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Abstract—Structural reconstruction of plant roots from MRI
is challenging, because of low resolution and low signal-to-noise
ratio of the 3D measurements which may lead to disconnectivities
and wrongly connected roots. We propose a two-stage approach
for this task. The first stage is based on semantic root vs.
soil segmentation and finds lowest-cost paths from any root
voxel to the shoot. The second stage takes the largest fully
connected component generated in the first stage and uses
3D skeletonization to extract a graph structure. We evaluate
our method on 22 MRI scans and compare to human expert
reconstructions.

I. INTRODUCTION

Plant root system architecture is important for plant per-
formance, particularly under challenging environmental con-
ditions such as droughts. 3D volumetric imaging methods
such as Magnet Resonance Imaging (MRI) [1], Computer
Tomography (CT) [2] or Neutron Radiography (NR) [3] enable
in-situ observations of root system development in opaque soil.

In this work, MRI images are used which can suffer from
low resolution, compared to the diameter of thin roots, and
low signal-to-noise ratio (SNR), caused e.g. by ferromagnetic
particles in the soil. Fig. 2a shows a raw MRI image after
thresholding. In Fig. 2b, the image has been segmented using
a 3D U-Net [4] reducing the noise considerably, but some
patches of noise are still present and some roots have gaps.

For plant root system analysis, the structure of a root has
to be extracted, i.e. the 3D image has to be transformed into a
tree graph structure. Currently, this is done by human experts
in a 3D work bench [1], which is a time-consuming process
that limits plant root analysis to few samples. Automating root
structure extraction allows for fast and reproducible processing
of larger MRI measurement sets.

For finding the medial axis of roots, skeletonization algo-
rithms [5] can be used, but gaps must be closed before they can
be applied. For closing gaps in structures, often morphological
operations are used. These are sufficient to fill holes and close
smaller gaps, but when roots touch each other, closing can
lead to wrong connections of root parts.

In this work, we present a novel robust curve skeletonization
algorithm for 3D images. We take a two-stage approach:
Stage 1 extracts the largest connected component (LCC), see
Fig. 2c, starting from a given set, i.e. the shoot. To this end, a
modified Dijkstra shortest path algorithm [6] is employed. The
shortest path algorithm is modified to connect disconnected
areas by finding a single smallest gap. In Stage 2, a curve

Fig. 1: Given a (segmented) plant root MRI scan, first the
largest root connected component (LCC) is extracted, followed
by skeletonization of the LCC to create a root structure graph.

skeletonization algorithm is applied to the LCC. The resulting
algorithm works on imperfect data containing clusters of noise,
disconnectivities and intricate object structures. Fig. 2d shows
the resulting root structure graph.

The presented curve skeletonization algorithm has low
computational demands. It is capable of reconstructing the
root structure from large 3D images (396×512×512) on
modest hardware in short time. We compare the obtained
reconstructions to human expert reconstructions.

II. RELATED WORK

An early root structure extraction algorithm has been de-
veloped by Schulz et al. [7]. They used a four-step approach.
First, tubular structures at multiple scales are extracted fol-
lowed by automated plant shoot extraction. Then the Dijkstra
shortest path method [6] is used to determine connectivity to
a set of possible leaf candidates, followed by graph pruning.
Pruning is done by deleting branches crossing gaps which
are determined as too long and by deleting multiple parallel
branches corresponding to the same thicker root. The auto-
mated root tracking algorithm of Leitner et al. [8] used a mech-
anistic root growth model to track roots in a graph representing
2D root systems obtained from NR images. Manual corrections
were possible; in that case the Dijkstra algorithm was used to
find the shortest path between two manually selected points.
Building on Schulz et al., NMRooting [9] was developed. This
tool is implemented using the Python programming language
[10] and Mayavi for visualization [11]. NMRooting extracts
a root skeleton by thresholding the input image by a noise-
dependent threshold, followed by dilation to bridge smaller
gaps. All other voxels above a given threshold are connected
using the Dijkstra shortest path algorithm.
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(a) Thresholded root MRI (b) U-Net segmentation (c) Extracted LCC (d) Root structure graph

Fig. 2: Overview of root structure extraction. MRI (a) is segmented using a 3D U-Net [4] (b). The largest component connected
to the shoot is identified (test-tube removed manually) (c). Gaps are closed and the root structure graph is extracted (d).

