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Abstract— A good motion model is a prerequisite for many
approaches to simultaneous localization and mapping. Without
an absolute reference, it is however difficult to prevent drift
when estimating motion. To prevent orientation drift, our
approach exploits typical features of indoor environments:
Straight walls that are parallel or orthogonal to each other.

Our idea is to detect walls in monocular depth measurements
and to correct odometry obtained from matching successive
images and from inertial measurements, such that the observed
walls are aligned with the main orientation estimated from the
map that is being built.

The experimental results indicate that orientation drift can
be prevented and orientation uncertainty can be reduced greatly
when applying the proposed orthogonal wall correction. This
can make the difference between reliable mapping and failure.

I. INTRODUCTION

A good robot motion model is a prerequisite for

many approaches to simultaneous localization and map-

ping (SLAM) [1], [2]. While for wheeled robots, odometry

measurements can be obtained easily from wheel encoders,

tracked and legged robots frequently lack good odometry.

Moreover, even for wheeled robots, the odometry mea-

surements for the robot heading are less reliable than for

the robot displacement. When building maps, these motion

measurement errors accumulate and may lead to significant

pose errors that prevent the closing of loops.

While for unstructured environments, the closing of loops

is the only chance to correct such orientation errors, typical

indoor environments contain more structure that can be

exploited for the continuous correction of orientation errors.

Our idea is to detect walls in monocular depth measurements

and to correct odometry, obtained from matching successive

images and from an inertial measurement unit, such that

the observed walls are aligned with the main orientation

estimated from the map that is being built.

The key assumptions of our approach are that a main

orientation of the walls exists in the environment and that

it can be extracted reliably both from the map and from the

current depth measurements. As our experiments show, these

assumptions are realistic for typical indoor environments that

follow common architectural rules. The proposed orthogonal

wall correction can be applied to normally distributed pose

estimates that are commonly used in EKF-based [3] ap-

proaches to localization and SLAM. Robot motion in particle

filters [4] is also frequently approximated using Gaussians,

resulting in Gaussian pose estimates to sample from [5].
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The orientations of the poses are corrected towards the

registration between visually measured main orientation and

the building main orientation.

The remainder of the paper is organized as follows. After

reviewing some of the related work, we describe in Sec. III

the measurement of depth with monocular images. The

estimation of robot motion from an inertial measurement

unit and from consecutive depth measurements is detailed

in Sec. IV. Sec. V covers our main contribution: The

correction of orientation estimates based on matching the

main orientation of the current measurement to the main

orientation of the building. We evaluated our approach using

real-world image sequences. The results reported in Sec. VI

indicate that orientation uncertainty can be reduced greatly

when applying the proposed orthogonal wall correction.

II. RELATED WORK

The idea to exploit the typical orthogonal structure of

indoor environments in order to simplify localization and

SLAM has been investigated by some research groups in

the last years. For example, a rather specific approach has

been proposed by Schröter et al. [6]. They extract the main

orientation from quadratic floor tiles in order to correct

odometry towards the main orientation of the building. Also

application-specific is the method by Jensfelt et al. [7], who

applied geometric constraints to the trajectories generated by

a wall-following robot. This post-processing effectively cor-

rected orientation drift. Another approach has been proposed

by Newman et al. [8]. In a post-processing step for SLAM

they replace, in the generated map, almost parallel lines with

parallel ones and almost orthogonal ones with orthogonal

ones.

In contrast to the previous approaches, OrthoSLAM,

proposed by Nguyen et al. [9], relies on a preprocessing

step. The method detects line features in horizontal range

scans and registers them to the main orientation of the

building. This reduces SLAM to a linear 2D problem. The

OrthoSLAM approach has been applied recently to 3D range

scans, where orthogonal corners are detected and used as

features [10]. Another 3D method is orthogonal surface

assignment, proposed by Kohlhepp et al. [11]. This approach

recovers the building coordinate system and matches planes

to it. It is used for pose tracking in the inner loop of 3D

SLAM that is based on elastic view graphs.

