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Interest Point Detection in Depth Images
through Scale-Space Surface Analysis

Jorg Stickler and Sven Behnke

Abstract— Many perception problems in robotics such as ob-
ject recognition, scene understanding, and mapping are tackled
using scale-invariant interest points extracted from intensity
images. Since interest points describe only local portions of
objects and scenes, they offer robustness to clutter, occlusis,
and intra-class variation.

In this paper, we present an efficient approximate algorithm
to extract surface normal interest points (SNIPS) in corners ad
blob-like surface regions from depth images. The interest points
are detected on characteristic scales that indicate their spatial
extent. Our method is able to cope with irregularly sampled,
noisy measurements which are typical to depth imaging devices.
It also offers a trade-off between computational speed and o ]
accuracy which allows our approach to be applicable in a wide Fig- 1. Characteristic examples for detected blobs (leit) @rners (right).
range of problem sets. We evaluate our approach on depth The interest points are detected on characteristic scatéshweflect their

. f basi tric sh | biect dspatial extent. For blobs the spatial extent correspontigetourvature radius
:?d%goerssgen;ssw geometnc shapes, more complex ODJECS, and yf yhe gyrface. Corners are extracted on their maximum spattaht.

I. INTRODUCTION

Interest points provide a compact representation of ima(%ﬁtf’1 without relying on a mesh parametrization. We apply
content. They describe only local parts of the observedesceH1€ir approach to noisy depth images from a single view
and, hence, offer robustness to clutter, occlusions, ama-in @Nd present approximations to achieve a trade-off between
class variation. For such properties, interest points die a Computational efficiency and accuracy.
vorable choice to solve perception problems in roboticqisuc In order to gain computational efficiency, our approach
as object recognition, scene understanding, and mapping.allows to specify an image neighborhood size for the com-
The computer vision community has developed efficierputations involved. Similar to intensity image algorithme
means for the extraction of scale-invariant interest ointouild a pyramid representation of the depth image. Range-
from intensity images. These approaches are often based $gnsing devices sample the observed surface irregulattty wi
multi-scale pyramid representations of the image, in whickarying sampling density throughout the depth image. Sam-
the image is successively subsampled with increasing.scaping density depends on sensor characteristics like angul
While methods to detect interest points on multiple scales iig¢solution as well as on distance to and impact angle on
point clouds and depth images have been developed, thég reflecting surface. To cope with the varying sampling
lack the computational efficiency of their intensity imagedensity, we propose to estimate at each image location and
counterparts. In intensity images, the interest operasogs scale an optimal lowest resolution for computation within
applied to the intensity values which are sampled on a 2the specified image neighborhood.
lattice, whereas in depth images, surface geometry is theOcclusions constitute a further difficulty for interest poi
quantity of interest. It is measured in the implicit form ofdetection in depth images from single views. Approaches to
the point cloud distribution such that the direct transfér ojnterest point detection in point clouds often assume that t
concepts from the image processing domain to depth imagesject is densely sampled in a complete view without holes.
is not possible. We propose means to take special care of occlusion effects.
. In this paper, we present an gfficient approximate alg_o— We evaluate our approach on depth images of basic
rithm to extract surface normal interest points (SNIPs) ileometric shapes, more complex objects, and indoor scenes.

corners and blob-like regions from depth images. We detegie gemonstrate the behavior of our interest point detector
these interest points on characteristic scales that it&ica,gjitatively, and measure its repeatability.

their spatial extent. Our method extends the approach of
Unnikrishnan et al. [1]. They derive an interest operator
that is based on convolving surfaces with Gaussian kern
on multiple scales. It is directly applied to the point clou

The remainder of this paper is organized as follows. After
short review of related work in Sec. I, we will introduce
jt?e concepts of multi-scale interest point detection inruno
ganized point clouds in Sec. Ill. We detail our approach in
All authors are with the Autonomous Intelligent Systems Grduipiver- Sec. IV and assess its quality in experimental evaluation in
sity of Bonn, Germany. Email: stueckler@ais.uni-bonn.de Sec. V.



