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Abstract— Many perception problems in robotics such as ob-
ject recognition, scene understanding, and mapping are tackled
using scale-invariant interest points extracted from intensity
images. Since interest points describe only local portions of
objects and scenes, they offer robustness to clutter, occlusions,
and intra-class variation.

In this paper, we present an efficient approximate algorithm
to extract surface normal interest points (SNIPs) in corners and
blob-like surface regions from depth images. The interest points
are detected on characteristic scales that indicate their spatial
extent. Our method is able to cope with irregularly sampled,
noisy measurements which are typical to depth imaging devices.
It also offers a trade-off between computational speed and
accuracy which allows our approach to be applicable in a wide
range of problem sets. We evaluate our approach on depth
images of basic geometric shapes, more complex objects, and
indoor scenes.

I. I NTRODUCTION

Interest points provide a compact representation of image
content. They describe only local parts of the observed scene
and, hence, offer robustness to clutter, occlusions, and intra-
class variation. For such properties, interest points are afa-
vorable choice to solve perception problems in robotics such
as object recognition, scene understanding, and mapping.

The computer vision community has developed efficient
means for the extraction of scale-invariant interest points
from intensity images. These approaches are often based on
multi-scale pyramid representations of the image, in which
the image is successively subsampled with increasing scale.
While methods to detect interest points on multiple scales in
point clouds and depth images have been developed, they
lack the computational efficiency of their intensity image
counterparts. In intensity images, the interest operatorsare
applied to the intensity values which are sampled on a 2D
lattice, whereas in depth images, surface geometry is the
quantity of interest. It is measured in the implicit form of
the point cloud distribution such that the direct transfer of
concepts from the image processing domain to depth images
is not possible.

In this paper, we present an efficient approximate algo-
rithm to extract surface normal interest points (SNIPs) in
corners and blob-like regions from depth images. We detect
these interest points on characteristic scales that indicate
their spatial extent. Our method extends the approach of
Unnikrishnan et al. [1]. They derive an interest operator
that is based on convolving surfaces with Gaussian kernels
on multiple scales. It is directly applied to the point cloud
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Fig. 1. Characteristic examples for detected blobs (left) and corners (right).
The interest points are detected on characteristic scales which reflect their
spatial extent. For blobs the spatial extent corresponds tothe curvature radius
of the surface. Corners are extracted on their maximum spatialextent.

data without relying on a mesh parametrization. We apply
their approach to noisy depth images from a single view
and present approximations to achieve a trade-off between
computational efficiency and accuracy.

In order to gain computational efficiency, our approach
allows to specify an image neighborhood size for the com-
putations involved. Similar to intensity image algorithms, we
build a pyramid representation of the depth image. Range-
sensing devices sample the observed surface irregularly with
varying sampling density throughout the depth image. Sam-
pling density depends on sensor characteristics like angular
resolution as well as on distance to and impact angle on
the reflecting surface. To cope with the varying sampling
density, we propose to estimate at each image location and
scale an optimal lowest resolution for computation within
the specified image neighborhood.

Occlusions constitute a further difficulty for interest point
detection in depth images from single views. Approaches to
interest point detection in point clouds often assume that the
object is densely sampled in a complete view without holes.
We propose means to take special care of occlusion effects.

We evaluate our approach on depth images of basic
geometric shapes, more complex objects, and indoor scenes.
We demonstrate the behavior of our interest point detector
qualitatively, and measure its repeatability.

The remainder of this paper is organized as follows. After
a short review of related work in Sec. II, we will introduce
the concepts of multi-scale interest point detection in unor-
ganized point clouds in Sec. III. We detail our approach in
Sec. IV and assess its quality in experimental evaluation in
Sec. V.
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II. RELATED WORK

Various methods have been recently developed to extract
interest points from dense, complete-view point clouds on a
characteristic scale. The scale reflects the spatial extentof
the underlying geometric structure.

