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Abstract— Micro aerial vehicles (MAV) pose a challenge in
designing sensory systems and algorithms due to their size and
weight constraints and limited computing power. We present
an efficient 3D multi-resolution map that we use to aggregate
measurements from a lightweight continuously rotating laser
scanner. We estimate the robot’s motion by means of visual
odometry and scan registration, aligning consecutive 3D scans
with an incrementally built map.

By using local multi-resolution, we gain computational ef-
ficiency by having a high resolution in the near vicinity of
the robot and a lower resolution with increasing distance from
the robot, which correlates with the sensor’s characteristics in
relative distance accuracy and measurement density. Compared
to uniform grids, local multi-resolution leads to the use of fewer
grid cells without loosing information and consequently results
in lower computational costs. We efficiently and accurately
register new 3D scans with the map in order to estimate the
motion of the MAV and update the map in-flight.

In experiments, we demonstrate superior accuracy and
efficiency of our registration approach compared to state-of-the-
art methods such as GICP. Our approach builds an accurate 3D
obstacle map and estimates the vehicle’s trajectory in real-time.

I. INTRODUCTION

Micro aerial vehicles (MAV) such as quadrotors have
attracted attention in the field of aerial robotics. Their size
and weight limitations pose a challenge in designing sensory
systems. Most of today’s MAVs are equipped with ultra
sound sensors and camera systems due to their minimal
size and weight. While these small and lightweight sensors
provide valuable information, they suffer from a limited field-
of-view and are sensitive to illumination conditions. Only
few systems [1], [2], [3], [4] are equipped with 2D laser
range finders (LRF) that are used for navigation.

In contrast, we build a continuously rotating laser scanner
that is minimalistic in terms of size and weight and thus
particularly well suited for obstacle perception and localiza-
tion on MAVs, allowing for environment perception in all
directions.

We use a hybrid multi-resolution map that stores occu-
pancy information and the respective distance measurements.
Measurements are stored in grid cells with increasing cell
size from the robot’s center. Thus, we gain computational
efficiency by having a high resolution in the close proximity
to the sensor and a lower resolution with increasing distance,
which correlates with the sensor’s characteristics in relative
distance accuracy and measurement density. Compared to
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Fig. 1: Local multi-resolution grid-map with a higher res-
olution in the close proximity to the sensor and a lower
resolution with increasing distance. Color encodes height.

uniform grids, local multi-resolution leads to the use of fewer
grid cells without loosing information and consequently
results in lower computational costs. Fig. 1 shows our local
multi-resolution grid-map.

Aggregating measurements from consecutive time steps
necessitates a robust and reliable estimate of the sensor’s
motion. Thus, we use the point-based representation in the
map to gain an estimate of the sensor’s motion between
consecutive 3D scans by scan registration. We propose a
highly efficient and accurate registration method that matches
Gaussian point statistics in grid cells (denoted as surfels)
between local multi-resolution grid-maps. For registering 3D
scans with a map, we also represent the scans in local
multi-resolution grid maps. In order to achieve accuracy
despite the sparsity of measurements and the discretization
into grids, we assign surfels in a probabilistic way within
a Gaussian mixture model (GMM). Since laser-based ego-
motion estimation relies on structure in the scene, it works
best in scenarios where GPS typically is not available, like
in indoor or urban environments.

II. RELATED WORK

For mobile ground robots, 3D laser scanning sensors are
widely used due to their accurate distance measurements
even in bad lighting conditions, and due to their large field-
of-view (FoV). For instance, autonomous cars often perceive
obstacles by means of a rotating laser scanner with a 360◦

horizontal FoV, allowing for detection of obstacles in every
direction [5], [6].

Up to now, such 3D laser scanners are rarely used on
lightweight MAVs due to their payload limitations. Instead,
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Fig. 2: (a) CAD drawing of the continuously rotating laser
scanner with the two rotation axes. The Hokuyo 2D LRF is
mounted on a bearing and rotated around the red axis. (b)
The 3D laser scanner mounted on our multicopter.