Il. RELATED WORK However, for range-sensing devices, the sampling density

Various methods have been recently developed to e tr::xacltSO depends on the impact angle on the surface.
ou v y develop X Steder et al. [7] extract interest points from depth images

interest points from dense, complete-view point clouds on a. . .
- : without scale selection, based on a measure of impact angle
characteristic scale. The scale reflects the spatial extent

: . variation. Similar to our approach, they also reject urstab
the underlying geometric structure. . . S . .
Pauly et al. 121 f | ; i interest points in virtual geometric structure at occlasio
auly €t al. [2], for example, measure surlace varia IOﬂecently, they proposed the NARF feature descriptor [8] to
at a point by considering the eigenvalugs > X\ > A3

d : X . describe depth image interest points.
of the local sample covariance in thepoint neighborhood P 9 P
of the examined point. The scale is chosen to be the

neighborhoodn for which the variation measure attains a [1l. M ULTI-SCALE INTERESTPOINTS FROM

local extremum. As the variation measure is susceptible to IRREGULARLY SAMPLED POINT CLOUDS

noise, heuristics have to be applied to detect extrema with o ] ] )

satisfying robustness. Unnikrishnan et al. [1] derive a multi-scale interest opera

Novatnack et al. [3] extract multi-scale geometric interes_tor for irregularly sampled point clouds. First, they defare

points from dense point clouds with an associated triarllguléi1tegral operator which yields local mean curvature essa
connectivity mesh. In this approach geodesic distance bgf— the.unQerIylng ;urface. They normalize this operator for
tween points is computed from shortest paths through tﬁé\mplmg wregqlanty and .develop a scale .se.lecnon mecha-
mesh. They build a scale-space of surface normals given Wm to detect interest points on characteristic scales.

the mesh and derive edge and corner detection methods with
automatic scale selection. Our approach does not requireAa Multi-Scale Interest Operator for Smooth Surfaces
mesh for connectivity information and surface normals.
Unnikrishnan et al. [1] derive an interest operator and g . R that acts ond-dimensional surfaces with an
scale selection scheme for unorganized point clouds. Th ; . . 7
do not rely on connectivity information given by a mesh. souate_d ong-d|men3|onal scale parametdiis integral
In contrast to our approach, they extract geodesic dis!;anc%per""tor Is defined as
between points using disjoint minimum spanning trees in a
pre-processing stage. They present experimental results o Ala(s),t) = / o(s, u, t)o(u)du, 1)
complete views of objects without holes. r
Some approaches detect multi-scale interest points yghere in the 2D casd, is a smooth 2D curve given as a
depth images, since range-sensing devices obtain depth ifinction «(s) of distances. Using a normalized Gaussian
ages from a single view and such approaches do not requikernel function
registration of multiple views. Stable interest points exen )
be _used_to select points for sparse feature-based poind clou (5,1, 1) = (27#2)7% exp < (s —u) ) @)
registration. 2t2

Lo et al. [4] directly apply the interest point operator of ) ,
SIFT to the normalized depth image. While the intensity of gnd applying second order Taylor expansion to the 2D curve,

point is not affected by projection into the image, measuretfi€y obtain that the operatot approximately displaces the
depth naturally depends on the view point. In our approacRCiNt = on the curve in direction of the normalz) to the
the appearance of surfaces only changes implicitly in thgHrve and in proportion to its curvaturdz) in z, i.e.,
sampling densities for which we account. 9
Novatnack et al. [5] transfer the approach in [3] to depth Az, t) =~z + K(x)n(x)i 3)
images. They approximate geodesic distances by computing 2
shortest distances between points through the imagedattic This fact can be transfered to 3D surfaces by considering
Surface normals are computed by triangulating the rangge 2p normal curved' in a pointz, which result from
image. They evaluate their approach for the feature—basgqersecting the surface with normal plandg that are or-
registration of depth images with high sampling density a”ﬂ'nogonal to the tangent plane at an anfjte some reference

low noise. In our approach, we detect multi-scale corne- an,grmal plane. Lety be parametrized by function(s)
blob-like interest points on surfaces. We explicitly take t Using eq. (3) it follows that

sampling density at each depth image location into account.

