
Efficient Kinodynamic Trajectory Generation for Wheeled Robots

Marcell Missura and Sven Behnke

Abstract— Planning dynamic motion is computationally de-
manding and thus can hardly be done in real-time onboard
robots. In this paper, we present an analytic approximation to
predict the dynamic state of wheeled robots with non-holonomic
constraints, given a start state and a sequence of piecewise
constant controls. Our approximations are accurate and fast
to calculate. They can be used to replace numerical integra-
tors in kinodynamic planning algorithms. The predictions are
differentiable and allow us to utilize gradient descent methods
to solve the inverse dynamics as well and generate trajectories
connecting arbitrary points in state space.

I. INTRODUCTION

Motion planning in dynamic environments is a challenging
problem and even more so for car-like vehicles with non-
holonomic constraints. Despite some insights from optimal
control theory [1], existing algorithms do not deliver the
runtimes needed for real-time motion planning in dynamic
environments with moving obstacles.

Thanks to their computational efficiency, the most simple
reactive approaches have the leading edge regarding applica-
bility on real systems. These include potential field methods
[2], Lyapunov candidate function-based parking controllers
[3], and path tracking methods, as for example used by the
DARPA Grand Challenge winner “Stanley” [4]. As reactive
controllers only obey ad-hoc heuristics and do not follow
a global plan to reach a given target, they cannot produce
optimal trajectories. They are also likely to get stuck in
local minima and can produce oscillating behavior. This also
applies to the Dynamic Window Approach [5], even if it does
plan a small amount of time into the future.

A more extensive method to global planning is to deter-
mine a geometrical path that adheres to continuous curvature
and minimal turning radius restrictions, such that in principle
it can be followed by a vehicle with a steering wheel [6]
[7]. This setting is purely kinematic and ignores important
physical aspects of motion planning: velocity and acceler-
ation. The produced paths are mostly suitable for vehicles
with a relatively slow and steady pace. The kinematic setting,
however, reduces the amount of dimensions to consider and
helps some of the proposed path planners to retain real time
capabilities, such as the Ariadne’s Clew Algorithm [8].

In full-fledged kinodynamic planning [9], the state of a
vehicle includes not only the Cartesian coordinates and the
orientation, but also the translational and angular velocities.
Planning is mostly performed directly in control space where
velocity and acceleration bounds can inherently be taken

All authors are with the Autonomous Intelligent Systems Group, Univer-
sity of Bonn, Germany. Email: missura@ais.uni-bonn.de This work has been
supported partially by grant BE 2556/2-3 of German Research Foundation
(DFG)

into account. The increase in dimensionality makes discrete
cell decomposition methods impractical. Thus, randomized
approaches [10] are often used that sample possible control
inputs and project them into the state space by numerical
integration. This way, the open-loop controls to execute
a calculated trajectory arise naturally. The avoidance of
moving obstacles is also possible, as demonstrated in [11],
by extending the state space by the time dimension in
a similar fashion as it was already suggested in [12]. In
[11] successful experiments on a real system are reported.
The setting was reduced to holonomic motion planning,
but the obstacles were moving and the robot managed to
maneuver in between them to reach a given target. Except
for this simplified setting, the computation times reported
by the works cited above do not allow the application of
kinodynamic planning on real non-holonomic systems in
rapidly changing environments.

With our proposed method, we address the computation-
ally expensive projection of controls into state space. Our
analytic approximation allows fast and accurate calculation
of future vehicle states. Replacing standard Euler or Runge-
Kutta integration modules can significantly speed up kinody-
namic motion planning. Furthermore, the differentiability of
our formulas allows us to exploit gradient descent methods
to determine the controls needed to connect two arbitrary
states in the absence of obstacles, which is known as the
steering problem.

The remainder of this work is organized as follows. First,
we introduce the unicycle model, which is a simple unifying
model for non-holonomic vehicles without drift. We show
how cars and differential drives both can be mapped to
the unicycle model. Then we present our analytical model
that predicts the dynamic state of a unicycle given a set of
piecewise constant controls. This is followed by experimental
results comparing the accuracy and performance of our ap-
proach to standard numerical integration techniques. Finally,
we present our approach to solve the steering problem with
a gradient descent algorithm.