2D laser range finders [7], [1], [2], [3], [4], [8] are used,
which restricts the FoV to the 2D measurement plane of the
sensor.

A similar setup to ours is described by Scherer and
Cover et al. [9], [10]. Their MAV is used to autonomously
explore rivers using visual localization and laser-based 3D
obstacle perception. In contrast to their work, we aggregate
consecutive laser scans in our multi-resolution map by 3D
scan registration.

For mobile ground robots, several approaches have been
proposed to estimate the motion of a robot by means of 3D
scan registration [11], [12], [13]. Most of these approaches
are derived from the Iterative Closest Points (ICP) algo-
rithm [14]. Generalized ICP (GICP) [13] unifies the ICP
formulation for various error metrics such as point-to-point,
point-to-plane, and plane-to-plane. The 3D-NDT [15] dis-
cretizes point clouds in 3D grids and aligns Gaussian statis-
tics within grid cells to perform scan registration. Recently,
multi-resolution surfel maps have been proposed that match
Gaussian statistics in multi-resolution voxel representations
to efficiently and accurately register RGB-D images [16]
and 3D laser scans [17]. In this work, we extend surfel
registration with probabilistic data association to better cope
with sparse point clouds from fast spinning laser scanners.

We aim at perceiving as much of the surroundings as
possible in order to obtain almost omnidirectional obstacle
detection. Distance measurements are aggregated in a 3D
grid-map at multiple resolutions and acquired sparse 3D
scans are registered with the map.

III. SENSOR SETUP

Our continuously rotating 3D laser scanner consists of a
Hokuyo UTM-30LX-EW 2D laser range finder (LRF) which
is rotated by a Dynamixel MX-28 servo actuator to gain a 3D
FoV. As shown in Fig. 2, the scanning plane is parallel to the
axis of rotation, but the heading direction of the scanner is
twisted slightly away from the direction of the axis—in order
to enlarge its FoV. The 2D LRF is electrically connected by
a slip ring, allowing for continuous rotation of the sensor.
The sensor is mounted on our multicopter (Fig. 2) pitched
downward by 45◦ in forward direction, which places the core
of the robot upwards behind the sensor. Hence, the sensor
can measure in all directions, except for a conical blind spot

Fig. 3: Indoor 3D scan acquired with our continuously
rotating laser scanner. Color encodes height.
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Fig. 4: One-dimensional illustration of the hybrid local multi-
resolution map. Along with the occupancy information, every
grid-cell (blue) maintains a circular buffer with its associated
measurement points (green). The map is centered around
the robot and in case of a robot motion, ring buffers are
shifted according to the translational parts of the movement,
obtaining the egocentric property of the map. Cells at coarser
levels are used to retain points from vanishing cells at finer
levels and to initialize newly added cells (red arrows).

pointing upwards behind the robot. The 2D laser scanner has
a size of 62×62×87.5 mm and a weight of 210 g. Together
with the actuator (72 g) and the slip ring, the total weight of
the 3D scanner is approximately 400 g.

The Hokuyo LRF has an apex angle of 270◦ and an
angular resolution of 0.25◦, resulting in 1080 distance mea-
surements per 2D scan, called a scan line. The Dynamixel
actuator rotates the 2D LRF at one rotation per second,
resulting in 40 scan lines and 43,200 distance measurements
per full rotation. Slower rotation is possible if a higher
angular resolution is desired. For our setup, a half rotation
leads to a full 3D scan of most of the environment. Hence,
we can acquire 3D scans with up to 21,600 points with 2 Hz.

IV. LOCAL MULTI-RESOLUTION MAP

Distance measurements from the sensor are accumulated
in a 3D multi-resolution map with increasing cell sizes from
the robot’s center. The representation consists of multiple
robot-centered 3D grid-maps with different resolutions. On
the finest resolution, we use a cell length of 0.25 m. Each
grid-map is embedded in the next level with coarser resolu-
tion and doubled cell length.

We use a hybrid representation, storing 3D point mea-
surements along with occupancy information in each cell.



Point measurements of consecutive 3D scans are stored in
fixed-sized circular buffers, allowing for point-based data
processing and facilitates efficient nearest-neighbor queries.