Pauly et al. [2], for example, measure surface variation
at a point by considering the eigenvaluesλ1 ≥ λ2 ≥ λ3

of the local sample covariance in then-point neighborhood
of the examined point. The scale is chosen to be the
neighborhoodn for which the variation measure attains a
local extremum. As the variation measure is susceptible to
noise, heuristics have to be applied to detect extrema with
satisfying robustness.

Novatnack et al. [3] extract multi-scale geometric interest
points from dense point clouds with an associated triangular
connectivity mesh. In this approach geodesic distance be-
tween points is computed from shortest paths through the
mesh. They build a scale-space of surface normals given by
the mesh and derive edge and corner detection methods with
automatic scale selection. Our approach does not require a
mesh for connectivity information and surface normals.

Unnikrishnan et al. [1] derive an interest operator and a
scale selection scheme for unorganized point clouds. They
do not rely on connectivity information given by a mesh.
In contrast to our approach, they extract geodesic distances
between points using disjoint minimum spanning trees in a
pre-processing stage. They present experimental results on
complete views of objects without holes.

Some approaches detect multi-scale interest points in
depth images, since range-sensing devices obtain depth im-
ages from a single view and such approaches do not require
registration of multiple views. Stable interest points caneven
be used to select points for sparse feature-based point cloud
registration.

Lo et al. [4] directly apply the interest point operator of
SIFT to the normalized depth image. While the intensity of a
point is not affected by projection into the image, measured
depth naturally depends on the view point. In our approach,
the appearance of surfaces only changes implicitly in the
sampling densities for which we account.

Novatnack et al. [5] transfer the approach in [3] to depth
images. They approximate geodesic distances by computing
shortest distances between points through the image lattice.
Surface normals are computed by triangulating the range
image. They evaluate their approach for the feature-based
registration of depth images with high sampling density and
low noise. In our approach, we detect multi-scale corner- and
blob-like interest points on surfaces. We explicitly take the
sampling density at each depth image location into account.

Flint et al. [6] generate a 3D voxel image which represents
the sampling density of the depth image. By building a scale-
space representation of the 3D image analogously to 2D
images, they find scale-space maxima in sampling density.
They use the Determinant of Hessian as interest operator. In
their approach, Flint et al. assume that changes of sampling
density are only caused by changes of surface geometry.

However, for range-sensing devices, the sampling density
also depends on the impact angle on the surface.

Steder et al. [7] extract interest points from depth images
without scale selection, based on a measure of impact angle
variation. Similar to our approach, they also reject unstable
interest points in virtual geometric structure at occlusions.
Recently, they proposed the NARF feature descriptor [8] to
describe depth image interest points.

III. M ULTI -SCALE INTERESTPOINTS FROM

IRREGULARLY SAMPLED POINT CLOUDS

Unnikrishnan et al. [1] derive a multi-scale interest opera-
tor for irregularly sampled point clouds. First, they definean
integral operator which yields local mean curvature estimates
of the underlying surface. They normalize this operator for
sampling irregularity and develop a scale selection mecha-
nism to detect interest points on characteristic scales.

A. Multi-Scale Interest Operator for Smooth Surfaces

The approach is based on an integral operatorA : Rd ×
R

+ → R
d that acts ond-dimensional surfaces with an

associated one-dimensional scale parametert. This integral
operator is defined as

A(α(s), t) =

∫

Γ

φ(s, u, t)α(u)du, (1)

where in the 2D case,Γ is a smooth 2D curve given as a
function α(s) of distances. Using a normalized Gaussian
kernel function

φ(s, u, t) = (2πt2)−
1

2 exp

(

−
(s− u)2

2t2

)

(2)

and applying second order Taylor expansion to the 2D curve,
they obtain that the operatorA approximately displaces the
point x on the curve in direction of the normaln(x) to the
curve and in proportion to its curvatureκ(x) in x, i.e.,

A(x, t) ≈ x+ κ(x)n(x)
t2

2
(3)

This fact can be transfered to 3D surfaces by considering
the 2D normal curvesΓθ in a point x, which result from
intersecting the surface with normal planesΠθ that are or-
thogonal to the tangent plane at an angleθ to some reference
normal plane. LetΓθ be parametrized by functionαθ(s).
Using eq. (3) it follows that

A(x, t) ≈ x+
1

2π

∫

κ(x, θ) n(x)
t2

2
dθ

= x+H(x) n(x)
t2

2
.