II. THE UNICYCLE MODEL

We consider vehicles with the following dynamic model:
ẋ
ẏ

θ̇
v̇
ω̇

 =

v cos(θ)
v sin(θ)
ω
0
0

+

0
0
0
1
0

 a+

0
0
0
0
1

 b. (1)

The state vector s = (x, y, θ, v, ω) ∈ R2 × [−π, π] × R2

of this system is five-dimensional and includes the Cartesian

missura
Text Box
2011 IEEE International Conference on Robotics and AutomationMay 9-13, 2011, Shanghai, China

v

v

v

Fig. 1. Velocity domains of the unicycle (left), a car (center) and a
differential drive (right). The permitted translational and angular velocity
combinations are inside the shaded areas.

coordinates (x, y), the orientation θ, the translational velocity
v, and the angular velocity ω.

The non-holonomic constraint can be expressed with the
equation

ẏ cos θ − ẋ sin θ = 0, (2)

or in simple words: the robot always moves in the direction
it is currently facing. To change the system state, two control
parameters a and b can be used. a ∈ [−A,A] is a bounded
acceleration of the translational velocity v and b ∈ [−B,B]
is a bounded acceleration of the angular velocity ω. We
consider t to be a third control parameter that describes for
how long the accelerations a and b are applied to the system.
The mobile robot is controlled by a set of piecewise constant
control triples U = {(a, b, t)}. This representation not only
makes analytic approximation feasible, but also allows to
approximate any non-linear control function by choosing a
large amount of control triples with a small t.

Despite their conceptual differences, cars and differential
drive vehicles can both be mapped to the unicycle (1). Cars
are controlled with an acceleration pedal that influences the
rolling speed ν of the wheels and a steering wheel that
changes the steering angle ζ. Assuming a distance of 1
between the front and rear axles, the controls of the car can
be mapped to (1) with the equations

v = ν cos ζ, (3)

ω = ν sin ζ. (4)

As the steering angle is bounded by the constraint
|ζ| ≤ ζmax, a car always has to respect a minimal turning
radius

v

ω
≥ rmin. (5)

This constraint excludes a subset of the velocity domain, as
depicted in Fig. 1. Differential drives do not have a steering
wheel, but the velocities of the wheels on the left side νl and
on the right side νr can be controlled independently. Let l
be the distance between the wheels on the left and the right.
Then the mapping of the differential drive controls to (1) is
given by

v =
1

2
(νl + νr), (6)

ω =
1

l
(νl − νr). (7)

The velocity limits of a differential drive are imposed by
the maximum velocity of the wheels. If a robot wants to
exploit its maximum translational velocity, both wheels have

Fig. 2. An example non-holonomic trajectory for constant controls
a = 0.05m/s2, b = 0.95 rad/s2 for t = 5.55 s with a start state
v = 1.5m/s and ω = 1.5 rad/s.

to roll forward (backward) with their maximum velocities
and the angular velocity is restricted to zero. The analogous
condition applies to maximizing the angular velocity. This
is also illustrated in Fig. 1. The different limitations on the
velocity domain do not affect our predictions, as our formulas
are valid for the unbounded v × ω space.

The curves described by the unicycle can be characterized
as follows. The fraction v

ω yields the instantaneous radius
of curvature for a given state s. If no controls are applied,
the vehicle travels on a circular arc, or on a straight line if
ω = 0. If any controls a and b are applied for a time t, the
radius of curvature r changes smoothly according to the law

r =
v + at

ω + bt
. (8)

As time grows to infinity, the radius of curvature approaches
a
b . Generally, we are dealing with spirals that converge to a
circle with the radius a

b with time. Unlike common spirals,
these spirals do not revolve around a center and their evolute
is not a single point. Figure 2 shows an example. Clothoids
are a special case of these spirals when a = 0 and b 6= 0.
Clothoids have the nice property that the curvature is a linear
function of the distance traveled along the path. However,
this advantage can only be fully exploited if a vehicle travels
with constant velocity. We argue that, for ease of control,
acceleration should be applied linear in time rather than
linear in the distance traveled.

III. ANALYTIC APPROXIMATION

As it was described in the previous section, the robot is
controlled by a sequence of triples ui = (ai, bi, ti). When
the system state si = (xi, yi, θi, vi, ωi) is known, the trans-
formation induced by the control input ui is described by
the transfer function si+1 = T (si,ui). For more convenient
notation we will drop the index i in the sequel, unless
explicitly needed for disambiguation. We obtain the transfer

function by integrating the equations of motion (1) over time

T (s,u) =

x
y
θ
v
ω

+

∆X(s,u)
∆Y (s,u)
b
2 t

2 + ωt
at
bt

 . (9)

The change of Cartesian coordinates

∆X(s,u) =

t∫
0

v(τ) cos θ(τ)dτ, (10)