These methods are designed to work with high-quality 3D
images. To improve MRI scans with insufficient resolution and
SNR, deep learning-based methods using a 2D RefineNet have
been employed [12]. Zhao et al. [4] developed a 3D U-Net
incorporating further input channels and loss modifications to
increase resolution and SNR. The resulting super-resolution
segmentation still contains noise and disconnectivities. Hence,
a root structure extraction method capable of dealing with
noisy data is needed.

Graph shortest path-based extraction methods are widely
used in medical imaging as well, e.g. [13] or [14]. Lung airway
extraction is similar to the root structure extraction problem in
computing a 3D tree graph from a given 3D image. Jin et al.
[5] use curve skeletonization based on radius quench points. To
reduce the number of false subbranches, the extracted skeletal
branches are dilated based on a radius estimate. Quench points
inside this dilated branch are ignored. This ensures that for
each airway branch only one graph branch is extracted. We
follow this basic approach in our work.

For structural analysis of plant roots, voxel-perfect localiza-
tion of the graph nodes is not necessary. To reduce the number
of nodes along elongated roots without deviating much from
the original structure, the Douglas-Peucker algorithm [15] has
proven to work efficiently.

III. ROOT GRAPH EXTRACTION PIPELINE

Plant root MRI can suffer from low signal-to-noise ratio
and loss of root information. The resulting scans contain non-
root signals and disconnected root signals. The first issue
can be reduced by employing image segmentation and super-
resolution methods (e.g. [12] and [4]). Resulting segmented
MRI scans Iseg still contain a number of noise-signal clusters
and disconnected root structures. Current root image segmen-
tation does not take connectivity towards the plant shoot into
account. Using this metric further reduces noise clusters in
the segmented input by excluding voxels that don’t have a
low-cost root path towards the shoot.

The presented algorithm employs this connectivity measure
to further improve segmentation given a plant root MRI scan
I and its initial segmentation Iseg . In the first step, a largest-
connected-component (LCC) Ilcc is extracted using Iseg . To

address disconnected root components, the LCC extraction
allows for small gaps in the root signal to be bridged. If high-
quality input data is used, this step can be omitted.

Noise and inaccuracies in I and subsequently Iseg prohibit
the use of raw input signal to find the centerline of tubular
structures. Higher resolution and noise increase the number
and length of subbranches when using an approach similar to
[7]. By employing a robust 3D curve skeletonization algorithm
based on [5], the number of artificial subbranches and the
subsequent amount of necessary computational resources is
reduced.

In the following, G is used for graphs. Other upper-case
variables are volumes of the same size as Iseg . Lower-case
variables p and q are used instead of full 3D positions (x, y, z).

IV. LARGEST CONNECTED COMPONENT EXTRACTION

Given a segmented input volume Iseg ∈ [0, 1]x·y·z , a start
point p0 ∈ Iseg is found either manually or by fitting circle
masks in the upper part of the scan. Also given are associated
minimum intensity γIseg ∈ [0, 1] and maximum path cost
ωIseg ∈ R. If gap closing is used, a maximum gap length
lIseg ∈ N is provided.

A. Radius Cost Map

At each 3D position p ∈ Iseg , the radius is estimated by
fitting growing spheres centered around p as follows: Let φr
be the set of discrete positions inside a sphere of radius r and
ξIseg,r(p) ⊂ Iseg be the set of voxels inside the same sphere
centered around p and ξ+Iseg,r(p) all p′ ∈ ξIseg,r(p) for which
volume Iseg(p′) ≥ γIseg then:

RIseg (p) = argmax
r∈N

(
|ξ+Iseg,r′(p)|
|φr′ |

≥ 0.75,∀r′ ≤ r

)
, (1)

Cinv(p) = Iseg(p) + wrad
RIseg (p)

max(RIseg )
,

CIseg (p) = 1− Cinv(p)

max(Cinv)
+ ε.