(4)

Similar to the 2D case,A displaces the pointx normal to the
3D surface in proportion to the mean curvatureH(x) at x.



B. Invariance to Irregular Sampling

In the derivation of the operatorA, we assume uniform
sampling of the surface. Real depth sensing devices, however,
sample surfaces irregularly. Unnikrishnan et al. propose to
account for this sampling irregularity by normalizing the ker-
nel φ and, thus, the operatorA for the sampling distribution:

Ã(α(s), t) =
1

d̃(s, t)

∫

Γ

φ̃(s, u, t)α(u)du,

d̃(s, t) =

∫ +∞

−∞

φ̃(s, u, t)pt(u)du,

φ̃(s, u, t) =
φ(s, u, t)

pt(s)pt(u)
,

(5)

wherept(s) estimates the sampling distribution ats through
kernel density estimation with bandwidtht,

pt(s) =

∫

φ(s, u, t)p(u)du. (6)

C. Scale Selection

Unnikrishnan et al. motivate the characteristic scale of an
interest point to be the radius of curvature in the case of
a perfect sphere. In order to detect interest points on their
characteristic scale, they define the scalar function

B(x, t) =
2
∥

∥

∥x− Ã(x, t)
∥

∥

∥

t
exp



−
2
∥

∥

∥x− Ã(x, t)
∥

∥

∥

t



 ,

(7)
which attains local extrema in scale-space attmax(x) =

1
H(x) .

IV. EFFICIENT DETECTION OFMULTI -SCALE INTEREST

POINTS IN DEPTH IMAGES

Unnikrishnan et al. determine the geodesic distance be-
tween points on a surface in a time-consuming preprocessing
stage. They also consider the complete point neighborhood
in the highest available resolution on all scales. In order
to gain computational efficiency, we make two significant
approximations to this algorithm. First, we approximate
geodesic distance with Euclidean distance between points.
Second, we tailor the approach to depth images and allow to
specify an image neighborhood in which the interest operator
is evaluated. Since the sampling density varies throughoutthe
image with distance and view angle onto the viewed surface,
we apply the operator on appropriate sampling rates of the
depth image. We propose a mechanism to select a lowest
image resolution at each image location to approximate the
interest operator well.

In depth images, occlusions constitute a further difficulty
for interest point detection. When surfaces are partially oc-
cluded, virtual geometric structure appears in the background
at the edges of shadows. Furthermore, surfaces artificially
appear highly curved at depth discontinuities. We present
methods to recognize false detections of interest points in
virtual structure.

Our third enhancement to the approach of Unnikrishnan et
al. is a detector for sharp corners on characteristic scales. The

Fig. 2. For each scalet, we determine the layerl with lowest resolution at
which the interest operator is sufficiently well approximated by the samples
within a specifiedk × k image neighborhood (green/gray dots). The blue
circles indicate the3t range around the query point (red cross). Due to the
fixed image neighborhood, oversampling (layerl − 1) and undersampling
(layer l + 1) reduce approximation quality.

Fig. 3. Mean curvature scaled normals (left, RGB encodes 3D direction,
saturation in proportion to mean curvature) and corner response (right).

interest operator measures local surface variation. We extract
corners on scales that correspond to the largest extent of the
feature.

