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Abstract—Joint attention between a human user and a robot
is essential for effective human-robot interaction. In this work,
we propose an approach to person awareness and to the
perception of showing and pointing gestures for a domestic
service robot. In contrast to previous work, we do not require
the person to be at a predefined position, but instead actively
approach and orient towards the communication partner. For
perceiving showing and pointing gestures and for estimating the
pointing direction a Time-of-Flight camera is used. Estimated
pointing directions and shown objects are matched to objects
in the robot’s environment.

Both the perception of showing and pointing gestures as
well as the accurary of estimated pointing directions have been
evaluated in a set of different experiments. The results show
that both gestures are adequatly perceived by the robot. Fur-

thermore, our system achieves a higher accuracy in estimating
the pointing direction than is reported in the literature for a
stereo-based system. In addition, the overall system has been
successfully tested in two international RoboCup@Home com-
petitions and the 2010 ICRA Mobile Manipulation Challenge.

I. INTRODUCTION

The requirements for service robots differ vastly from

those of industrial robots. Service robots need to work in

everyday environments, in close interaction with humans. For

effective human-robot interaction, joint attention [1], [2] is

essential. Joint attention refers to the ability to selectively

attend to an object of mutual interest. Only when both

communication partners refer to the same object in their

environment, they can exchange about this object.

Showing and especially pointing gestures are a common

and intuitive way to draw somebody’s attention to a certain

object. However, establishing joint attention between humans

and robots solely based on gestures is highly asymmetric.

While humans can easily interpret robot gestures [3], the

perception of human behavior using robot sensors is more

difficult. Humans have a large repertoire of social cues, such

as gaze direction, pointing gestures, and postural cues, that

all indicate to an observer which object is currently under

consideration.

In this work, we propose for a domestic service robot an

approach to joint attention that combines person awareness

with the perception of pointing and showing gestures. In

contrast to previous work [4], we do not require the person

to be at a predefined position. Using laser-range finders

(LRFs) and cameras, our robot detects and keeps track of

persons in its surrounding. To this end, we employ visual

verification of person hypotheses tracked in the LRF data and

active gaze control strategies. For communication, persons
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(a) Pointing gesture (b) Showing gesture

Fig. 1. Recognizing pointing and showing gestures. a) The user points to
an object in the scene. b) The user shows an object to the robot.

are approached and looked at by the robot. In order to draw

the robot’s attention to a particular object, the person can

simply point towards the object’s location or show the object

to the robot (see Fig. 1).

We use a Time-of-Flight camera as the primary sensor

for perceiving gestures. For pointing gestures, the pointing

direction is estimated and matched with objects in the robot’s

environment. In the case of showing gestures, the robot

tries to extract and visually recognize the shown object. By

perceiving these gestures, the robot’s attention can be drawn

to a certain object.

The remainder of this paper is organized as follows: After

a brief review of related work in the respective fields in

Section II, we outline our system consisting of methods for

detecting and tracking multiple persons (Section III) as well

as for perceiving showing gestures (Section IV). In Section

V, we focus on the perception of pointing gestures. We

evaluate the accuracy of estimated pointing directions and

the applicability of the overall system in Section VI.

II. RELATED WORK

Joint attention with robots has been investigated, e.g., by

Hafner and Kaplan [5]. They used simple edge-based features

to recognize pointing gestures of Aibo dogs in a specific

setting. Such a simplified approach is not suitable for the

recognition of human gestures. In addition to perceiving

gestures, our approach involves detecting, tracking, and

approaching communication partners.

A. Person Detection and Tracking

Tracking people with laser-range finders is a well studied

topic in mobile robotics (e.g., [6], [7]). Many approaches

detect and track legs of people and fuse this information in

a multi-hypothesis tracker [8].
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The computer vision community developed a variety of

methods for tracking multiple persons with camera systems.

For statically mounted cameras (e.g., [9], [10]), background

subtraction can be applied to improve the robustness of

tracking. When the camera moves (as in [11], [12], [13]),

subtracting background is no longer possible. Instead, robust

person detectors are required that provide stable information

for tracking.

B. Recognizing Pointing and Showing Gestures

Gesture recognition has been investigated by many re-

search groups. A recent survey has been compiled by Mitra

and Acharya [4]. Most existing approaches are based on

video sequences (e.g. [14], [15]), since color cameras provide

images at high frame rates. These approaches are, however,

sensitive to lighting conditions. We use a Time-of-Flight

(ToF) camera for gesture recognition. This active sensor

measures depth independent of the lighting. ToF cameras

have been used for recognizing hand gestures [16], [17] and

human pose estimation [18].