∆Y (s,u) =

t∫
0

v(τ) sin θ(τ)dτ (11)

cannot be integrated in closed form. However, the antideriva-
tives can be written as

Fx(s,u) =

√
π

b
3
2

(bv − aω)(σS + γC)

+
a

b
sin(

b

2
t2 + ωt+ θ),

(12)

Fy(s,u) =

√
π

b
3
2

(bv − aω)(γS − σC)

−a
b

cos(
b

2
t2 + ωt+ θ),

(13)

where

γ = cos(
b

2
ω2 − θ), (14)

σ = sin(
b

2
ω2 − θ), (15)

S = S(
ω + bt√
bπ

), (16)

C = C(
ω + bt√
bπ

). (17)

The antiderivatives are expressed in terms of the Fresnel
integrals S(x) and C(x):

S(x) =

x∫
0

sin(
π

2
t2)dt, (18)

C(x) =

x∫
0

cos(
π

2
t2)dt. (19)

The Fresnel integrals can also not be evaluated in closed
form, but efficient and accurate approximations exist. We are
using a C implementation of the method described in [13].
Other implementations are readily available in mathematical
tools, e.g. Matlab and Mathematica. Now, the Cartesian
coordinates of the new state si+1 can be calculated using

∆X(s,u) = Fx(s,u)− Fx(s,u0), (20)

∆Y (s,u) = Fy(s,u)− Fy(s,u0), (21)

where u0 = (a, b, 0).

There is still a number of special cases to consider.
Equations (12) and (13) are defined only for b > 0. If
b is negative, a symmetry has to be exploited to avoid
the negative square roots appearing in (12), (13), (16), and
(17). By substituting b with −b and ω with −ω, an axially
symmetric pair of ∆X and ∆Y can be computed using (20)
and (21). Then the vector (∆X,∆Y) has to be mirrored back
on the axis defined by the initial angle θ, before it can be
used in Equation (9).

Furthermore, to avoid the singularity at b = 0, we integrate
the equations of motion (1) assuming b = 0 and obtain a
second set of antiderivatives

Fx(s,u) =
a cos(ωt+ θ)

ω2
+

(at+ v) sin(ωt+ θ)

ω
, (22)

Fy(s,u) =
a sin(ωt+ θ)

ω2
− (at+ v) cos(ωt+ θ)

ω
. (23)

Now using (22) and (23) in (20) and (21) respectively, the
Cartesian coordinates can be calculated for the case b = 0.

If b and ω are both zero, the vehicle travels on a straight
line and (10), (11) can be calculated directly as

∆X(s,u) = (
a

2
t2 + vt) cos θ, (24)

∆Y (s,u) = (
a

2
t2 + vt) sin θ. (25)

To integrate a sequence U of n control inputs ui ∈ U,
the transfer function can be concatenated as follows:

T (s0,U) =

x0
y0
θ0
v0
ω0

+

n−1∑
i=0

∆X(si,ui)
∆Y (si,ui)
bi
2 t

2
i + ωiti
aiti
biti

 . (26)

IV. EXPERIMENTAL RESULTS

To verify the accuracy of our method, we compare its
output with standard numerical integration methods. We
generated a set of 10,000 start state and control pairs with
each dimension uniformly sampled from the range [−10, 10],
except for t which was sampled from the range [0, 10]. The
data set includes highly dynamic situations with velocities up
to 10 m/s, angular velocities up to 10 rad/s and adequately
strong accelerations of up to 10 m/s2 and 10 rad/s2

projected up to 10 seconds forward in time. For each case, we
calculate the Cartesian coordinates (x, y) using our transfer
function (9), Euler’s method and fourth-order Runge-Kutta
integration. The other three state components do not need to
be evaluated, since they are calculated analytically. Unfortu-
nately, all three methods can only deliver approximate results
and there is no ground truth to compare to, so we can only
compare the results with each other. We express the quality of
our predictions by their closeness to the results of numerical
integration. In Fig. 3, the pairwise average distances between
the three integration methods are presented with standard
deviations. The time step of the numerical integrations was
set to 10−6 seconds and distances are calculated with the
Euclidean norm. The results can be interpreted as follows.
Obviously, the high-precision numerical integrations and our