The approach is based on an integral operatarR? x

Flint et al. [6] generate a 3D voxel image which represents 1 2
the sampling density of the depth image. By building a scale- Az, ) =z + Py /“(I’ 0) n(z) 9 df
space representation of the 3D image analogously to 2D 2 (4)
images, they find scale-space maxima in sampling density. =z + H(z) n(z) 9

They use the Determinant of Hessian as interest operator. In
their approach, Flint et al. assume that changes of sampli&jmilar to the 2D cased displaces the point normal to the
density are only caused by changes of surface geometBD surface in proportion to the mean curvatdiéz) at .



B. Invariance to Irregular Sampling

In the derivation of the operatad, we assume uniform
sampling of the surface. Real depth sensing devices, haweve
sample surfaces irregularly. Unnikrishnan et al. propase t
account for this sampling irregularity by normalizing therk
nel ¢ and, thus, the operatot for the sampling distribution:

Ala(s), ) = J(: ; /F 3(s,u, a(u)du,
] oo
d(s,t) :/_ o(s,u,t)pt(u)du, (5)
~ _ 9(s,u,t)
s wt) = pw)’

wherep, (s) estimates the sampling distribution athrough
kernel density estimation with bandwidth

pe(s) = / (s, u, t)p(u)du. (6) Fig. 2. For each scalg we determine the layerwith lowest resolution at
which the interest operator is sufficiently well approxintaly the samples

. within a specifiedk x k& image neighborhood (green/gray dots). The blue

C. Scale Selection circles indicate the3t range around the query point (red cross). Due to the
Unnikrishnan et al. motivate the characteristic scale of affxed image neighborhood, oversampling (layer 1) and undersampling

interest point to be the radius of curvature in the case Jpvert + 1) reduce approximation quality.

a perfect sphere. In order to detect interest points on thgi
characteristic scale, they define the scalar function

2 Hx - A(x,t)H - 2 Hx - A(x,t)H

B(z,t) = ; - ;

(7)
which attains local extrema in scale-spacetgt,.(z) =
1
H(z)
IV. EFFICIENT DETECTION OFMULTI-SCALE INTEREST

POINTS IN DEPTHIMAGES ) N
o . . . Fig. 3. Mean curvature scaled normals (left, RGB encodes 3€&xtibn,
Unnikrishnan et al. determine the geodesic distance begaturation in proportion to mean curvature) and corner respgright).

tween points on a surface in a time-consuming preprocessing

stage. They also consider the complete point neighborhood

in the highest available resolution on all scales. In ordenterest operator measures local surface variation. Weaetxt

to gain computational efficiency, we make two significantorners on scales that correspond to the largest extentof th

approximations to this algorithm. First, we approximatdeature.

geodesic distance with Euclidean distance between points. )

Second, we tailor the approach to depth images and allow fo Depth Image Pyramid

specify an image neighborhood in which the interest operato We seek to transfer concepts from the 2D image process-

is evaluated. Since the sampling density varies througtheut ing domain to achieve computational efficiency. In multi-

image with distance and view angle onto the viewed surfacecale representations, images are successively low-pass fi

we apply the operator on appropriate sampling rates of thiered. Since low-frequency structure in images can be ap-

depth image. We propose a mechanism to select a lowgsbximated sufficiently well with adequately small samglin

image resolution at each image location to approximate thdensities, subsampling is applied to reduce the computtio

interest operator well. cost with increasing scale. Such efficient pyramid represen
In depth images, occlusions constitute a further difficultyations are core to many efficient interest point detection

for interest point detection. When surfaces are partially o@lgorithms in 2D images like SIFT [9], for example.