Common to the above approaches is that higher-level fea-

tures, such as walls and corners, are matched to such features

of the map being built. This is problematic in situations

where an area of the environment is explored for the first

time, because the features in the map in these areas are not
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Fig. 1. Monocular depth measurement. Starting from the horizon in
the wide-angle camera image (left), vertical line projections are tracked
downwards until the segmented floor (green) is reached. The camera’s
projective function is inverted to convert the detected wall-floor transitions
into egocentric depth measurements, shown on the right in blue. The red
points indicate the variance of the depth measurements.

stable yet. Our approach avoids these problems by fitting line

segments to the depth measurements that are used to estimate

the main orientation of the depth measurement, without

adding them to the map. In our system, map construction is

a separate process that relies mainly on other visual features.

III. MONOCULAR DEPTH MEASUREMENTS

Camera-based approaches to SLAM are becoming increas-

ingly popular as small inexpensive cameras are part of many

mobile devices, and most autonomous mobile robots are

equipped with cameras. Visual SLAM is particularly useful

in man-made environments, as they are designed for visual

navigation.

In our system, we use a wide-angle camera to capture

images in frontal direction. The camera has a 140◦×90◦

field-of-view and captures WVGA color images at a rate of

10Hz. The camera moves parallel to the floor at a height of

1m. Its pose has three degrees of freedom: (x, y) position

and orientation θ. The camera is tilted in pitch-direction

23.5◦ downwards, which results in a vertical field-of-view

of 21.5◦ above the horizon and of 68.5◦ below the horizon.

Its projective function and radial distortion parameters are

determined in advance. Fig. 1 shows a typical image captured

in our test environment, the corridors of our office building.

In typical indoor environments, the floor can be easily

distinguished from the walls by simple features, such as

color or texture. We segment the hardwood floor in our

test environment using its color in YUV space. Relaxation

labeling [12] makes sure that only larger structures are

segmented as floor. A connected component analysis ensures

that the segmented floor is connected to the region directly

in front of the robot.

Fig. 1 also shows how vertical lines are tracked downwards

from the horizon to localize the wall-floor transition. The

detected transitions are transformed into a camera-centric

metric coordinate system by inverting the camera’s projective

function. First, the intrinsic camera distortion is inverted

numerically [13]. Then, angle and distance can be computed

by linear projection of the detected transitions to the floor

plane. Variance in the depth measurements is approximated

from variance due to perturbations in the camera pitch angle,

incorrect floor segmentation, and variance of depth estimates

in a local neighborhood. The resulting depth measurements

are depicted on the right side of Fig. 1. An additional

extraction confidence in [0, 1] for depth measurements is

estimated based on floor segmentation quality and local depth

variance.

IV. MOTION ESTIMATION

In our system, we do not have control inputs or odometry

sensors that could be used to estimate the camera motion.

Instead, our robot is equipped with an inertial measurement

unit that measures linear accelerations in the horizontal plane

and turning speed around the vertical axis. Integrating linear

accelerations to a velocity estimate yields a drift that we

correct using visual reference measurements. We use the

speed estimated from matching successive depth images as

reference.

A. Inertial Motion Estimation

An inertial measurement unit (IMU) delivers information

about the attitude of the sensor and about sensor motion. Our

IMU measures linear accelerations and turning rates on three

orthogonal axes. As the robot moves in a horizontal plane, we

can interpret turning rates around the vertical (yaw) axis and

and horizontal linear accelerations as motion information.

When the IMU slightly deviates from the horizontal, its

linear acceleration sensors measure fractions of gravity in

addition to the acceleration indicating sensor motion. As

accelerations are integrated to velocities, slight deviations

from the horizontal would yield a significant velocity drift.

To avoid this effect, after an initial calibration phase, the

acceleration that is due to gravity is removed from the

measured linear accelerations.

B. Visual Motion Estimation

In addition to the inertial motion estimate, we also estimate

robot motion from matching successive depth images. Let

st = (xt, yt, θt)
T and st−1 = (xt−1, yt−1, θt−1)

T be the

robot poses at times t and (t− 1), respectively. Pose st can

be obtained by translating pose st−1 by ∆p and then rotating

by ∆θ, i.e. θt = θt−1 +∆θ and (xt, yt)
T = (xt−1, yt−1)

T +
R(θt−1)∆p. Here, R(θ) denotes a 2D rotation by θ around

the origin.