 0

 0.0005

 0.001

 0.0015

 0.002

AN-EU AN-RK EU-RK

A
vg

 E
st

im
at

io
n

D
is

ta
nc

e
[m

]
Accuracy Evaluation 10-6

Fig. 3. Average distances and their standard deviations between our esti-
mations and Euler’s method (AN-EU), between our method and fourth order
Runge-Kutta integration (AN-RK) and between Euler’s method and Runge-
Kutta integration (EU-RK). The numerical integrations were performed with
a time step of 10−6 seconds.

formulas agree strongly. While Euler’s method and Runge-
Kutta integration predict almost exactly the same coordinates
for all test cases, our method shows some deviation, which
can result only from a few cases, as the average distance
between our method and the numerical integrators is near
zero. By examining the worst cases, we came to the conclu-
sion that very small values of b (|b| < 0.001) coupled with
large translational or angular velocities v and ω result in very
large factors that amplify the error of the Fresnel integral
approximation and lead to numerical problems (see (12) and
(13)). These cases can be circumvented by setting b = 0.
When lowering the precision of the numerical integration to
a time step of 10−3 seconds, larger distances between the
three methods can be observed, as shown in Fig. 4. Please
note the difference in scaling. As the output of our equations
stays the same, it must be the two numerical methods that
“moved away” from the high-precision results. It can also be
clearly seen that Euler’s method and Runge-Kutta integration
do not agree as much as they did with a time step of 10−6

seconds. We can conclude that the precision of our results
is comparable with numerical integration with a time step of
10−6 seconds.

Focusing on the computational costs, the following ob-
servation can be made. While the computational costs for
any incremental integrator grow linear with simulated time,
the calculation time of our method stays constant. On our
reference machine (Intel 2.4GHz, 32 bit) the calculation of
one forward transformation takes 10−3 milliseconds. During
this time approximately 10 Euler integration steps can be
performed. Consequently, our method outperforms the Euler
integration unless only tiny portions of time need to be
simulated. On the same scale of precision this time limit
is as small as 0.01 milliseconds. With a time step of 10−3

seconds, only up to 0.01 seconds of simulation time can be
calculated with Euler integration faster than with our formula
by sacrificing an order of magnitude in precision. We propose
our method to replace time consuming numeric integrators
in kinodynamic planning algorithms for wheeled robots.
Especially if larger amounts of times can be integrated in
one heap, tremendous speed-ups can be achieved when using
our formulas.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

AN-EU AN-RK EU-RK

A
vg

 E
st

im
at

io
n

D
is

ta
nc

e
[m

]

Accuracy Evaluation 10-3

Fig. 4. Average distances and their standard deviations between our esti-
mations and Euler’s method (AN-EU), between our method and fourth order
Runge-Kutta integration (AN-RK) and between Euler’s method and Runge-
Kutta integration (EU-RK). The numerical integrations were performed with
a time step of 10−3 seconds.

V. STEERING METHOD

The steering problem consists of finding a suitable path
to connect two arbitrary states in the absence of obstacles.
While originally stated only in configuration space [1], the
extension to dynamic state space means finding an open-loop
trajectory from a start state ss to a target state st, including
the translational and angular velocities. The velocities in the
start and the end states are not necessarily zero. The focus of
applicability on real systems requires frequent replanning to
correct errors and to cope with changes in the environment.
This not only dictates a high computational performance, but
also the ability to update a trajectory for a vehicle already in
motion – and the velocity of a moving vehicle is, of course,
not zero. Additionally, the target state could be a via point
that has to be touched with non-zero velocity, or even a
moving target that the vehicle is supposed to follow.

The steering problem is the inverse problem to the forward
transformation si+1 = T (si,u). While the forward transfor-
mation is easy to solve, it is difficult to determine the control
sequence that transfers a wheeled robot from ss to st. This
can be regarded as a task of inverse kinematics, which is
often solved with gradient descent methods. Utilizing the
differentiability of T (9), we partially differentiate T with
respect to the control parameters a, b, and t to obtain the
Jacobian matrix

J =

(
∂T

∂a
,
∂T

∂b
,
∂T

∂t

)
. (27)

For only one control triple, J is a 5×3 matrix. When a
sequence of more than one control inputs is used, (26) needs
to be differentiated with respect to each control parameter
and the Jacobian grows to a size of 5×6, 5×9, and so on. For
the sake of brevity, a complete Jacobian cannot be given here,
but it can easily be obtained from (26) using an algebraic
tool. The derivatives of the Fresnel integrals are given in
closed form by

S′(x) = sin(
π

2
x2), (28)

C ′(x) = cos(
π

2
x2). (29)

For the gradient descent itself, we evaluated a few inverse
kinematics motivated algorithms, such as the Jacobian Trans-
posed, the Pseudoinverse, and the Damped Least Squares
algorithms, which are comprehensively described in [14].
Additionally, we also tried Resilient Propagation and the
Nelder-Mead algorithm that does not require the gradient.
Any method we expect to reach a precision of at least
‖T (ss,U) − st‖ < 0.01. Most of these algorithms seem
to have difficulties with the strong non-linear search space
and can only slowly converge towards a solution with very
small steps. The Damped Least Squares method, however,
clearly excels among the candidates and converges up to ten
times as fast as the others. Therefore, we used the Damped
Least Squares method exclusively in all experiments.