wrad ∈ [0, 1] is the weighting of radius vs. input intensity,
wrad = 0.5 works well in most cases. ε ∈ R>0 � 1 is a
small constant to avoid zero-cost voxels. The resulting cost



(a) Max Iseg along depth axis (b) Min CIseg along depth axis (c) Min CIgap along depth axis (d) Max Ilcc along depth axis

Fig. 3: LCC extraction. Given input volume in intensity (a), voxel-cost (b) is computed reducing smaller noise clusters. Cost
is masked using Iseg (c) to generate CIgap

enhancing no-gap to gap contrast. Based on this, Ilcc is extracted (d).

map takes both local radius information and intensity into
account, see Fig. 3b.

B. Shortest Path with Gap Closing

The Dijkstra Shortest Path algorithm is used to find the
shortest path τ(p) for each p ∈ Iseg to p0, producing the
path cost volume Cτ . In each iteration, the 26-neighborhood
of the visited voxel is expanded. As only voxels with path
cost < ωIseg are included in the resulting LCC, exploration
is stopped once voxels of cost ≥ ωIseg are reached. If gap
closing is used, this is ignored for potential gaps of maximum
lIseg length.

Using CIseg directly can lead to disconnected areas in Iseg
being connected along multiple parallel paths through high-
cost space. These paths would be part of the LCC creating
unwanted structures. This is due to the Dijkstra algorithm
only minimizing path cost per voxel, but not the sum of all
traversals.

To address this, CIseg is updated:

Cgap(p) =

{
CIseg (p) · 10 , if Iseg(p) < γIseg
CIseg (p) , otherwise

. (2)

As can be seen in Fig. 3c this modification increases the
contrast between gap and no-gap information. This increases
the stability of the gap closing modification for the Dijkstra
shortest path.

Disconnected root parts should be connected along a single
path per root instead of per voxel. To this end, all positions
p where Cgap(p) >

max(Cgap)
2 are considered as potential

gaps. These are all the areas penalized in Eq. 2. The penalty
also induces further exploration of no-gap positions before
exploration of gap areas.

Let τ(p) = {p0, p1, . . . , pn−1, p} ⊂ Iseg be the ordered set
of voxels constituting the shortest path connecting p to p0.
Let pn be a no-gap position that is explored in the current
iteration. Assume pn−1 is a gap position, then:

s = argmax
i∈[0,1,...,n−2]

Cgap(pi) ≤
max(Cgap)

2
.

Obviously, the gap bridged between ps and pn has length n−s.
This length is used for early stopping. If n − s ≤ lIseg it is

(a) Max normalized Rlcc (b) Max Crel along depth axis

Fig. 4: Using the LCC from Fig. 3, the radius cost map Rlcc
(a) is computed. This is inverted and used to create Crel (b).

assumed that the found gap is missing root information and
it is subsequently bridged. The cost of τ(pn) is updated to
reflect the assumption that the path should have traversed a
missing lower-cost area:

Cτ (pe) = Cτ (ps) + (n− s) · Cgap(pe).

The updated cost is lower than the initial cost. Hence, pe
is the next position to be expanded. Due to Eq. 2, the area
around pe is usually explored before further gaps are found.
In practice, this leads to a singular connecting path between
disconnected low-cost areas. This avoids the initially described
problem of large areas of high cost being included.

C. LCC Extraction

Due to early stopping, Cτ = ∞ for all positions for
which no path of cost lower ωIseg can be found. The largest
connected component Ilcc is now defined as:

ext(p) = Cτ (p) <∞∧ Iseg(p) ≥ γIseg ,
con(p) = ∃pt : ext(pt) ∧ p ∈ τ(pt),

Ilcc(p) =

{
1 , if ext(p) ∨ con(p)
0 , otherwise

.

The resulting LCC is a binary volume excluding noise clus-
ters far away and disconnected from the starting point, while
connecting close-by root parts using a unique connection. This
can be seen in Fig. 3d.



(a) The marked area contains a found
quench point (green) for extraction

(b) Shortest Path quench point to start
point (green, interpolated)

(c) Filled area around extracted path.