A stationary point Q = (qx, qy) is observed at times t

and (t− 1) in the depth images at camera-centric Cartesian

positions qt and qt−1, respectively. The global position Q

is then

Q = (xt−1, yt−1)
T +R(θt−1)qt−1 and

Q = (xt, yt)
T +R(θt)qt.

Consequently, qt−1 = R(∆θ)qt + ∆p.

We transform the depth images into Cartesian point sets

Qt−1 = {qt−1,k}Kk=1 and Qt = {qt,k}Kk=1, where k

increases from left to right. Only the points for which depth

could be measured with high confidence are used. We follow

the iterative closest point (ICP) approach [14] to determine

Rotation R := R(∆θ) and Translation ∆p that minimizes
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the quadratic registration error between the two point sets:

E(R,∆p)=
1

K

K∑

k=1

‖Rqt,k+∆p − Π(Rqt,k+∆p,Qt−1)‖2
.

Function Π(q,Q) computes a correspondence for point

q in the polyline described by point set Q. Because of the

discrete sampling of points in the depth measurements, the

point sets Qt−1 and Qt correspond to different global po-

sitions. Assuming local linearity between neighboring depth

measurements, we use a point-to-line metric in function Π
as follows. For a point q, we find the closest point q′

k in Q.

We make sure that the distance between q and q′

k is below a

threshold. For the direct neighbors q′

k±1 that are less than a

maximal distance away from q′

k, we project q onto the line

spanned by q′

k and q′

k±1. If the projection π lies between

the line-spanning points and the Euclidean distance between

q and its projection is below a threshold, Π delivers for q

this projection: π := Π(q,Q).
We denote with C := {qc ∈ Qt}Cc=1 the set of C points

qc ∈ Qt, for which projection πc := Π(qc,Qt−1) exists.

P := {πc}Cc=1 denotes the corresponding set of projections.

To determine rotation and translation that registers the

point sets C and P , we remove the means of the point sets:

qc := qc −
1

C

C∑

c=1

qc

︸ ︷︷ ︸

=:µq

, πc := πc −
1

C

C∑

c=1

πc

︸ ︷︷ ︸

=:µπ

.

Singular value decomposition of

W =

C∑

c=1

qcπ
T
c = USV T

yields the optimal rotation R = UV T and the optimal

translation ∆p = µπ −Rµq.

The registration procedure is iterated until the estimated

transformation converges to zero or a maximal number of

iterations is reached. Points in Qt are transformed with the

rotation R and the translation ∆p computed in the previous

iteration. The first iteration of ICP is initialized with the

current velocity estimate v = (vx, vy, ω)T (see Sec. IV-C).

In addition to the transformation estimate itself, we also

need an estimate of its certainty in order to be able to fuse it

with other measurements in a sound way. The certainty shall

reflect not only the certainty of the depth measurements, but

also the fact that some of the three dimensions might not be

observable.

We express the certainty of the visual motion estimate as

covariance for rotation R and translation ∆p. To compute

the covariance, we follow the approach recently proposed

by Censi [15]. Let m := (∆x,∆y,∆θ)T and let n :=
(qt−1,1, . . . ,qt−1,K ,qt,1, . . . ,qt,K)T . The dependence of

the error on m is denoted E(m) := E(R(∆θ),∆p). The

covariance Σm is now approximated as follows:

Σm ≈
(
∂2E

∂m2

)−1
∂2E

∂n∂m
Σn

∂2E

∂n∂m

T (
∂2E

∂m2

)−1

.

Fig. 2. Two examples of visual motion estimation. The delta between
the poses of the previous time step (blue circle) and the current time step
(green circle with heading indicator) corresponds to the transformation that
maps depth measurements of the current time step (blue dots) onto depth
measurements of the previous time step (red circles). The blue lines indicate
the projections of the current measurements found in the first iteration of
ICP. The final transformation is indicated by the green dots. The covariance
estimate of the transformation is indicated by its 2σ position range (black
ellipses) and by its 2σ orientation range (green hashed lines). Bottom: The
elongated covariance ellipse reflects high pose uncertainty along the corridor.