A. Depth Image Pyramid

We seek to transfer concepts from the 2D image process-
ing domain to achieve computational efficiency. In multi-
scale representations, images are successively low-pass fil-
tered. Since low-frequency structure in images can be ap-
proximated sufficiently well with adequately small sampling
densities, subsampling is applied to reduce the computational
cost with increasing scale. Such efficient pyramid represen-
tations are core to many efficient interest point detection
algorithms in 2D images like SIFT [9], for example.

Our interest operator̃A convolves surfaces with a Gaussian
kernel that measures distance in the coordinates of points that
are irregularly sampled in the depth image. This contrasts
with typical convolution operators in intensity images, where
distance is measured in regularly sampled image coordinates.
Moreover, depth images sample surfaces with varying den-
sity throughout the image. This sampling density not only



depends on measurement characteristics of the sensor like
angular resolution, but also on distance to and impact angle
on the reflecting surface.

For this reason, we estimate for each 2D image loca-
tion (i, j) and scalet the subsampling layer̂l(i, j, t) which
provides the best surface representation within a speci-
fiedk×k image neighborhood. Smaller image neighborhoods
achieve faster computation but crude approximations, while
larger image neighborhoods trade better approximations for
lower frame rates.

1) Multi-Scale Pyramid Representation:We generate
a multi-scale representation ranging overS discrete
scales{ts}

S

s=1. On each scale, we apply the interest op-
erator Ã(x, t) to the 3D points represented in the depth
imageId. As basis for the computation on various sampling
densities, we construct a pyramid representationI3D

l of the
3D point image consisting ofL layers. We successively
subsample the layers by a factor of2 where we average
over nearby subsumed points.

Since the sampling layer varies with image location and
scale, we represent each scale in a pyramid ofL imagesIÃ

t,l

for each scalet.
Let x(i, j, l) := I3D

l (i, j) be the 3D point at image
location(i, j) at subsampling layerl. We evaluate the interest
operatorÃ at image location(i, j), scalet, and subsampling
layer l by considering neighborsN (i, j, l, k̂) within a k̂× k̂
image neighborhood

IÃ
t,l(i, j) =

∑

x′∈N (i,j,l,k̂) φ̃(x, x
′, t) x′

∑

x′∈N (i,j,l,k̂) φ̃(x, x
′, t)

, (8)

wherex := x(i, j, l) andk̂ ≥ k. The density normalized ker-
nel φ̃ involves the estimation of the local sampling densitypt
for the image locations and layers at which we evaluateÃ.
On each scale, the interest operator is only evaluated once
for each location in the original resolution at its optimal
sampling layer̂l(i, j, t).

2) Estimation of the Optimal Sampling Layer:Selecting
the optimal sampling layer for the evaluation of the interest
operator is crucial to obtain good approximations within the
specified image neighborhood (s. Fig. 2). If the resolution is
chosen too high, the samples within the image neighborhood
may only contain a fraction of the neighborhood within scale
range. The approximation error is then dominated by the
neglected samples with comparatively high weightφ̃. When
the local surface properties are approximated too sparsely,
important structure at higher frequencies may be omitted.

We define the expected local point densityρt(i, j, l) to
be the expected density of the points in the original res-
olution that we represent by thek × k image neighbor-
hoodN (i, j, l, k) on layerl:

ρt(i, j, l) := E(pt(i, j, l)) =
∑

x′∈N (i,j,l,k)

φ(x, x′, t) c(x′)

(9)
where x := x(i, j, l) and c(x′) is the number of points
subsumed on the layerl by the image location(i′, j′) that
corresponds tox′. Note, that the number of points may be

Fig. 4. Corners without scale-selection (left) and with scale-selection
(right).

less than square the subsampling rate if the depth image
contains invalid measurements. We determine the expected
density fromk2 point samples on layerl. This avoids the
inefficient calculation of the actual density over all points
within the original resolution.