Fig. 5: Example skeletal branch extraction. From a found quench point (a) a path is connected (b) to the start point and the
surrounding area is filled (c).

V. CURVE SKELETONIZATION

By construction, Ilcc is a single connected structure allowing
for extraction of a skeleton, for which we use a modified
version of [5]. A dilation multiplier βIseg ∈ [1.1, 2.0] is given.
If interpolation is used, δIseg ∈ R is given.

A. Centerline Cost Maps

The extracted skeleton should follow the centerline of a root
branch. To this end, Ilcc is used to generate a new radius-based
cost map, similar to Eq. 1:

Rlcc(p) = argmax
r∈N

(
|ξ+Ilcc,r′(p)|
|φr′ |

≥ 0.9,∀r′ ≤ r

)
,

Cskel(p, f) =

{
f(p) , if Rlcc > 0

∞ , otherwise
,

cRlcc
(p) = 1− Rlcc(p)

max(Rlcc)
,

CRlcc
(p) = Cskel(p, cRlcc

).

For centerline extraction, only the radius relative to the radii
of surrounding positions is of interest. Let χ(p) be the 26-
neighborhood of p. Then

eRlcc
(p, pt) =

{
1 , if Rlcc(p) > Rlcc(pt)

0 , otherwise
,

crel(p) = 1−
∑
pt∈χ(p) eRlcc

(p, pt)

26
, (3)

Crel(p) = Cskel(p, crel).

Fig. 4b shows such a cost map.

B. Quench Points and Shortest Path

Using Rlcc, the list of all quench points θ is generated:

θ =

pq
∣∣∣∣∣∣
∑

pt∈χ(pq)

eRlcc
(pq, pt) > 20

 . (4)

Let θsort = {q0, q1, . . .} be θ sorted in decreasing order of
Euclidean distance to p0.

Again, Dijkstra shortest path is used to compute the shortest
path τ(p) for each p. By definition of Eq. 3, only voxels
included in the LCC have valid path costs. Some scans have
a large flat area near the plant shoot. A simple cutz ∈ [0, z]
can be given to ignore all quench points above a height cutz .
This excepts the flat non-root area from extraction.

C. Branch Extraction

A root graph Gfull is extracted on a voxel basis. Each voxel
in a given branch is included in form of a graph node. A graph
node is defined as triple node(p) = (p, r, id) where p ∈ R3 is
the voxel position, r = Rlcc(p) the local radius estimate and
id ∈ N a branch id unique for each branch.

Initialize Vnode and Vocc as 0 volumes and Gfull as root
graph with root node node(p0) = (p0, Rlcc(p0), 0). Set
Vocc(p0) = 1 and Vnode(p0) = ∗node(p0) where * denotes
the reference operator. These volumes are used to keep track
of areas already part of Gfull. Fig. 5 shows the process of
creating and adding a branch.

1) Creating a Branch: Let q be the quench points furthest
from p0 that is not yet part of Gfull and is not included in
an already existing branch. This is the first position q ∈ θsort
such that Vocc(q) < 1.

Create the node (q,Rlcc(q), idrun), where idrun is a run-
ning integer that is incremented every time after a new branch
is created and extracted. Now, τ(q) is followed starting from
endpoint q to create a graph branch. While Vnode(pi) = 0, a
new node (pi, Rlcc(pi), idrun) is created and the node corre-
sponding to pi+1 is added as a child node. Once Vnode(pj) 6=
0, the node(pj+1) is added as child to the node referenced in
Vnode(pj).

This results in a connected root branch that grows until it
finds an area already part of the root graph. The branch follows
the centerline of highest radius, due to using the inverted radius
as cost (see Fig. 5b).

2) Filling control Volumes: Whenever a new node at po-
sition pi is created, the surrounding area in Vocc(pi) and



(a) Extracted structure and
manual reconstruction

(b) Extracted structure and
manual reconstruction after
evaluation is applied

Fig. 6: Yellow: Extraction; Gray: Manual reconstruction;
Green/Red: Extraction with/without corresponding manual re-
construction; Black/Blue: Manual reconstruction with/without
corresponding extraction.