cluded, virtual geometric structure appears in the backugo  Our interest operatafl convolves surfaces with a Gaussian

at the edges of shadows. Furthermore, surfaces artificialkgrnel that measures distance in the coordinates of pdiats t

appear highly curved at depth discontinuities. We preseate irregularly sampled in the depth image. This contrasts

methods to recognize false detections of interest points imith typical convolution operators in intensity images,esé

virtual structure. distance is measured in regularly sampled image coordinate
Our third enhancement to the approach of Unnikrishnan &loreover, depth images sample surfaces with varying den-

al. is a detector for sharp corners on characteristic scales sity throughout the image. This sampling density not only



depends on measurement characteristics of the sensor |
angular resolution, but also on distance to and impact ang
on the reflecting surface.
For this reason, we estimate for each 2D image loce
tion (,7) and scale the subsampling Iayeir(i,j7 t) which
provides the best surface representation within a spec,:,j&_
fied k x k image neighborhood. Smaller image neighborhoodz=:
achieve faster computation but crude approximations,eNhi‘ vonvee
larger image neighborhoods trade better approximations fa"——"-‘" NaSed L
lower frame rates. M

. . . e -
1) Multi-Scale Pyramid RepresentationWWe generate e
a mUItI-Scﬁle representation ranging oOves _dlscrete ig. 4. Corners without scale-selection (left) and with Iseelection
scales{ts},_,. On each scale, we apply the interest opgight).
erator A(z,t) to the 3D points represented in the depth
imageZ?. As basis for the computation on various sampling

densities, we construct a pyramid representaigh of the |o5q than square the subsampling rate if the depth image
3D point image consisting of layers. We successively ¢qniaing jnvalid measurements. We determine the expected
subsample the layers by a factor 2fwhere we average engity fromk?2 point samples on layet. This avoids the

over nearby subsumed points. - _ _ inefficient calculation of the actual density over all psint
Since the sampling layer varies with image location an%ithin the original resolution

: o i
scale, we represent each scale in a pyramid ahagesZ; At coarse image resolution, the estimated density approx-

for each scale. imates the true density well, when there are enough samples

oo o el ot ot 1 s W GerSe GaUSSEn WeGHL Wi the image reighbor
bJ piing fay hood. We therefore require the density of the points within

operatorA at image locatior{i, ), scalet, and subsampling the image neighborhood to achieve a minimum density.

:sqy:éé %igﬁg‘??he;:)ndg neighbord/ (i, j, 1 k) within a k x k When the image resolution is too fine-grained, only parts of
~ the surrounding samples with high weight are contained in
Zz,eN(i’j,l’fc) oz, 2’ t) o the image neighborhood. At such resolutions, the expected
S (a1 density yields only a fraction of the true density.
= EN(ijLk) PLT T For each image location and scale, we select the first
wherex := z(i, j,1) andk > k. The density normalized ker- sampling Iayer[(i,j,t) at which the next higher resolution
nel ¢ involves the estimation of the local sampling dengity drops significantly in expected density. By this, we find the
for the image locations and layers at which we evaludte layer with lowest resolution at which the interest operator
On each scale, the interest operator is only evaluated onsesufficiently well approximated within thé x k& image
for each location in the original resolution at its optimalneighborhood.
sampling layeri(i, j, ).
2) Estimation of the Optimal Sampling Laye8&electing
the optimal sampling layer for the evaluation of the interesB. Multi-Scale Blob Interest Points
operator is crucial to obtain good approximations withia th
specified image neighborhood (s. Fig. 2). If the resolut®n i s i ) ) i
chosen too high, the samples within the image neighborhodgulti-scalé interest points in scale-space maxima of the
may only contain a fraction of the neighborhood within scald!"ction B(z.t). We compare each locatiofi, j, t) in the
range. The approximation error is then dominated by th%cale-space with the nelgh.bors vy|th|n a ranget mcn the
neglected samples with comparatively high weightVhen S@me scale_ and on th_e nef*lghbor_lng scales. Alluding to the
the local surface properties are approximated too sparseﬁ}é’t'ofs of interest points n 2D images, we use the term
important structure at higher frequencies may be omitted. P/0P” as a shorthand for this type of interest point.
We define the expected local point densjtyi, j,1) to
be the expected density of the points in the original €S Multi-Scale Corner Interest Points
olution that we represent by the x k£ image neighbor-