At coarse image resolution, the estimated density approx-
imates the true density well, when there are enough samples
with diverse Gaussian weight within the image neighbor-
hood. We therefore require the density of the points within
the image neighborhood to achieve a minimum densityρmin.
When the image resolution is too fine-grained, only parts of
the surrounding samples with high weight are contained in
the image neighborhood. At such resolutions, the expected
density yields only a fraction of the true density.

For each image location and scale, we select the first
sampling layer̂l(i, j, t) at which the next higher resolution
drops significantly in expected density. By this, we find the
layer with lowest resolution at which the interest operator
is sufficiently well approximated within thek × k image
neighborhood.

B. Multi-Scale Blob Interest Points

Following the approach in Unnikrishnan et al., we detect
multi-scale interest points in scale-space maxima of the
function B(x, t). We compare each location(i, j, t) in the
scale-space with the neighbors within a range oft on the
same scale and on the neighboring scales. Alluding to the
notions of interest points in 2D images, we use the term
”blob” as a shorthand for this type of interest point.

C. Multi-Scale Corner Interest Points

We seek to detect interest points where the surface exhibits
strong local variation in normal orientation. For each corner,
we select a scale which describes its largest spatial extent.

1) Interest Point Detection:In regions of significant lo-
cal mean curvature, the interest operatorÃ(x, t) yields an
approximation of the surface normal atx. We measure the
local variation of the surface normals on a scalet with the



Fig. 5. Bottom: close view on detected corners without (left)and with
border ownership constraint (right). Top: depth image of thescene (red
rectangle marks viewed volume).

3D structure tensor

S(x, t) =
1

∑

x′∈N
φ(x, x′, t)

·

∑

x′∈N

φ(x, x′, t)
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 , (10)

whereN := N (i, j, l, k̂) is the k̂ × k̂ image neighborhood

of x and ñ(x) :=
2‖x−Ã(x,t)‖

t
n(x). By scaling the normal

at x with the scale-normalized displacement of the point,
the measure emphasizes regions of high curvature and is
comparable across scales.

The eigenvaluesλ1 ≥ λ2 ≥ λ3 and the corresponding
eigenvectorse1, e2, e3 of the structure tensor summarize
the local normal distribution atx. Regions with strong
local surface variation are indicated by high eigenvalues
in all three spatial directions. We therefore detect corners
at the spatial extrema of the determinant of the structure
tensorC(x, t) := det(S(x, t)) = λ1λ2λ3.

2) Scale Selection:We determine the scale of a corner
as the highest scale at which the corner exerts a spatial
extremum. After detecting corners on each scalets sepa-
rately, we prune corners on the next lower scalets−1 that
are positioned within a constant factorτ = 2/3 within the
scale range of the corner.

D. Rejection of Unstable Interest Points

Noisy depth measurements may cause bad localized ex-
trema along edges and ridges. Occlusions give rise to depth
discontinuities, where the interest operatorÃ estimate is
strongly influenced by border effects. Also, when parts of the
background are occluded virtual geometric structure appears.
We remove interest points caused by such effects through the
following means.

1) Significant Interest Points:We discard spurious ex-
trema at low blob and corner responses with thresholds

Fig. 6. Corners (blue) and blobs (red) detected in two indoorscenes (top:
office, bottom: corridor). Best viewed in color.

on the blob response functionB and the corner response
functionC, respectively.

2) Edge Responses:Surface ridges and edges appear
highly curved. Noisy depth measurements causes small fluc-
tuations in curvature and, hence, our method detects blobs
along such structure. We reject these interest points, since
they are not well localized. In order to identify blobs in
elongated structure, we measure cornerness of the mean
curvature. Similar to the Harris corner measure in intensity
images, we compare the eigenvaluesλmin, λmax of the
2D structure tensor in the local image neighborhood of
each interest point. We reject interest points, when the
ratio λmin/λmax of the eigenvalues is below a threshold
(set to0.15).

3) Depth Discontinuities and Border Ownership:At
depth discontinuities, the interest operatorÃ does not mea-
sure the actual mean curvature of the partially viewed
surface. We thus reject blobs close to depth discontinuities.