The two central determinants of solving the steering
problem with this approach are the number of control triples
required and what values to choose to initialize the gradient
descent. We found that when using three control triples, we
were able to solve each of 10K examples of start and target
state situations that we randomly sampled from a 20m2

square area with orientations in [−π, π] rad, linear velocities
up to 10m/s and angular velocities in [−π, π] rad/s. For
initialization, we tried random values and a base of canonical
controls ({−A, 0, A}, {−B, 0, B}, 1.0)3, where A and B are
the acceleration limits of ai and bi. We are using values
of A = 5.0m/s2 and B = 5.0 rad/s2. The acceleration
limits were enforced during gradient descent such that the
absolute values of ai and bi were not permitted to exceed A
and B. The initial value of 1.0 second for ti is allowed to
change during descent, but each ti is enforced to be always
≥ 0. Velocity limits, however, were not enforced. Both
initialization methods worked fairly well in the sense that
they successfully lead to convergence of the gradient descent
after a few initialization attempts. For each of the 10K
samples, we performed an exhaustive search through the 729
possible canonical controls and found that more than one can
lead to convergence in a specific situation and they can result
in different solutions. We recorded the control triples that
yielded the minimal time solution and built a corpus of 10K
(ss, st) pairs and their controls U . In further experiments,
we found that trying the k-nearest neighbors from the corpus

 0

 0.5

 1

 1.5

 2

 2.5

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

A
vg

 R
un

tim
e

[m
s]

Corpus size

Gradient Descent
NN retrieval

Fig. 5. Combined average runtime of the nearest neighbor retrieval and
the gradient descent algorithms versus the size of the corpus. The larger the
corpus, the better the gradient descent can be initialized, but the more effort
it takes to retrieve the nearest neighbors.

for initialization lead to faster convergence of the algorithm
improving both, the number of initialization attempts and the
number of iterations that our gradient descent method takes
to find a solution. By selectively adding new situations to
the corpus in places where more than 5 neighbors had to
be tried before convergence could be achieved, we observed
a continuous improvement of convergence times due to less
and less iterations required by the gradient descent method.
This is depicted in Figure 5. Unfortunately, it is increasingly
more difficult to retrieve the k-nearest neighbors from a
growing, randomly scattered point cloud and eventually the
saved gradient descent iteration cycles are canceled out by
the k-nearest neighbor retrieval times. We stopped grow-
ing the corpus when it reached the size of 100K entries,
which take approximately 10 MB space in memory. As an
alternative, we also generated structured grid data sets by
dividing each dimension of the search space into equal parts
of three, four and five. In the structured grids, the data points
may not be located as beneficial as in the selectively grown
corpus, but the retrieval of the k-nearest neighbors can be
performed in constant time. Figure 6 shows the result of
an experiment where we compared different initialization
methods with respect to the runtime of the resulting gradient
descents. The methods we compared were random initializa-
tion, initialization from the canonical base, initialization from
a selectively grown corpus with sizes of 20K, 50K and 100K
(SEL20K, SEL50K, SEL100K), and structured data grids of
3, 4, and 5 intersections in each dimension (GRID3, GRID4,
GRID5). Obviously, the gradient-descent approach is fast
and robust, as even random initialization leads to steering
problem solutions in less than 10 milliseconds. The data set-
driven initializations significantly outperform the random and
the canonical base methods. The selectively grown data set
does not offer an advantage over the structured grid. Also,
it appears to be sufficient to use relatively small data sets
of 20K points, as larger data sets do not result in a genuine
increase of performance.

Unfortunately, we are lacking a method to assess the
quality of the found trajectories, but this is subject to change
in the foreseeable future. For now, human judgment has to
be applied. Fig. 7 shows a selection of solution trajectories.