Vnode(pi) is filled using sphere masks:

rdil = Rlcc(pi) · βIseg ,
Vocc(p) = 1 ∀p ∈ ξVocc,rdil(pi), (5)
Vnode(p) =

∗node(pi) ∀p ∈ ξVnode,rdil/2(pi).

By increasing the local radius estimates, noisy surface areas
are included while filling Vocc and, hence, quench points
found in these areas will not be considered for further branch
extraction. This decreases the number of noisy branches.
Fig. 5c shows the resulting filled area in Vocc limited to voxels
included in the LCC.

D. Interpolation

As voxel-perfect extraction is not necessary, the number
of graph nodes can be reduced. To this end, the Douglas-
Peucker algorithm [15] is employed. All branch endpoints
and nodes with more than one child in Gfull are fixed. The
subgraphs between these fixed points are pruned by applying
the Douglas-Peucker algorithm with parameter δIseg . The
result is the reduced root graph G.

VI. RESULTS

A. Evaluation Method

1) Evaluation Dataset: To evaluate the performance of the
extraction algorithm, 22 real plant root MRI scans are used.
For each of these, a manually expert-annotated root graph is
provided as target.

To decrease the noise in the original scan, 3D U-Net based
root vs. soil segmentation [4] is applied. A total of five dif-
ferent models are used, with root weights 1, 10, 100, 1000 as
well as the Log1 loss modification employed during training.
The resulting dataset consists of 22 · 5 MRI segmentations.

2) Distance-tolerant F1 Score for Graphs: The following
method is used to evaluate the extracted root graph G against
the manually reconstructed root GT . Spacing s and distance
tolerance d are given as parameters.

Let lG be a list containing tuples (p, dir(p)) for all p ∈ G,
where dir(p) is the direction from parent node p′ to p. If

TABLE I: Average performance using extraction dependent on
segmentation variant and cost maps.

Cost Segmentation F1-Score Precision Recall

CRlcc

Log1 0.8279 0.8339 0.8312
Root W 1 0.7765 0.8911 0.7005
Root W 10 0.8194 0.8465 0.8019
Root W 100 0.7683 0.7030 0.8682
Root W 1000 0.6973 0.5953 0.8898

Crel

Log1 0.8294 0.8303 0.8369
Root W 1 0.7767 0.8783 0.7088
Root W 10 0.8214 0.8248 0.8081
Root W 100 0.7744 0.7040 0.8799
Root W 1000 0.7001 0.5958 0.8955

‖p, p′‖2 > s, the line segment connecting p and p′ is seg-
mented into points p1, p2, . . . , pn−1 such that ‖pi, pi+1‖2 = s
for all i ∈ 0, 1, . . . , n − 2 using p0 = p′. Tuple (pi, dir(p))
for all i ∈ 1, . . . , n− 1 are also added to lG.

This step is repeated for the target graph GT to generate
lT . Fig. 6 shows an example of this. As vertex density
between extracted graphs varies depending on interpolation
or human annotation this step is used to create a dense graph
representation.

Two points pT ∈ lT and pG ∈ lG correspond if two
conditions are met. First, the angle between dir(pT ) and
dir(pG) has to be smaller 90 degrees. The second condition is
that ‖pT , pG‖2 ≤ d, or ‖pT , line(pG)‖2 ≤ d, where line(pG)
is the line connecting pG and its previous point.

If correspondence between given pT and multiple pG can
be established, the closest point is chosen. Each pG can
correspond to at most one pT and corresponding points in
lG are marked as such.

Finally, each point in lG with a corresponding point in
lT is regarded as a true positive, each point in lG without
a corresponding point in lT is regarded as a false positive,
and each point in lT without a corresponding point in lG is
regarded as a false negative. This is then used to compute
recall, precision, and F1 score.

This method evaluates the extraction with respect to topol-
ogy by penalizing large divergence in orientation and missing
target in the immediate area. Furthermore, the extraction takes
branch length into account by penalizing branches which are
either too short or too long with respect to the target. As this
evaluation scheme does not allow multi-correspondence and
the manual reconstruction is not perfectly aligned d = 15 is
chosen for all evaluations.