Occlusions cause virtual geometric structure in the back-
ground. Interest points in such structure can be identified
where depth discontinuities towards the foreground occur.
We filter corners at depth discontinuities that do not possess
border ownership. We test for the proximity of an interest
point to depth discontinuities within its support region by
tracking depth jumps in the image. It suffices to search in
the horizontal and the vertical directions.



Fig. 7. Corners (blue) and blobs (red) detected on a chair (left) and a
humanoid robot Nao (right). Best viewed in color.

V. EXPERIMENTS

We evaluate our approach on depth images obtained with a
3D laser-range finder (LRF) and a Microsoft Kinect camera.
The 3D LRF consists of a Hokuyo UTM-30LX mounted on a
pitch actuator. We preprocess the laser-range measurements
by removing interpolation effects at depth discontinuities.
Then, we apply a median filter of width11. We smooth the
3D point images with a Gaussian kernel with bandwidthσ =
0.01m in the k̂ × k̂ image neighborhood.

A. Qualitative Assessment

In the following, we use the settingsk = 21 and k̂ = 41.
The motivating example in Fig. 1 shows interest points
detected by our approach on ideal corner and blob-like
shapes. As can be seen, our approach detects interest pointsat
the correct spatial position and selects a scale which reflects
the spatial extent of the shapes.

Fig. 6 demonstrates the behavior of our interest point
detector on scans of typical indoor scenes. In the cluttered
office scene (top), corners and blobs detect salient geometric
features of foreground objects (for example, the back and
legs of chairs or corners of tables and monitors). The corridor
scene (bottom) is less cluttered. Here, the interest points
are detected in salient features of the building structure like
wall corners and doors. Salient geometric structure is also
discovered on objects such as a chair or a humanoid robot
Nao (s. Fig. 7).

B. Quantitative Evaluation

We use two measures of repeatability to evaluate our ap-
proach. Matching repeatability measures the frequency with
which corresponding interest points can be found between
images. Interest point overlap reflects the stability of the
interest points and the accuracy in spatial location and scale
between images.

Following the definition in [1], we compute the overlap
repeatability as the average overlap of corresponding inter-
est points. For this measure, correspondence is established
between interest points with largest non-zero overlap. We
determine the overlap as the ratio of the intersection to the

blobs corners
k/k̂ 7/13 21/41 7/13 21/41

office 0.20 (0.47) 0.16 (0.33) 0.37 (0.40) 0.38 (0.42)
corridor 0.24 (0.42) 0.24 (0.38) 0.39 (0.43) 0.42 (0.50)

box (d=0.6m) 0.09 (0.33) 0.31 (0.47) 0.43 (0.44) 0.50 (0.51)
box (d=1.0m) 0.02 (0.14) 0.45 (0.50) 0.46 (0.46) 0.46 (0.48)
box (d=1.4m) n/a 0.28 (0.45) 0.38 (0.40) 0.41 (0.43)
nao (d=0.6m) 0.22 (0.25) 0.43 (0.45) 0.41 (0.41) 0.42 (0.43)
nao (d=1.0m) 0.23 (0.26) 0.25 (0.36) 0.37 (0.37) 0.37 (0.37)
nao (d=1.4m) 0.24 (0.48) 0.10 (0.33) 0.33 (0.33) 0.34 (0.34)
chair (d=0.6m) n/a 0.16 (0.65) 0.49 (0.49) 0.50 (0.51)
chair (d=1.0m) n/a n/a 0.43 (0.43) 0.46 (0.46)
chair (d=1.4m) n/a n/a 0.38 (0.39) 0.39 (0.43)