Fig. 4 shows a 1D schematic illustration of the map
organization. We aim for efficient map management for
translation and rotation. Therefore, individual grid cells are
stored in a circular buffer to allow for shifting elements in
constant time. We interlace multiple circular buffers to obtain
a map with three dimensions. The length of the circular
buffers depends on the resolution and the size of the map.
In case of a translation of the MAV, the circular buffers
are shifted whenever necessary to maintain the egocentric
property of the map. In case of a translation equal or
larger than the cell size, the circular buffers for respective
dimensions are shifted. For sub-cell-length translations, the
translational parts are accumulated and shifted if they exceed
the length of a cell.

Since we store 3D points for every cell for point-based
processing, single points are transformed in the cell’s local
coordinate frame when adding, and back to the map’s coordi-
nate frame when accessing. Every cell in the map stores a list
of 3D points from the current and previous 3D scans. This
list is also implemented by a fixed-sized circular buffer. If the
capacity of the circular buffer is exceeded, old measurements
are discarded and replaced by new measurements.

Since rotating the map would necessitate to shuffle all
cells, our map is oriented independent to the MAV’s orien-
tation. We maintain the orientation between the map and the
MAV and use it to rotate measurements when accessing the
map.

Besides the scan registration described in the following
section, the map is utilized by our obstacle avoidance control
using a predictive potential field method to avoid occupied
cells [18].

V. SCAN REGISTRATION

We register consecutive 3D laser scans with our local
multi-resolution surfel grid map to estimate the motion of
the MAV. We acquire 3D scans in each half rotation of
the laser. Since the scans are taken in-flight in a sensor
sweep, the motion of the MAV needs to be compensated
for when assembling the scan measurements into 3D scans.
We register 3D scans with the so far accumulated local map
of the environment. The local map is then updated with the
registered 3D scan.

A. 3D Scan Assembly

We estimate the motion of the MAV on a short time scale
using visual odometry [19] from two pairs of wide-angle
stereo cameras. This 6D motion estimate is used to assemble
the individual 2D scan lines of each half rotation to a 3D
scan (see Fig. 5).

B. Scan To Map Registration

We register a 3D scan P = {p1, . . . , pP } with the points
Q = {q1, . . . , qQ} in the local grid map of the environment.

Fig. 5: Side view on an indoor 3D scan with flat ground. Top:
assembled 3D scan without considering sensor movement
during the scan acquisition. Bottom: We incorporate visual
odometry to correct for the sensor movement.

We formulate the registration of the 3D scan with the local
environment map as optimizing the joint data-likelihood

p(P | θ,Q) =

P∏
k=1

p(pk | θ,Q). (1)

Instead of considering each point individually, we map the
3D scan into a local multi-resolution grid and match surfels,
i.e.,

p(P | θ,Q) ≈
N∏
i=1

p(xi | θ, Y )Px,i . (2)

By this, several orders of magnitudes less map elements
are used for registration. We denote the set of surfels in
the scene (the 3D scan) by X = {x1, . . . , xN} and write
Y = {y1, . . . , yM} for the set of model surfels in the
environment map. E.g., a surfel xi summarizes its attributed
Px,i points by their sample mean µx,i and covariance Σx,i.
We assume that scene and model can be aligned by a rigid
6 degree-of-freedom (DoF) transformation T (θ) from scene
to model. Our aim is to recover the relative pose θ of the
scene towards the model. An exemplary surfel map together
with its originating points is shown in Fig. 6.