Pointing for grasping on a table has been described by

McGuire et al. [19]. They use skin color-based segmen-

tation to localize human forearms. Martin et al. [20] use

background subtraction to improve the estimation of the

pointing direction. Their approach starts from face detection

and determines two regions of interest, where Gabor filter

responses are analyzed. Sumioka et al. [21] used motion

cues to establish joint attention. In the approach proposed

by Nickel et al. [14], skin color information is combined

with stereo-depth in order to track 3D skin color clusters. To

be independent of lighting conditions, the authors initialize

the skin color using pixels of detected faces.

Related to our approach of showing objects to the robot

is the work of Goerik et al. [22]. Their approach is based

on a stereo camera system and an initial object segmentation

using depth information.

Common to all the above approaches is that they require

the person to be at a predefined position, in the field-of-

view of the camera. In contrast, our robot actively approaches

persons and directs the time-of-flight camera towards them.

Nickel et al. [14] use a statically mounted stereo-camera

system for perceiving pointing gestures. They apply a color-

based detection of hands and head and cluster the found

regions based on depth information. Using Hidden Markov

Models (HMMs) trained on different phases of sample point-

ing gestures, they estimate two types of pointing directions

– the head-hand line and the 3D forearm direction.

III. CONTINUOUS PEOPLE AWARENESS

For human-robot interaction, a key prerequisite for a robot

is awareness of the whereabouts of people in its surrounding.

We combine complementary information from laser range

finders (LRFs) and vision to continuously detect and keep

track of people (cf. Fig. 2). In LRF scans, the measurable

features of persons like the shape of legs are not very

distinctive, such that parts of the environment may cause

false detections. However, LRFs can be used to detect person

Fig. 2. Persons are detected as legs (cyan spheres) and torsos (magenta
spheres) in two laser range scans (cyan and magenta dots). The detections
are fused in a multi-hypothesis tracker (red and cyan boxes). Faces are
detected with a camera mounted on a pan-tilt unit. We validate tracks as
persons (cyan box) when they are closest to the robot and match the line-
of-sight towards the face (red arrow). We also determine the face height by
projecting the track position onto the face direction.

candidates, to localize them, and to keep track of them at high

rates. In camera images, we can verify that a track belongs

to a person by detecting more distinctive human features like

faces and upper bodies on the track.

A. Detection and Tracking of Multiple Persons

Our domestic service robot is equipped with two LRFs.

One LRF is mounted shortly above the ground at a height

of 24 cm and detects legs of people. We additionally de-

tect torsos of people with a second LRF at a height of

approx. 80 cm.

In a multi-hypothesis tracker, we fuse both kinds of

detections to tracks. Position and velocity of each track are

estimated by Kalman filters (KFs). In the KF prediction

step, we use odometry information to compensate for the

motion of the robot. After data association, the tracks are

corrected with the observations of legs and torsos. We use

the Hungarian method [23] to associate each torso detection

in a scan uniquely with existing hypotheses. In contrast,

as both legs of a person may be detected in a scan, we

allow multiple leg detections to be assigned to a hypothesis.

Only unassociated torso detections are used to initialize

new hypotheses. A new hypothesis is considered a person

candidate until it could be verified as a person through vision.

Spurious tracks with low detection rates are removed.

B. Person Verification

In order to verify tracks as persons, we extract human

features from camera images. One module detects frontal

and profile views of faces using the Viola and Jones [24]

algorithm. For a detected face, we determine a best matching

track that lies closest to the line-of-sight towards the face. We

check the scale of the face by requiring that the projection of

the track into the image lies horizontally within a multiple of

the face detection bounding box. Additionally, we compare

the width of the face bounding box with the projected width

of a standard sized head at the track’s location by imposing

upper and lower bounds on the widths’ ratio.
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Fig. 3. Results of the segmentation steps. a) The amplitude image with a detected face, depicted by the red bounding box. b) Body segment. c) Abdomen
segment. d) Arm segments. e) Unprocessed point cloud with intensity values coded in levels of gray. f) Head (green), torso (red) segment and arm segment
(yellow). g) The determined pointing vectors: eye-hand pointing vector (blue arrow) between the face centroid (yellow sphere) and the hand position (green
sphere) and the elbow-hand pointing vector (red arrow) between the elbow position (cyan sphere) and hand position (green sphere).