The second derivatives needed above can be computed in

closed form. If stochastic independence between the point

observations is assumed, then Σn is diagonal, which simpli-

fies the computations.

The output of the described method is a Gaussian estimate

((∆x,∆y,∆θ)T ,Σm) of the robot motion that leads from

pose st−1 to pose st. Fig. 2 illustrates the behavior of visual

motion estimation for two typical situations. In the lower

part of the figure, it is clearly visible that the covariance

reflects the uncertainty of motion estimation that arises from

the missing measurements orthogonal to the corridor in front

of the robot.

C. Fusion of Motion Estimates

We maintain a Gaussian velocity estimate (µv,t,Σv,t) that

reflects both the acceleration estimated from the IMU and

the velocities estimated from the camera. To do so, we call

the IMU accelerations at := (at,x, at,y, at,ω)T , where the

angular acceleration is approximated by the difference of the

current and the previous turning rate at,ω = (ωt−ωt−1)
∆t .

The approximately linear state transition function

vt = vt−1 + ∆t at + ǫt, ǫt ∼ N (0, Rvt )

models the change of the velocity vt−1 through the accel-

eration at in discrete steps. The state transition is disturbed

by Gaussian noise.
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The visual motion estimation contributes translation ∆p =
(∆x,∆y)T , orientation change ∆θ, and the transformation

covariance Σm. The depth image transformation is used as

an observation of the velocity zvt = 1
∆t (∆x,∆y,∆θ)

T . The

covariance Qvt = 1
∆t2 Σm of the velocity observation is

obtained by first-order error propagation from the estimated

pose deviation covariance Σm.

The linear observation model

zvt = vt + δt, δt ∼ N (0, Qvt )

explains zvt as observation of the current velocity, disturbed

by Gaussian noise.

A Kalman filter predicts (µv,t,Σv,t), based on the previous

velocity estimate (µv,t−1,Σv,t−1):

µv,t = µv,t−1 + at,

Σv,t = Σv,t−1 +Rvt .

To compute the new velocity estimate (µv,t,Σv,t), the pre-

diction is corrected with the current velocity observation zvt :

K = Σv,t(Σv,t +Qvt )
−1,

µv,t = µv,t−1 +K(zvt − µv,t−1),

Σv,t = (I −K)Σv,t−1.

V. ORTHOGONAL WALL CORRECTION

As both the IMU and the depth measurements lack any ab-

solute reference in the 3D pose space, the poses obtained by

integrating the estimated velocities are subject to drift. The

drift in the robot orientation can be eliminated by exploiting

the typical structure of indoor environments: Straight walls

that are parallel or perpendicular to each other and hence are

compatible with the main orientation of the building.

Our approach is to estimate both the main orientation of

the walls in the current depth measurement and the main

orientation of the walls in the map that is being built.

This allows for continuous correction of estimated poses

towards an alignment between both main orientations. Such

an orthogonal wall correction greatly reduces orientation un-

certainty and hence essentially reduces trajectory estimation

to the two Cartesian coordinates.

A. Estimating the Main Orientation of the Building

The main orientation of the building coordinate system

is represented as angle ψ ∈
[
0, π2

)
. This means that the

orientations ψw of most wall segments should be parallel to

or orthogonal to ψ: Ψ := {ψ − π
2 , ψ, ψ + π

2 , ψ + π}.

To estimate the main orientation of a map that represents

the building, we treat the orientations ψw1:W
of the W wall

segments w1:W in the map as observations of the main

orientation of the building. We assume that the observations

are disturbed by zero-mean Gaussian noise with variance

σ2
ψ,k, which is derived from the variance of the wall-segment

defining landmarks.

The main orientation is estimated from the observations

z
ψ
1:W := ψw1:W

through recursive histogram filtering [2].

