instance, these grasps are transferred
to other instances of the same object class. Similarly, motion
controllers that move a reference frame on the object can be
adapted to different shapes within the object class.

In our approach, we first segment the object of interest
in the RGB-D image using techniques such as support-
plane segmentation [22]. The RGB-D image segment is then
transformed into a MRSMap and a reference object model
MRSMap is aligned with the image. The grasp poses and
motion trajectories are defined in terms of local coordinate
frames relative to the object’s reference frame. We assume
that the poses and trajectories are close to the reference
object’s surface, and, hence, we find the local rigid transfor-
mation from the reference object towards the image segment
using one of the methods in Sec. V. Finally, the motions
are executed according to the transformed grasp and motion
trajectories.

VII. RESULTS
A. Quantitative Evaluation

We evaluate accuracy and run-time of our registration
approach on synthetically deformed RGB-D images. For our
experiments, we used an Intel Core i7-4770K CPU (max.
3.50GHz) and 32 GB of RAM and chose two sequences of
the RGB-D benchmark dataset [23]. In the freiburg2_desk
sequence, the camera observes a table-top scene. The planar
surfaces create local aperture problems that need to be
adressed by smoothness regularization. The freiburg3_teddy
sequence contains views on a teddy bear with salient yellow
and brown coloring. We process 500 frames per sequence
to assess the accuracy of our method in recovering displace-
ments as well as the run-time required to align the images.

We synthetically generate deformations in order to have
ground truth available for assessing registration accuracy.

Each frame is randomly disturbed by adding Gaussian noise
to the 3D Euclidean dimensions. We sample the Gaussian
noise in image coordinates and choose a standard deviation
uniformly between 100 and 200 pixels in the x- and y- direc-
tion of the image separately. Each of ten Gaussians applies
up to 0.1 m distortion. In total, we normalize the applied
deformation to a maximum of 0.1 m in each direction.

We assess the performance of several variants of our
approach. Full-rank methods are marked by “F”, whereas we
denote low-rank approximations by “L”. The variants F— and
F-+ do not use color for registration, while the second sign
indicates the use of the contour cue. The methods tagged with
“*” do not include surfels from coarser resolutions from the
scene cloud and do not constrain the displacement field on
the resulting field of the coarser resolution (but we initialize
it from the coarser resolutions and perform coarse-to-fine
registration). For all full-rank approaches, we set 5y = 160.
The low-rank approximations have been run with 5y = 20.

Tables I and II summarize the average run-time in millisec-
onds spent per frame. Using additional cues such as color
and contours increases the run-time slightly. The variants
utilizing low-rank approximations are significantly faster in
the registration step, while the preparation step is more
expensive. We note that this preparation step would only
be needed to be executed once for a fixed object model.
In this case, our low-rank coarse-to-fine registration method
achieves a frame rate between 1 to 5Hz. Note that the run-
time of plain concurrent processing of all the surfels in the
MRSMap requires run-time of 10 to 30 seconds per image
using low-rank approximations.

We also compared our approach to plain registration
of RGB-D images using the CPD approach. For a fair
comparison, we project synthetically deformed RGB-D point
clouds back into RGB-D images and process the images with
our multi-resolution approach as well as with plain CPD
registration. Due to memory limitations, the plain registration
method could only process images at a downsampling factor
of 8 (resolution 80x60), while our approach integrates full
VGA (640x480) resolution images in MRSMaps. While
with low-rank approximations plain registration requires
4.74s in average on 200 images of the freiburg2_desk se-
quence, our approach only takes 1.29s.

Figs. 2 and 3 demonstrate the accuracy of our approach.
Using color and contour cues gives best performance on
the finest resolution (0.025m). Not using color, contours,
or coarse-to-fine registration degrades performance. We also
notice that using a low-rank approximation is only slighly
less accurate than the full-rank methods. Our coarse-to-fine
method also performs more accurately compared to plain
registration. In the mean, it achieves a deviation of 0.0178 m
from the ground-truth displacements (mean 0.0755 m). Plain
registration yields 0.0482m mean deviation for average
ground-truth displacements of 0.0752m. While we used
color and contours for both methods and the same param-
eters, we set the scale of the smoothing kernel equivalent
to the scale for the finest resolution used in our MRSMap
approach. Our multi-resolution approach seems to handle the



TABLE I
COMPARISON OF AVERAGE RUN-TIME IN MILLISECONDS PER IMAGE
USING FULL-RANK GRAM MATRICES.

sequence F F-+ F+- F- F*

fr2 desk, prepare 344 330 340 325 344
fr2 desk, register 7802 6621 1826 1848 5278
fr2 desk, total 8216 7020 2235 2243 5693

fr3 teddy, prepare 141 135 139 133 141

fr3 teddy, register 3697 3340 1367 1494 3435
fr3 teddy, total 3921 3559 1589 1711 3659
TABLE I

COMPARISON OF AVERAGE RUN-TIME IN MILLISECONDS PER IMAGE
USING THE LOW-RANK APPROXIMATION TO THE GRAM MATRIX.

sequence L L+ L+ L- L*

fr2 desk, prepare 437 423 433 417 438
fr2 desk, register 643 464 553 348 425
fr2 desk, total 1149 957 1056 835 933

fr3 teddy, prepare 222 216 220 214 221
fr3 teddy, register 467 335 390 268 290
fr3 teddy, total 772 634 693 565 594

varying Euclidean sampling rate in the image better.

B. Non-Rigid Registration and Local Deformation Examples

In Fig. 4, we show typical results of our low-rank de-
formable registration method on RGB-D image segments of
objects. Examples for estimated local transformations can
be found in Fig. 1. The local coordinate frames are well
displaced to their counterparts in both image segments. Also
the orientation reflects the local bending of the surface.

C. Public Demonstration of Manipulation Skill Transfer

We publicly demonstrated our deformable registration
approach in a mobile manipulation scenario during the Open
Challenge at RoboCup 2013 in Eindhoven, Netherlands?.
Our robot Cosero transferred watering can manipulation
skills to a novel can. Fig. 5 shows images taken during the
demonstration. A short video clip accompanies this paper.
The demonstration was well received by the jury consisting
of team leaders and received high scores. Overall, we won
the 2013 RoboCup@Home competition.

VIII. CONCLUSIONS

In this paper we proposed an efficient variant of the coher-
ent point drift (CPD) algorithm for deformable registration
of RGB-D images. Our approach performs coarse-to-fine
alignment of surfels at multiple 3D resolutions and estimates
a displacement field on every resolution.

We evaluated the run-time and accuracy of our method
on a synthetically generated dataset with ground truth dis-
placement information. Our approach yields good accuracy

2video available from http:/www.youtube.com/watch?v=I1kN1bAeeB0
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Fig. 2. Median accuracy for deformable registration of synthetically

deformed RGB-D images on the freiburg2_desk dataset. Top: 0.1 m, middle:
0.05 m, bottom: 0.025 m resolutions.

and low run-times. For registering object models, our method
achieves a frame rate of 1 to 5Hz on a CPU.

We develop the method for object manipulation skill
transfer. Many skills can be represented as a set of grasp
and motion trajectories relative to the local reference frame
of the object. From the displacement field provided by our
registration method, we can estimate the local transformation
of such grasps and motions. We demonstrated this procedure
publicly for transferring a bimanual grasp from one watering
can to another. The approach has also been used to perform
the watering motion, in which the motion of the can end-
effector has been predefined for the original object model.

In future work, we will consider parallel implementations
on GPU to facilitate real-time deformable registration. The
accuracy and basin of convergence could possibly be further
improved by integrating higher-order features.
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