In a second module, we detect upper bodies with a

method based on Histograms of Oriented Gradients [25].

As this method is computationally demanding, we project

the track into the image and extract an adequately sized

image patch at this image location. To capture upper bodies

in a large variety of human poses, we determine the patch

size by projecting a rectangle around the track’s position

into the image. Horizontally, we choose the rectangle to be

orthogonal to the line-of-sight towards the track and to cover

reasonable upper body widths. In the vertical, the rectangle

spans a wide range (1m in our setting) of upper body heights.

C. Gaze Control for Person Verification

Since the LRFs measure in a larger field-of-view (FoV)

than the cameras, it is not possible to verify all tracks as

persons in a single view. To enhance the FoV of the camera

effectively towards the FoV of the LRFs, we implemented

an active gaze strategy that utilizes the pan-tilt neck and the

yaw joint in the torso of our robot.

Among all tracks, the gaze strategy selects the one with

the highest importance. We measure importance of a track

as a linear combination of the following criteria:

• Low angular distance of a track from the current view

direction in the horizontal plane.

• Proximity to the close-range communication region in

front of the robot.

• Distance to a specific number of person verifications.

This component is only used if the track has been

verified as a person beforehand.

• At least one view on each track.

• Discount track, if it has been viewed multiple times

without being verified as person.

IV. RECOGNITION OF SHOWING GESTURES

For perceiving showing gestures and recognizing the ob-

ject that is shown, we use both a regular color camera and

a ToF camera. Processing the acquired sensory information

is composed of the following steps.

1) Range-Image Processing to Detect Showing Gestures:

We first segment the depth image of the ToF camera accord-

ing to the measured distances. The segments are then used

to form three-dimensional clusters in the point cloud.

For all clusters, we determine oriented bounding boxes

and neglect those falling below or above a minimum and a

maximum size. Furthermore, since the robot has approached

the person beforehand, we can assume that clusters belonging

to the person or the object are close to the robot. That is, we

can neglect clusters being farther away than, e.g., 2m. As

a side note, it is to remark that the object in hand normally

occludes parts of the holding hand and arm; thus leading to

clusters that are not much larger than the object itself.

As a potential candidate, we select the closest remaining

cluster, as shown in Fig. 1(b). The selected object cluster is

then tracked using a similar method as in Sec. III-A.

2) Recognition of the Shown Object: For recognizing the

object in hand, the object’s position and size is projected into

the color camera image. For object recognition, we use color

histograms and SURF features as described in [26].



3) Gaze Control for Gesture Recognition: One limitation

of ToF cameras is their small apex angle. Therefore, we

actively control the orientation of the head to keep the

relevant parts, i.e., the person’s face and hand within the

field-of-view.

V. POINTING GESTURE RECOGNITION

The perception of pointing gestures is based on amplitude

images as well as three-dimensional point clouds of a ToF

camera. This allows to perceive the 3D direction in which

the person is pointing. We determine the pointing direction

in three steps – detecting the person’s head, segmenting the

person’s body into parts, and localizing the person’s elbow

and hand.

1) Head Detection: In the amplitude image of the ToF

camera, we detect frontal and profile views of faces using the

Viola and Jones [24] algorithm. Fig. 3(a) shows an amplitude

image in which a user faces the camera and performs a

pointing gesture. We seek to determine the centroid of the

head and approximate this point with the centroid of the

points on the head within the face bounding box. When a face

is detected, we first determine the centroid of the 3D points

within the face bounding box. Since the 2D face bounding

box may contain background, we remove outliers from the

head cluster by rejecting points with a large distance to the

centroid. From the remaining points, we redetermine the head

centroid.

The detection performance of the Viola and Jones algo-

rithm is not perfect. Its detection rate, for example, decreases

with distance from the frontal or profile view. This occurs

frequently during gesture recognition, since people tend to

look into the direction they are pointing. We resolve this issue

by tracking the head cluster in the 3D point cloud once it

has been found through face detection.

2) Body Segmentation: Once the head is detected, we

segment the person’s body from the background. For this

purpose, we apply 3D region growing using the centroid of

the head as a seeding point. To accelerate computation, we

approximate a point’s neighborhood by a 2D pixel neigh-

borhood of the camera’s image array. ToF cameras measure

a smooth transition where should be depth jump-edges at

object boundaries [27]. In order to avoid the merging of

unconnected regions, jump-edge filtering is an essential prior

to region growing. We terminate region growing if a point

exceeds the maximal extensions of a human upper body. We

approximate the maximal extensions by a bounding box that

extends 100 cm from the head downwards and 100 cm in

each horizontal direction.