C. Gaussian Mixture Observation Model

We explain each transformed scene surfel as an obser-
vation from a mixture model, similar as in the coherent
point drift (CPD) method [20]. A surfel xi is observed under
the mixture defined by the model surfels and an additional
uniform component that explains outliers, i.e.,

p(xi | θ, Y ) =

M+1∑
j=1

p(ci,j) p(xi | ci,j , θ, Y ), (3)

where ci,j is a shorthand for the 1-of-(M+1) encoding binary
variable ci ∈ BM+1 with j-th entry set to 1. Naturally,
ci indicates the association of xi to exactly one of the
mixture components. The model is a mixture on Gaussian



components for the M model surfels through

p(xi | ci,j , θ, Y ) :=

N
[
T (θ)µx,i;µy,j ,Σy,j +R(θ)Σx,iR(θ)T + σ2

j I
]
, (4)

where σj = 1
2ρ

−1
y,j is a standard deviation that we adapt to

the resolution ρy,j of the model surfel. We set the likelihood
of the uniform mixture component to p(ci,M+1) = w. For
this uniform component, the data likelihood of a surfel xi is

p(xi | ci,M+1, θ) =
Px,i
P
N (0; 0, R(θ)Σx,iR(θ)T + σ2

j I).

(5)
For the prior association likelihood, we assume the likelihood
of xi to be associated to one of the points in the model map
to be equal. Hence, for each Gaussian mixture component
j ∈ {1, . . . ,M} we have p(ci,j) = (1−w)

Qy,j

Q . By modeling
the scene surfels as samples from a mixture on the model
surfels, we do not make a hard association decision between
the surfels sets, but a scene surfel is associated to many
model surfels.

D. Registration through Expectation-Maximization

The alignment pose θ is estimated through maximization
of the logarithm of the joint data-likelihood

ln p(P | θ,Q) ≈
N∑
i=1

Px,i ln

M+1∑
j=1

p(ci,j) p(xi | ci,j , θ, Y ).

(6)
We optimize this objective function through expectation-
maximization (EM) [21]. The component associations c =
{c1, . . . , cN} are treated as latent variables to yield the EM
objective

L(q, θ) :=

N∑
i=1

Px,i

M+1∑
j=1

q(ci,j) ln
p(ci,j) p(xi | ci,j , θ, Y )

q(ci,j)
,

(7)
for which we exploit q(c) =

∏N
i=1

∏M+1
j=1 q(ci,j). In the M-

step, the latest estimate q for the distribution over component
associations is held fixed to optimize for the pose θ

θ̂ = argmax
θ

L(q, θ) (8)

with

L(q, θ) := const .+

N∑
i=1

Px,i

M+1∑
j=1

q(ci,j) ln p(xi | ci,j , θ, Y ).

(9)
This optimization is efficiently performed using the
Levenberg-Marquardt method as in [16]. The E-step obtains
a new optimum q̂ for the distribution q by the conditional
likelihood of the cluster associations given the latest pose
estimate θ

q̂(ci,j) =
p(ci,j) p(xi | ci,j , θ, Y )∑M+1

j′=1 p(ci,j′) p(xi | ci,j′ , θ, Y )
. (10)

In order to evaluate these soft assignments, we perform a
local search in the local multi-resolution surfel grid of the
model. We first look-up the grid cell with a surfel available

(a)

(b)

Fig. 6: The point-based representation (a) of our local
environment map and corresponding surfels (b).

on the finest resolution in the model map at the transformed
mean position of the scene surfel. We consider the surfels in
this cell and its direct neighbors for soft association.

VI. EXPERIMENTS

We assess our registration method using two datasets
which have been acquired with our MAV in-flight and com-
pare it to state-of-the-art registration methods. We register
the point sets of 3D scan and local multi-resolution map
using ICP and Generalized ICP (GICP) [13].

The first dataset provides ground-truth pose information
from an indoor motion capture (MoCap) system. The MoCap
system provides accurate pose information of the MAV at
high frame rates (100 Hz), but is restricted to a small capture
volume of approximately 2×2×3 m. During the 46 s flight,
visual odometry and laser data for 92 3D scans have been
recorded. A second dataset has been acquired in a parking
garage which allows for larger flight distances, but ground-
truth data is not available.