TABLE I

BLOB AND CORNER OVERLAP(IN BRACKETS: OVERLAP FOR

MATCHABLE INTEREST POINTS) FOR VARYING IMAGE

NEIGHBORHOODSk AND k̂ AND OBJECT DISTANCES(d)

k/k̂ 7/13 11/21 21/41
office, avg. image size1040× 176.3 5.27 8.48 48.28

corridor, avg. image size1040× 222.4 4.78 8.61 61.59

TABLE II

COMPUTATION TIME IN SECONDS FOR VARYING IMAGE

NEIGHBORHOODSk AND k̂.

union of the support regions of the interest points. We define
the 3D sphere with scale radius around the interest point as
a point’s support region. As noted by Unnikrishnan et al., an
overlap of approx. 0.35 can be handled with a well designed
descriptor.

1) Efficiency-Accuracy Trade-off:We measure overlap
repeatability for several indoor scenes. For each scene we
captured 10 images with the 3D LRF. For the box and
nao scenes, we extract interest points from 8 scales rang-
ing from tmin = 0.04m to tmax ≈ 0.135m. We eval-
uate the other scenes with 8 scales fromtmin = 0.1m
to tmax ≈ 0.336m. Table I and II depict, how the image
neighborhoodsk and k̂ influence computational efficiency
and accuracy. While computation time decreases with the
neighborhood size, repeatability drops on our test datasets.
The experiments have been carried out on an HP Pavilion dv6
notebook with an Intel Core i7 Q720 processor. Note, that
our implementation may still be tuned for lower computation
times.

2) Noise Effects:Fig. 8 shows that overlap repeatability
increases with scale in the corridor dataset, especially for
corners. This is due to the fact that larger scales are more
robust against the noise inherent in the depth measurements.
On smaller scales, noise artifacts and low sampling density
induce spurious detections.

3) View Point Change:We further evaluate the repeatabil-
ity of our interest points with regard to view point changes
in experiments with ideal shapes for corners and blobs. We
recorded RGB-D images of a half sphere on a plane and
a corner on a cube with a Kinect camera from various
distances and view angles in the horizontal plane. For these
experiments, we choosek = 21 and k̂ = 41. Using visual



Fig. 8. Blob and corner overlap repeatability depending on scale on the corridor dataset for varying image neighborhoodsk / k̂.

Fig. 9. Blob (top) and corner (bottom) repeatability (left: matching, right:
overlap) wrt. view angle and distance change for a half sphere on a plane
and a corner on a cube.

markers and point cloud registration of the depth images,
we determine the view point change between the images. We
measure matching and overlap repeatability of the first image
interest point towards images from a wide range of view
points. As shown in Fig. 9, the matching repeatability is close
to one for large viewpoint changes. For corners, the average
overlap measure drops from high values of approx. 0.7 to
values of approx. 0.35 within 0.7 rad view angle change.
Blobs are less well localized and thus the overlap measure
is on average lower than for corners. Also, corners can be
seen within a larger view angle range than blobs.

VI. CONCLUSIONS

In this paper, we presented a new method to extract multi-
scale surface normal interest points (SNIPs) from depth
images. Our method detects interest points in regions with
high curvature, like corners and blob-like regions, on their
characteristic scale. Our interest point detection method
copes with irregular sampling density across the image
and occlusion effects. We achieve computational efficiency
by estimating for each image location and scale a lowest
resolution at which sufficient point samples are available.

The efficiency-accuracy trade-off is adjustable through the
size of the image neighborhoodk that is used to determine
the optimal resolution for computation.

In experiments, we demonstrate that our approach is
capable of extracting salient points in geometric structure.
We evaluated the repeatability of our interest points for var-
ious image neighborhood sizes and viewpoint changes. The
experiments indicate that our interest points are appropriate
for description and matching.

In on-going work, we further improve the run-time of our
interest point detector. Since all operations can be mappedto
a parallel processing architecture, we will implement our de-
tector on GPU, for instance using the CUV library [10]. We
will also develop efficient descriptors for our interest points.
Finally, our approach should find application for mapping,
scene understanding, and object recognition purposes.
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