In order to reliably segment the arms from the remainder

of the torso, we determine the diameter of the abdomen.

We assume that the center of the abdomen is located 50 cm
below the head. Furthermore, if the arms perform a pointing

gesture, they are not connected with the abdomen in the

point cloud. In this case, we can consider those points of

the person’s body as belonging to the abdomen that lie

below the upper chest, i.e. at least 40 cm below the head.

To obtain the arm segments, we first exclude all points in

the body segment that lie within the horizontal projection of

the abdomen. Then we grow regions on the remaining points

to find the individual arms. Fig. 3 illustrates the main steps

of the segmentation procedure as binary images and as 3D

point clouds, respectively.

3) Hand and Elbow Localization: To find the arm and

elbow locations a cost value for every point in the arm seg-

ment is calculated. The cost of a specific point corresponds

to the traveled distance from the head during the region

growing process. As a result, the finger tip will always have

the maximal cost assigned independent of the arm posture.

Thus, the hand location is approximated by the centroid of

the points with the maximum cost in the arm cluster. The

elbow can be found by exploiting the anatomical property

that forearm and upperarm have similar length. Hence, the

elbow is given by the point with median distance to the head.

The shoulder is simply the point from the arm cluster with

minimal distance to the head. Fig. 3(g) shows determined

locations of hand, elbow, and shoulder in an exemplary

situation.

4) Gesture Detection: We segment the pointing gesture

in three phases, the preparation phase which is an initial

movement before the main gesture, the hold phase which

characterizes the gesture, and the retraction phase in which

the hand moves back to a resting position. We train Hidden

Markov Models (HMMs) for the individual phases. Since

gesture phases appear in a given order, the HMMs for the

specific phases are composed in a topology similar to [15].

As input to the HMMs we use expressive features ex-

tracted in the previous step. The input feature vector f is

defined as f = (r, φ, v), where r is the distance from the

head to the hand, φ the angle between the arm and the

perpendicular body axis and v the velocity of the hand.

5) Determining the Pointing Direction: After detecting a

pointing gesture we determine the intended pointing target by

calculating the pointing vector that corresponds to the point-

ing direction of the user. Similar to [14], the eye-hand vector

and the elbow-hand vector are calculated. The eye-hand

vector corresponds to the line between the estimated face

centroid and the hand position. In contrast, the elbow-hand

vector is the line between the elbow and the hand position

which corresponds to the extended forearm (c.f. Fig. 3(g)).

The pointing direction is mapped to a specific pointing target

by finding the target with the minimum distance to the

pointing vector.

VI. EXPERIMENTS

A. Pointing Direction Evaluation

In order to evaluate the accuracy of the pointing gesture

recognition, we conducted experiments in an indoor scenario.

16 test persons have been asked to perform 24 pointing

gestures to 20 different pointing targets. The pointing targets

have been distributed in the scene at different height levels

0m, 0.8m, 1.5m and 2m, with at least 0.5m distance.

Fig. 4 shows the setup. The participants were instructed to

perform separate, natural pointing gestures to a sequence of

pointing targets, including some of the targets twice. The



Fig. 4. The experiment setup as perceived by the robot. The test person
is in front of the robot at 2m distance and points to the pointing targets
(green spheres). The two pointing directions are depicted by the arrows,
Eye-Hand (blue), elbow-hand (red).
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Fig. 5. The average distance (ed) and angular errors (eθ) for the eye-hand
vector by distance to the pointing target.

order and selection of the pointing targets was randomly

chosen, ensuring that the same pointing targets were not in

succession. The pointing targets were announced to the test

persons one by one right before they performed the pointing

gesture, to avoid a prepossession in the pointing direction.

The position of the pointing targets was manually mea-

sured. For every pointing gesture we calculated the shortest

distance between the pointing vector and the target position

ed and the corresponding angular deviation eθ for the two

pointing vectors.

The overall average error of all pointing gestures and all

test persons is shown in Table I. It can be seen that the

candidates seem to point in the direction of the eye-hand

line and that the eye-hand vector seems to be the better

approximation for the pointing direction. An average error

of, respectively, 0.43m and 10.1◦ is achieved.