For assessing pose accuracy without pose ground-truth,
we calculate the mean map entropy, a quantitative measure
which evaluates with the sharpness of a map. The entropy h
for a map point qk is calculated by

h(qk) =
1

2
ln |2πeΣ(qk)|, (11)

where Σ(qk) is the sample covariance of mapped points in
a local radius r around qk. We select r = 0.3 m in our
evaluation. The mean map entropy H(Q) is averaged over
all map points

H(Q) =
1

Q

Q∑
k=1

h(qk). (12)

A. Motion Capture Dataset

Since ground-truth data from a MoCap system is available
for the first dataset, we quantify mapping accuracy by the
absolute trajectory error (ATE) [22] based on the estimated



Fig. 7: Absolute trajectory error of the scan registration
using the multi-resolution map. Points of the trajectory are
projected on the xy-plane.

and the ground-truth trajectory. Table I summarizes the ATE
of our method, comparing it to the estimates by visual odom-
etry, ICP, and GICP registration. The results indicate that
all scan registration methods improve the motion estimate
produced by visual odometry. Our method results in a lower
ATE compared to ICP and GICP. In addition, the run-times
reported in Table I demonstrate that our method is compu-
tationally more efficient. The results in mean map entropy
confirm improved accuracy by our registration method. In
Fig. 7 we shows the trajectory estimate obtained with our
registration method and GICP, and displays deviations of
both estimates from the ground-truth trajectory.

Throughout the experiments, four resolution levels are
used for the map with a cell length of 0.25 m at the finest
level, which yields a cell length of 2 m at the coarsest level.

B. Garage Dataset

Since ground-truth data, e.g., from a MoCap system is
not available for the second dataset, we evaluate accuracy
by visually inspecting the sharpness of the map, as shown in
Fig. 9 and comparing mean map entropy as for the previous
dataset. Using GICP to estimate the motion and building the
map results in an map entropy of −3.438, whereas using
our method results in a lower entropy of −3.696. Fig. 8
illustrates the increase of measurement density through the
aggregation of measurements.

VII. CONCLUSIONS

We presented an efficient 3D multi-resolution map that we
use for obstacle avoidance and for estimating the motion of
the robot. We aggregate measurements from a continuously
rotating laser scanner that is particularly well suited for
MAVs due to its size and weight.

By using local multi-resolution, we gain computational ef-
ficiency by having a high resolution in the near vicinity of the
robot and a lower resolution with increasing distance from

Fig. 8: Scene of the garage dataset (top). Aggregated 3D
map after 1 scan (middle) and 10 scans (bottom) using our
registration method (color encodes height).

the robot, which correlates with the sensor’s characteristics
in relative distance accuracy and measurement density.

Scan registration is used to estimate the motion of the
robot by aligning consecutive 3D scans to the map. Hence,
we are able to efficiently align new 3D scans with the
map and aggregate distance measurements from consecutive
3D scans to increase the density of the map. We do not
match individual scan points, but represent 3D scans also
in local multi-resolution grids and condense the points into
surface elements for each grid cell. These surface elements
are aligned efficiently and at high accuracy in a registration
framework which overcomes the discretization in a grid
through probabilistic assignments.

In experiments, we compare the laser-based motion esti-
mate with ground-truth from a motion capture system and
the GICP, a state-of-the-art registration algorithm, as well
as standard point-based ICP. Overall, our approach is more
accurate and results in sharper maps as indicated by the
lower ATE and map entropy. Besides that, our approach is
computational more efficient, allowing to register scans and
to build local 3D maps in-flight in real-time.



TABLE I: ATE, map entropy, and run-time of our surfel registration method, in comparison to visual odometry (VO), ICP,
and GICP.

ATE (m) mean map entropy run-time (ms)

sequence RMSE mean median std min max mean std max

VO 0.151 0.134 0.129 0.059 0.024 0.324 -3.112
ICP 0.040 0.035 0.034 0.019 0.006 0.117 -3.411 290.31 108.72 521
GICP 0.034 0.031 0.030 0.014 0.005 0.088 -3.363 1769.52 813.92 5805
ours 0.021 0.019 0.016 0.010 0.005 0.061 -3.572 51.06 27.30 121

(a) (b)

Fig. 9: Cut-out part of the map, generated by GICP (a) and
our method (b). As indicated by the lower map entropy, the
map generated by our method is sharper.
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