 0

 2

 4

 6

 8

 10

 12

RANDOM CANONIC SEL20K SEL50K SEL100K GRID3 GRID4 GRID5

R
un

tim
e

[m
s]

Fig. 6. Comparison of the gradient descent runtimes caused by differ-
ent methods of initialization. Random initialization, initialization from a
canonical base, and initialization from selectively grown data sets and grid
structured data sets of varying sizes are compared.

Fig. 7. A selection of trajectories generated by our steering method. The start state is marked with a blue arrow, the target state with a white arrow. The
length of the arrows indicates the translational velocity and the length of the orthogonal indicates the magnitude of the angular velocity. The trajectories
are sampled with a fixed frequency, so the distance between the red dots reflects the speed of the vehicle. The black dots indicate the end of a link, where
the next control is applied. One of the presented trajectories (bottom left) includes cusps.

Some of the solutions shown contain cusps, where the
simulated robot comes to a brief stop and continues in
reverse.

VI. CONCLUSIONS

We have presented an analytical approximation to calcu-
late future dynamic states of wheeled mobile robots given a
start state and a set of controls. Our estimations are accurate
and fast to calculate. Our approach aims to replace numerical
integrators in kinodynamic planning algorithms. Since our
formulas are differentiable, they can be utilized by a gradient
descent method to generate the necessary controls to connect
arbitrary points in state space. We demonstrated that this is
possible by finding a solution for over 100,000 randomly
generated cases. In contrast to discrete cell decomposition
methods and numerical integration based algorithms, the
computational time needed to find a solution for the steering
problem with our method does not depend on the distance
between the start state and the target state, nor on the
time required to drive from one state to the other. Using a
relatively small corpus of precalculated solutions to initialize
gradient descent, our method can find a solution to the
steering problem in less than 10 milliseconds.

In future work, we will investigate methods to evaluate the
quality of the generated trajectories. Additionally, we plan
to implement enforcement of velocity limits. This includes
a minimal turning radius required for car-like vehicles.

REFERENCES

[1] J.-P. Laumond et al., ”Robot Motion Planning and Control”, Springer,
ISBN 3-540-76219-1.

[2] O. Khatib, Real-time obstacle avoidance for robot manipulator and
mobile robots. The International Journal of Robotics Research, pp.
90-98, 1986

[3] M. Aicardi, G. Caslino, A. Bicchi, A. Balestrino, Closed Loop Steering
of Unicycle-like Vehicles via Lyapunov Techniques, IEEE Robotics
and Automation Magazine, 2(1):27-35, March 1995

[4] S. Thrun et. al., Stanley, the robot that won the DARPA Grand
Challenge, Journal of Field Robotics, 2006.

[5] D. Fox, W. Burgard, S. Thrun, The Dynamic Window Approach
to Collision Avoidance, IEEE Robotics and Automation Magazine,
4(1):23-33, 1997

[6] F. Lamiraux and J.-P. Laumond, Smooth motion planning for car-like
vehicles, IEEE Transactions on Robotics and Automation, vol. 17,
2001, pp. 498-502.

[7] A. Scheuer, Th. Fraichard, Collision-Free and Continuous-Curvature
Path Planning for Car-Like Robots, Proc. IEEE Int Conf. on Robotics
& Automation, 1997, pp. 867-873.

[8] E. Mazer, J. M. Ahuactzin, P. Bessiere, The Ariadne’s Clew Algorithm,
Journal of Artificial Intelligence, pp. 295 - 316, 1998

[9] B. Donald, P. Xavier, J. Canny, J. Reif, Kinodynamic Motion Planning,
J. ACM, vol. 40, 1993, pp. 1048-1066.

[10] S. M. LaValle, J. J. Kuffner Jr., Randomized Kinodynamic Planning,
I. J. Robotic Res., vol. 20, 2001, pp. 378-400.

[11] D. Hsu, R. Kindel, Robert, J.-C. Latombe, S. Rock, Randomized Kin-
odynamic Motion Planning with Moving Obstacles, The International
Journal of Robotics Research, vol. 21, 2002, pp. 233-255.

[12] Th. Fraichard, Trajectory planning in a dynamic workspace: a ’state-
time space’ approach, Advanced Robotics, vol. 13, 1998, pp. 75-94.

[13] W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, ”Fresnel
Integrals, Cosine and Sine Integrals.”, 6.79 in Numerical Recipes in
FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge,
England: Cambridge University Press, pp. 248-252, 1992.

[14] Samuel R. Buss, Introduction to Inverse Kinematics with Jacobian
Transpose, Pseudoinverse and Damped Least Squares methods, 2009.