I/, j) =

Following the approach in Unnikrishnan et al., we detect

hood N (i, 5, 1, k) on layer!: We seek to detect interest points where the surface exhibits
i d D) = E(p(i, 1) = 2,2 1) o’ strong local variation in normall oneptatlon. For ea(_:h &o/n
pili ;1) (Pe(d, 3,1)) T,GNE(;j LE) i ) ela) we select a scale which describes its largest spatial extent
o 9) 1) Interest Point Detectionin regions of significant lo-
where z := z(i,4,1) and ¢(z’) is the number of points cal mean curvature, the interest operatir,t) yields an

subsumed on the layérby the image locatior{i’, ;') that approximation of the surface normal at We measure the
corresponds ta’. Note, that the number of points may belocal variation of the surface normals on a scaleith the



Fig. 5. Bottom: close view on detected corners without (leftd with
border ownership constraint (right). Top: depth image of seene (red
rectangle marks viewed volume).

3D structure tensor

1
S($7t) - ZI’EN ¢($,$/7t) '

n2 NgNy Nzl
Z oz, 2’ t) | nany ﬁ§ nyn, |, (10) Fig. 6. Corners (blue) and blobs (red) detected in two indmenes (top:
= ~ office, bottom: corridor). Best viewed in color.

a' €N Ngfy  fyn, 02

where N := N(i, 5,1, k) is thek x k image neighborhood

T S T
- t

of z andn(x) : (x). By scaling the normal the blob functio and th
at x with the scale-normalized displacement of the pointOn € Dlob response functioly an € corner response

the measure emphasizes regions of high curvature andfﬁ’gICtlon C, respectively.

comparable across scales. 2) Edge ResponsesSurface ridges and edges appear
The eigenvalues\; > X > A3 and the corresponding highly curved. Noisy depth measurements causes small fluc-
eigenvectorsey, e2,e3 Of the structure tensor summarizetyations in curvature and, hence, our method detects blobs
the local normal distribution atr. Regions with strong ajong such structure. We reject these interest pointsgsinc
local surface variation are indicated by high eigenvaluegey are not well localized. In order to identify blobs in
in all three spatial directions. We therefore detect C@nelglongated structure, we measure cornerness of the mean
at the spatial extrema of the determinant of the structurgrvature. Similar to the Harris corner measure in intgnsit
tensorC(z,t) := det(S(x,t)) = A A2As. images, we compare the eigenvaluks,,, Amaz Of the
2) Scale SelectionWe determine the scale of a corner2p structure tensor in the local image neighborhood of
as the highest scale at which the corner exerts a spatigdch interest point. We reject interest points, when the

extremum. After detecting corners on each sdalesepa- ratio A,/ Amee Of the eigenvalues is below a threshold
rately, we prune corners on the next lower scale; that (set t00.15).
are positioned within a constant facter= 2/3 within the

scale range of the corner. 3) Depth Discontinuities and Border OwnershipAt
depth discontinuities, the interest operatbdoes not mea-
D. Rejection of Unstable Interest Points sure the actual mean curvature of the partially viewed