B. Performance

1) Performance based on Input Quality: The performance
of our algorithm strongly depends on input quality. Conse-
quently, the quality of the initial U-Net based segmentation
heavily determines the performance of the root extraction
algorithm. Table I shows the average F1 score of the extraction
algorithm dependent on the segmentation variant. As can be
seen, the Log1 loss modification gives the best F1 score by
producing a balanced precision and recall.



(a) Left mark: Root cut in half;
Right mark: Large flat con-
nected area containing false ex-
traction.

(b) Mark: Noise close to the
root is extracted.

(c) The manual reconstruction shows intricate arc-like
structures not found in the segmentation. The missing
volume information lead to wrong extraction.

Fig. 7: Green/Red: Extraction with/without corresponding manual reconstruction; Black/Blue: Manual reconstruction
with/without corresponding extraction.

(a) Changing ωIseg

(b) Changing lIseg

(c) Changing βIseg

Fig. 8: Average performance of the extraction over the com-
plete dataset when changing one of the parameters. No cutz
is used for these values.

The second-best model utilizes a root-loss weight of 10. The
segmentation outputs have slightly enlarged root structures and
noise structures. For most roots, the score is slightly lower
than the Log1 score, but the enlarged areas result in merged
roots leading to wrong connection in more dense root systems.
Another issue is an enlarged area towards the plant shoot of a

root system leading to multiple wrong extractions reducing the
precision noticeably. Fig. 7a shows this issue. This is addressed
by employing cutz .

Using a root weight of 1 combined with the same
parametrization used for the other models results in noticeably
lower recall. Further parameter testing showed that a much
larger maximum gap length is needed here. Using this, the
recall can be increased but still stays below the other models.

The segmentation models utilizing larger root weights 100
and 1000, respectively, show problems similar to root weight
10. More dense root systems tend to merge resulting in struc-
tures combining two root branches that should be separate.
Another issue is that the enlarged roots and noise areas merge
in some scans leading to noise areas being treated as root, see
Fig. 7b. These noise areas are large enough to have a non-
trivial radius, limiting the use of radius-based penalties.

Table I also shows the average performance over all scans
with respect to the employed cost maps CRlcc

and Crel. As
can be seen, Crel increases recall while decreasing precision.
Root scans containing thicker roots like segmentation using
rw100 or rw1000 show a slight increase in precision as well.
This is due to the relative cost not suffering from radius cost
saturation for large radii.

2) Performance based on Parameterization: Extraction per-
formance was evaluated also with respect to three parameters
that were shown to change extraction behavior the most in
manual assessment. Fig. 8 shows the behavior of the extraction
when altering these parameters. Starting from a manually
found parameter configuration, for each file these parameters
are tested using the multipliers 0.5, 1.0, and 1.5.

Altering the cost cutoff ωIseg changes behavior only min-
imally once above a certain threshold. Below this threshold,
ωIseg can be used to exclude higher-cost areas from the ex-
traction. This only works if unwanted areas can be sufficiently
penalized, which is not the case for models with high root
weighting. The threshold can vary from 100 in scans with
overall high connectivity and large radius to 1500 in scans
containing long and thin root systems. This may lead to the
changes in ωIseg having only a small effect on performance.



(a) Full volume, extraction and manual recon-
struction

(b) The marked areas contain elongated
volumes resembling roots. These are not
part of the target structure but may have
been missed during manual extraction

(c) Top: Manual reconstruction; Bottom:
Extracted Structure; Marked area: Lower
branch is split and wrongly connected to
the upper branch.

Fig. 9: Extracted root graph based on Fig. 4 and corresponding manual reconstruction. Green/Red: Extraction with/without
corresponding manual reconstruction; Black/Blue: Manual reconstruction with/without corresponding extraction.

Changes in gap length lIseg have a larger effect on per-
formance. Well-chosen lIseg can increase the performance
significantly. This parameter depends on the input scan quality.
As can be seen in Fig. 8b, lIseg used and validated on models
Log1 and root weight 10 is too large for the models using
higher root weighting while the performance with root weight
1 segmentation increases noticeably with larger lIseg .