TABLE I

POINT GESTURES: AVERAGE DISTANCE AND ANGULAR ERROR

Avg. ed/m σd/m Avg. eθ/deg σθ/deg
Eye-Hand 0.43 0.19 10.1 4.38

Elbow-Hand 0.53 0.28 12.58 6.91

Fig. 6. Perceiving showing gestures and recognizing objects: the object
that is shown to the robot is correctly detected (red rectangle/green sphere)
and recognized as being a tomato juice.

The results indicate that while the position error ed in-

creases with the distance to the pointing target, the angular

error eθ seems to be constant, as illustrated in Fig. 5 for the

eye-hand vector.

Compared to the approach by Nickel et al. [14] that uses

a stereo camera system, we achieve a higher accuracy in the

pointing target estimation.

B. Pointing Gesture Recognition Evaluation

In order to evaluate the person-independent recognition

performance of our system, we split the data from the 16 test

persons into a training data set, consisting of 192 pointing

gestures from 8 test persons and a test data set, consisting

of 192 pointing gestures from the remaining 8 test persons.

We train the Hidden Markov Models on the training data

set by manually labeling the hold phase of each pointing

gesture. From the 192 pointing gestures we identify 187

gestures correctly. For 5 pointing gestures, the hold phase

is not detected correctly. In one case, the hold phase was

too short. The remaining 4 false detections are caused by an

incorrect body segmentation.

C. Showing Gesture Evaluation

In order to evaluate the perception of showing gestures,

we conducted an experiment where 5 test persons have been

asked to perform 5 showing gestures by choosing an object

and showing it to the robot. For all 25 showing gestures, the

object was correctly identified by the robot. A typical result

can be seen in Fig. 6.

D. RoboCup

Besides the quantitative evaluation of the system, we

evaluated our approach with our domestic service robot that

competes in the RoboCup@Home league. We successfully

applied continuous people awareness and gesture recogni-

tion, e.g. during RoboCup German Open 2010 (Magdeburg),

RoboCup 2010 (Singapore), and the ICRA 2010 Mobile

Manipulation Challenge (Anchorage).

For example in the Who-is-Who test of the RoboCup

German Open 2010, the robot detected and identified all

5 persons that either sat or stood in an apartment-like

environment. In the finals, the robot successfully approached



and identified a guest. The guest could select something

to eat using a pointing gesture to a specific shelf in the

environment. The robot detected the pointing gesture, fetched

the desired object from the shelf and delivered it to the

guest. Also, the guest ordered a new drink by showing his

empty drink to the robot. Videos from these experiments are

available at [28].

VII. CONCLUSION

We propose an approach to person awareness and to the

perception of pointing and showing gestures for a domestic

service robot. Complementary information from laser range

finders and vision is used to continuously detect and keep

track of people. Once the approaches a person, it perceives

two kinds of gestures – pointing and showing gestures, which

are recognized using a time-of-flight camera.

Pointing gestures are interpreted by detecting the person’s

head, segmenting the person’s body into parts, and localizing

the person’s elbow and hand. The pointing direction is

matched with locations in the robot’s environment. Showing

gestures are interpreted by clustering objects in the depth

image and neglecting invalid clusters. The robot recognizes

the showed object with its color camera. In both cases, the

robot fetches the referenced object to the user.

The accuracy of the estimated pointing gestures has been

evaluated in an experiment with 16 participants pointing

at 24 different objects in a laboratory environment. The

results show that our system achieves a higher accuracy

in estimating the pointing direction than is reported in the

literature for a stereo-based system. Furthermore, we found

that the candidates seem to point in the direction of the eye-

hand line and that the eye-hand vector seems to be the better

approximation for the pointing direction. An average error

of 0.43m and 10.1◦, respectively is achieved.

Besides that, the pointing gesture recognition system has

been evaluated on the same data. From our test data set of

192 pointing gestures we correctly identify 187 gestures, i.e.,

a detection rate of 0.97%.

In an experiment including 5 participants and 25 showing

gestures, we have evaluated the perception of showing ges-

tures. The system could identify all shown objects correctly.

In addition, the overall system has been successfully tested

in two international RoboCup@Home competitions and the

2010 ICRA Mobile Manipulation Challenge.

Up to now, our system only supports two gestures, point-

ing and showing. It is a matter of future work to extend the

system to more gesture categories and to dynamic gestures.
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