Noisy depth measurements may cause bad localized Syrface. We thus reject blobs close to depth discontirauitie

trema along edges and ridges. Occlusions give rise to depthOcclusions cause virtual geometric structure in the back-
discontinuities, where the interest operatdr estimate is ground. Interest points in such structure can be identified
strongly influenced by border effects. Also, when parts ef thwhere depth discontinuities towards the foreground occur.
background are occluded virtual geometric structure ajgpeaWe filter corners at depth discontinuities that do not passes
We remove interest points caused by such effects through therder ownership. We test for the proximity of an interest
following means. point to depth discontinuities within its support region by

1) Significant Interest PointsWe discard spurious ex- tracking depth jumps in the image. It suffices to search in
trema at low blob and corner responses with thresholdbe horizontal and the vertical directions.



blobs corners
k/k 7/13 21/41 7/13 21/41

office 0.20(0.47)| 0.16(0.33)| 0.37(0.40)| 0.38(0.42)
corridor 0.24(0.42) | 0.24(0.38)| 0.39(0.43)| 0.42(0.50)
box (d=0.6m) | 0.09(0.33)| 0.31(0.47)| 0.43(0.44)| 0.50(0.51)
box (d=1.0m) | 0.02(0.14) | 0.45(0.50)| 0.46(0.46)| 0.46(0.48)
box (d=1.4m) n/a 0.28(0.45) | 0.38(0.40) | 0.41(0.43)
nao (d=0.6m) | 0.22(0.25)| 0.43(0.45)| 0.41(0.41)| 0.42(0.43)
nao (d=1.0m) | 0.23(0.26) | 0.25(0.36) | 0.37(0.37)| 0.37(0.37)
nao (d=1.4m) | 0.24(0.48) | 0.10(0.33)| 0.33(0.33)| 0.34(0.34)

chair (d=0.6m) n/a 0.16 (0.65) | 0.49(0.49)| 0.50(0.51)

chair (d=1.0m) n/a n/a 0.43(0.43) | 0.46(0.46)

chair (d=1.4m) n/a n/a 0.38(0.39) | 0.39(0.43)
TABLE |

BLOB AND CORNER OVERLAP(IN BRACKETS: OVERLAP FOR
MATCHABLE INTEREST POINTS FOR VARYING IMAGE

Fig. 7. Corners (blue) and blobs (red) detected on a chdit) @ad a N
humanoid robot Nao (right). Best viewed in color. NEIGHBORHOODSK AND k AND OBJECT DISTANCES(d)

V. EXPERIMENTS _ _ k/k | 7/13 | 11/21 | 21/41
office, avg. image siz&040 x 176.3 ‘ 5.27 ‘ 8.48 ‘ 48.28

We evaluate our approach on depth images obtained with acorridor, avg. image siz¢040 x 222.4 | 4.78 | 8.61 | 61.59
3D laser-range finder (LRF) and a Microsoft Kinect camera.
The 3D LRF consists of a Hokuyo UTM-30LX mounted on a
pitch actuator. We preprocess the laser-range measurement
by removing interpolation effects at depth discontinsitie
Then, we apply a median filter of widthl. We smooth the
3D point images with a Gaussian kernel with bandwidth:

0.01m in the k x k image neighborhood. union of the support regions of the interest points. We define
the 3D sphere with scale radius around the interest point as
. a point’s support region. As noted by Unnikrishnan et al., an
In the following, we use the settings= 21 andk = 41.  overlap of approx. 0.35 can be handled with a well designed
The motivating example in Fig. 1 shows interest pointglescriptor.
detected by our approach on ideal corner and blob-like 1) Efficiency-Accuracy Trade-offWe measure overlap
shapes. As can be seen, our approach detects interestaioint@peatability for several indoor scenes. For each scene we
the correct spatial position and selects a scale which tsflegaptured 10 images with the 3D LRF. For the box and
the spatial extent of the shapes. nao scenes, we extract interest points from 8 scales rang-
Fig. 6 demonstrates the behavior of our interest poinhg from t,,,, = 0.04m t0 t,e. ~ 0.135m. We eval-
detector on scans of typical indoor scenes. In the clutteregthte the other scenes with 8 scales fromy, = 0.1m
office scene (top), corners and blobs detect salient gemmetio ¢,,,, ~ 0.336m. Table | and Il depict, how the image
features of foreground objects (for example, the back angkighborhoods: and & influence computational efficiency
legs of chairs or corners of tables and monitors). The corrid and accuracy. While computation time decreases with the
scene (bottom) is less cluttered. Here, the interest pointgighborhood size, repeatability drops on our test dagaset
are detected in salient features of the building structikee | The experiments have been carried out on an HP Pavilion dv6
wall corners and doors. Salient geometric structure is alswtebook with an Intel Core i7 Q720 processor. Note, that
discovered on objects such as a chair or a humanoid robeir implementation may still be tuned for lower computation
Nao (s. Fig. 7). times.
2) Noise Effects:Fig. 8 shows that overlap repeatability
increases with scale in the corridor dataset, especially fo
We use two measures of repeatability to evaluate our aperners. This is due to the fact that larger scales are more
proach. Matching repeatability measures the frequendy witobust against the noise inherent in the depth measurements
which corresponding interest points can be found betweddn smaller scales, noise artifacts and low sampling density
images. Interest point overlap reflects the stability of thinduce spurious detections.
interest points and the accuracy in spatial location antesca 3) View Point ChangeWe further evaluate the repeatabil-
between images. ity of our interest points with regard to view point changes
Following the definition in [1], we compute the overlapin experiments with ideal shapes for corners and blobs. We
repeatability as the average overlap of corresponding-interecorded RGB-D images of a half sphere on a plane and
est points. For this measure, correspondence is estadliskee corner on a cube with a Kinect camera from various
between interest points with largest non-zero overlap. Wiistances and view angles in the horizontal plane. For these
determine the overlap as the ratio of the intersection to trexperiments, we choose = 21 and k = 41. Using visual

TABLE I
COMPUTATION TIME IN SECONDS FOR VARYING IMAGE
NEIGHBORHOODSK AND k.

A. Qualitative Assessment

B. Quantitative Evaluation
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Fig. 8. Blob and corner overlap repeatability depending @aleson the corridor dataset for varying image neighborhdog(sfc.
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The efficiency-accuracy trade-off is adjustable through th
size of the image neighborhoddthat is used to determine
the optimal resolution for computation.

In experiments, we demonstrate that our approach is
capable of extracting salient points in geometric struectur
We evaluated the repeatability of our interest points far va
ious image neighborhood sizes and viewpoint changes. The
experiments indicate that our interest points are appatgri
for description and matching.

In on-going work, we further improve the run-time of our
interest point detector. Since all operations can be mapped
a parallel processing architecture, we will implement oex d
tector on GPU, for instance using the CUV library [10]. We
will also develop efficient descriptors for our interestmisi
Finally, our approach should find application for mapping,
scene understanding, and object recognition purposes.

Fig. 9. Blob (top) and corner (bottom) repeatability (left:torang, right:
overlap) wrt. view angle and distance change for a half sploera plane
and a corner on a cube.

markers and point cloud registration of the depth imagesi1]
we determine the view point change between the images. We
measure matching and overlap repeatability of the first @anag )
interest point towards images from a wide range of view

points. As shown in Fig. 9, the matching repeatability iselo (3l
to one for large viewpoint changes. For corners, the averagg;
overlap measure drops from high values of approx. 0.7 to

values of approx. 0.35 within 0.7 rad view angle change..
Blobs are less well localized and thus the overlap measure
is on average lower than for corners. Also, corners can be
seen within a larger view angle range than blobs. (6]

VI. CONCLUSIONS

In this paper, we presented a new method to extract multif7]
scale surface normal interest points (SNIPs) from depth
images. Our method detects interest points in regions Wmﬂg]
high curvature, like corners and blob-like regions, on rthei
characteristic scale. Our interest point detection method
copes with irregular sampling density across the imag 9
and occlusion effects. We achieve computational efficienc
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