The third parameter evaluated is the dilation multiplier βIseg
for root extraction. Models with smaller more discernible
structures, as can be found in root weights 1, 10 and Log1,
show small change when changing βIseg . These inputs have
clearer structures leading to fewer false responses in surround-
ing areas. Models with high root weights often have areas
creating quench points which are wrongfully included because
of insufficient radius dilation during skeletonization. This can
be reduced by increasing βIseg as can be seen in Fig. 8c.
Hence, this parameter can be used to increase precision in
more noisy scans.

C. Qualitative Assessment

Fig. 9a shows a scan with high F1 score. The overall
structure is extracted correctly. Some areas that appear to
have an elongated although fractured structure are extracted as
root while not being part of the target structure, see Fig. 9b.
These may be roots that did not get annotated during manual
extraction. While fractured, the extraction creates a single
connected response—bridging gaps correctly.

Some structures in the segmentation merge. This leads the
extraction algorithm to connect merged areas using a single
branch instead of the two or more that should be used. Fig. 9c
shows this. Two parallel branches merge in certain intervals
leading to the lower branch not being extracted as a single
branch but as segments connected to the upper branch.

This can also be observed in Fig. 7a. Towards the upper
part, a root is clearly cut in half during extraction. This is due
to the same structure merging creating wrong paths.

Fig. 10: Average runtime of the full algorithm dependent on
input scan.

In Fig. 7c, the area towards the center left has missing
structure. The target shows curved downwards connections
not found in the segmented MRI. Instead, the lower parts are
connected by the shortest gap.

As can be seen in Fig. 2d, our algorithm is capable of
extracting root structures from large complicated root scans.
Disconnected roots have been connected correctly.

D. Runtime and Memory Usage

The test computer is a laptop with two cores at 2.3 GHz
and 8 GB of RAM running Ubuntu 16.04 64-bit. Input size is
between 140×512×512 to 396×512×512. Maximum memory
usage is 10.9 GB. Average memory consumption is 4-6 GB.
The three scans needing the most time in Fig. 10 need more
than the available RAM. The increase in runtime is because
of paging out of memory used by the algorithm.

The other relevant factors determining the runtime are the
maximum radius in structures and the amount of extracted
roots.



VII. DISCUSSION AND FUTURE WORK

In this paper, a pipeline to extract root structures from MRI
images containing noise and disconnected structures has been
presented. The pipeline takes a two-stage approach to first
reduce noise and connect disconnected areas, followed by
curve skeletonization to extract a root skeleton from the scan.

The developed method runs on a laptop with limited re-
sources and is capable of processing large datasets of input
MRI scans quick enough for interactive parametrization and
visualization.

Evaluation on real MRI scans shows that performance
depends on the quality of the input. Segmentations using
Log1 loss modification and a slightly higher root weighting
perform the best. These segmentations preserve most of the
root structure while not enlarging them too much.

Two input properties negatively affecting extraction have
been observed: The first one is large regions of missing
information in the input. This may lead to wrong connections,
as the algorithm takes the shortest path through the remaining
volume.

The second property concerns merging root structures. The
current algorithm does not consider local branch orientation,
which could potentially be used to address the issue of merging
roots as well as help with guessing correct connections missing
in the input.

Overall, the algorithm is capable of extracting complex root
structure from scans with low connectivity and high noise.
It produced some root branches not found in the manual
reconstruction, demonstrating its potential for improving not
only speed, but also the quality of the reconstruction.

In future work, an iterative approach to graph extraction
could be investigated. Instead of reconstructing the full root
structure graph in a single skeletonization run, the method
could be initialized by reconstructing only the most obvious
roots first. The reconstruction could then be iteratively ex-
tended by further skeletonization runs. This would allow for
using initial reconstructions as context for the interpretation
of the more ambiguous MRI regions. Such an approach
could also be used to improve finding and connecting some
disconnected branches where the shortest path method for
filling gaps is less suitable.
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