Mean and variance of the main orientation are then estimated

through a mean shift procedure [16]. Fig. 3 illustrates an

Fig. 3. Estimating the main orientation of wall segments. a) two wall
segments with mean orientations ψ and φ and standard deviations σψ and
σφ, respectively. b,c) orientation histograms for ψ and φ, respectively. d)
orientation histogram after integrating both measurements.

example histogram for the main orientation of two wall

segments.

The histogram is discretized into B bins of size π
2B . The

value pb of a bin b represents the probability that the main

orientation corresponds to the angle ψb = b
B

· π2 . After the

integration of the k-th observation, the histogram contains

an estimate for the main orientation that is based on w1 to

wk, i.e. pb,k := p(ψ = ψb|zψ1:k) for all b ∈ {0, . . . , B − 1}.

The estimation of the main orientation histogram is done

recursively over index k of the wall segments. For a wall

segment wk, the orientation distance to all bins ∆ψb,k =
cyc(ψb − ψwk

,−π
4 ,

π
4 ) is mapped to the interval

[
−π

4 ,
π
4

)
.

The weight wb,k = p(ψwk
|ψ = ψb) of a bin results from the

probability of ψwk
under the expectation that ψb is the main

orientation:

wb,k =
1√

2πσψ,k
exp

(

−
∆ψ2

b,k

2σ2
ψ,k

)

.

The bin probabilities pb,k−1 are multiplied with the weight

wb,k and normalized:

∀b ∈ {0, . . . , B − 1} : pb,k =
wb,kpb,k−1

∑

b wb,kpb,k−1
.

After integrating all wall segments into the histogram, we

estimate the main orientation using a mean shift procedure.

A window size smaller than π
4 prevents mutual extinction of

direction vectors. The iterative improvement of the estimate

is terminated when the change of the estimated angle falls

below a threshold or a maximum number of iterations is

exceeded. After the estimate of the mean orientation ψ, we

compute its standard deviation σψ in the window around ψ

from the histogram.

B. Estimating the Main Orientation of Depth Measurements

We estimate the main orientation of the wall segments

in the current depth image as follows. In our application,

the depth image contains 1024 measurements, which are

transformed into Cartesian coordinates Qt (see Sec. IV-B).
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Fig. 4. Left: Extracted lines (red) from depth measurement (blue) at
sampled window positions (red circles). Right: Scan orientation histogram.

A window W of length K = 128 is placed at equidistant

angular positions within the current depth image such that

adjacent windows overlap significantly. The points QW :=
{qk = (xk, yk)

T }Kk=1 within the window are approximated

with a line γW : x cos(αW )+y sin(αW )−rW = 0 in Hessian

parametrization [17]. Each depth measurements is weighed

with its extraction confidence.

The line fit is only computed if the average weight wW is

above a threshold. Furthermore, successive points within W

must have a small Euclidean distance. Two more conditions

must be met for using the fitted line to estimate the main

orientation of the depth image: The ratio between the mean

squared approximation error and the line length must be

below a threshold, in order to ignore fits to non-straight depth

windows, and the estimated length of the line must be above

a threshold (set to 0.5m in our system), in order to obtain a

confident estimate of the line orientation.

In an analogous way to the estimation of the building’s

main orientation from the wall segments, described in Sec. V-

A, we construct an orientation histogram of the line segments

and apply mean shift to estimate the main orientation of the

depth image φ and its variance σ2
φ.

C. Orientation Correction

The estimation of both, the main orientations of the

building and the depth measurement, can be used to constrain

possible poses. A pose estimate (ŝt, Rt) obtained, e.g., by

integrating the fused velocities from Sec. IV-C, is corrected

by treating the estimated main orientation in the depth image

as observation of the building’s main orientation (ψ, σ2
ψ):

z
ψ
t = h(st, ψ) + δt = ψ − θt + δt, δt ∼ N (0, Qψt )

The pose estimate is corrected by a Kalman Filter up-

date with innovation ∆φ := cyc(φ − h(ŝt, ψ),−π
2 ,

π
2 ) and

measurement covariance Q
ψ
t := σ2

φ + σ2
ψ , which takes the

uncertainty in the estimate of the building’s main orientation

into account. Fig. 5 illustrates the procedure with an example.

Please note that when this orientation correction is done

continuously, the individual corrections will be much smaller

than shown in the figure.

VI. EXPERIMENTAL RESULTS

We evaluate our approach with data captured in the test

environment illustrated in Fig. 6. The robot trajectory is

Fig. 5. Pose correction by registration of the main orientation of the depth
images with the building’s main orientations ψ. In the initial pose (blue) that
has orientation θ, the depth image (blue) has the global orientation φ. After

correcting the pose to the new orientation θ (green), the global orientation

φ of the depth image (green) is more compatible with the building’s main
orientation. Dashed lines indicate the 2σ ranges of the orientation estimates.

also shown in the figure. It is approximately 76m long and

contains two loops: A larger loop around the core of the

building and a smaller loop in the lower right corridor.

We applied the motion integration described above, with

and without orthogonal wall correction. To correct the pose

orientation, we used the main orientation estimated from a

map obtained from running our visual SLAM system on the

same data. Fig. 7 depicts typical mean estimated trajectories

of both methods. One can clearly see that, without orientation

correction, the robot orientation drifts to an extend that makes

closing of loops difficult for a visual SLAM system. This

effect can be prevented by the orientation correction.

We also estimated the uncertainty of the pose distribution

by sampling poses from the motion model and calculating the

entropy of the normal distribution fitted to the pose samples

in each time step. Fig. 7 shows how the uncertainty in the

orientation estimate is nearly constant when applying orthog-

onal wall correction. As a consequence, also the uncertainty

in the Cartesian position estimate and in the 3D pose estimate

grows slower than without orthogonal wall correction.

When using the orthogonal wall correction within our

visual SLAM system [18], its performance improves sig-

nificantly. Here, we continuously estimated the building’s

main orientation from the map built so far. Our system

uses particles to represent the distribution over possible

robot trajectories and maps [5]. The maps are described

Fig. 6. Outline of the test environment. The robot starts in a and moves
along the waypoints a→b→c→d→e→a→b→c→f→c→b.
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(a) (b)

(c) (d)

Fig. 7. Mean estimated trajectories (top) and uncertainty of estimated poses
(bottom) (a)/(c) without, (b)/(d) with orthogonal wall correction.

by point landmarks (blobs and edges), connected by walls.

With only 50 particles, both loops in the trajectory in Fig. 6

can be closed in nine out of ten runs when the orthogonal

wall correction is applied. In contrast, only one of ten

runs succeed without the proposed method. Fig. 8 shows a

typical map built and the estimated robot trajectory. It can be

observed that the correct trajectory could be recovered and

an abstract map of our test environment has been obtained.

VII. CONCLUSIONS

In this paper, we proposed a method to exploit the typical

structure of indoor environments, walls that are either parallel

or orthogonal to each other, to prevent orientation drift, a

frequent problem of odometry-based motion models. We

detect walls in monocular depth measurements to correct

odometry, obtained from matching successive images and

from inertial measurements, such that the observed walls are

aligned with the main orientation estimated from the map that

is being built. Our experiments show that such an orthogonal

Fig. 8. Example map with trajectory constructed with our visual SLAM
system, when applying orthogonal wall correction. Please note that the large
loop goes on the left side around an open space that is secured by a banister,
which does not fulfill our criteria for proper walls.

wall correction prevents orientation drift and significantly

reduces uncertainty in the orientation estimates.

The idea of orthogonal wall correction is not restricted to

visual odometry and visual depth measurements. It can be

applied directly to depth measurements from a laser-range-

scanner and to odometry obtained from wheel encoders.

Also, the assumption that the environment contains mostly

walls of the main orientation is not imperative. If a significant

number of walls deviate from this main orientation, this

can be detected easily and these walls can be excluded

from the orientation estimation. The reduction of orientation

uncertainty essentially reduces trajectory estimation to a 2D

problem. This leads to better pose estimates and makes

the closing of loops in SLAM easier. As our experiments

showed, this can make the difference between reliable map-

ping and failure.
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