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Abstract. Supervised training of multi-layer perceptrons (MLP) with only few
labeled examples is prone to overfitting. Pretraining an MLP with unlabeled sam-
ples of the input distribution may achieve better generalization. Usually, pretrain-
ing is done in a layer-wise, greedy fashion which limits the complexity of the
learnable features. To overcome this limitation, two-layer contractive encodings
have been proposed recently—which pose a more difficult optimization problem,
however. On the other hand, linear transformations of perceptrons have been pro-
posed to make optimization of deep networks easier. In this paper, we propose
to combine these two approaches. Experiments on handwritten digit recognition
show the benefits of our combined approach to semi-supervised learning.
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1 Introduction

Multi-layer perceptrons (MLP) are provably powerful enough to learn any nonlinear
classification or regression task [8]. While networks with a single—possibly very wide—
hidden layer suffice in principle, deep networks—having multiple hidden layers—can
be much more efficient. Without proper initialization or regularization it is, however,
difficult to achieve good generalization with deep MLPs (see, e.g., [1]).

Layer-wise pretraining, which initializes the parameters of an MLP in an unsuper-
vised manner, was proposed to overcome this problem [7, 12, 3]. This is motivated by
the cost of data acquisition. Frequently, only a few manually annotated training exam-
ples are available together with a vast amount of easily obtainable unlabeled samples
from the input distribution. Semi-supervised learning [5] aims to utilize not only the la-
beled examples but also the unlabeled samples to improve generalization performance
of a classifier. Unsupervised pretraining of MLPs naturally fits to this setting, as the
layer-wise learning of representations does not require any labels.

In short, deep MLPs can be initialized with pretraining using vast amounts of unla-
beled input samples and subsequently finetuned with (few) labeled examples.
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Layer-wise pretraining has the problem that the complexity of the learnable features
is limited to a linear mapping of the inputs followed by a non-linear output transforma-
tion, such as rectification or sigmoidal squashing. To overcome this limitation, Schulz
and Behnke recently proposed two-layer contractive encodings for unsupervised learn-
ing the next layer of representation [15]. This approach requires training a regularized
autoencoder with three hidden layers—a complex non-linear optimization problem.

Here, we propose to add shortcuts to the autoencoder, which allows for learning a
combination of simple and complex features. Our training procedure utilizes the method
of linearly transforming perceptrons, recently proposed by Raiko et al. [10].

We evaluate the proposed two-layer encoding with shortcuts method on the task
of semi-supervised classification of handwritten digits and show that it achieves better
generalization than greedy pretraining methods when only a few labeled examples are
available.

2 Motivation

2.1 Unsupervised Pretraining and Supervised Finetuning of Deep MLPs

Unsupervised pretraining is a natural way to incorporate vast amounts of unlabeled
input samples into the training of MLPs (see, e.g., [7]). As the MLP parameters are
initialized in an unsupervised manner, all available samples including both labeled and
unlabeled ones may be exploited during pretraining. Training continues with supervised
finetuning of the whole model which uses only the labeled examples. One example for
such an approach is [11] which showed that pretraining helps improving generalization
performance when only a few labeled samples together with a large amount of unlabeled
samples were available.

The most prominent method for pretraining MLPs is layer-wise learning of the next
level of representation [7, 3, 12]. This greedy method sequentially trains—on the basis
of the so far learned representations—local autoencoders or local generative models
between consecutive layers in an unsupervised manner.

One hypothesis by Bengio et al. [1, 2] on why the greedy layer-wise pretraining
helps in semi-supervised learning is that stacking of unsupervised neural networks dis-
entangles factors of variations and that the untangled representations make discrim-
inative learning easier. With only a linear mapping, followed by a non-linear transfer
function, the complexity of the local recodings is limited, however. Hence, greedy layer-
wise pretraining may fail to disentangle non-linear manifolds introduced by common
input variations, such as translation, rotation, or scaling of input images. One way to
overcome the limitations of greedy layer-wise pretraining is to make the local encoding
models more powerful.

2.2 Limitations of Simple Local Models

One example where simple local models, i.e. models with a single hidden layer, fail
to discover features that are inherently nonlinear has been described by Schulz and
Behnke [15]. In certain cases, it was shown that greedy layer-wise pretraining could
actually hurt the overall performance of an MLP.
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To overcome this limitation, Schulz and Behnke [15] proposed a two-layer con-
tractive encoding as a way to pretrain an MLP with more powerful local models. The
experiments in [15] revealed that a better classification performance can be achieved
by using the two-layer contractive encoding as a building block than by using a neural
network with a single hidden layer.

In the two layer encoding, the autoencoder is a deep neural network itself, having
three hidden layers. Hence, it might be difficult to train with stochastic gradient methods
(SGD). To deal with this problem, Raiko et al. [10] proposed to linearly transform each
hidden neuron, while also introducing connections that skip the hidden layer. They
showed that in this way, it is possible to train a deep neural network directly with good
generalization performance. This approach effectively makes SGD similar to second-
order optimization methods [16] without sacrificing its computational advantages.

In this paper, we propose to combine the two techniques, allowing for complex lo-
cal models, but also having shortcuts that realize the simple parts of the encodings. We
provide empirical evidence that it is beneficial to use both the two-layer contractive en-
coding and the linear transformation for pretraining. In other words, we claim that a less
greedy pretraining approach requires both well-founded regularization and a powerful
learning algorithm.

3 Background

In this section, we discuss each one of those two methods combined on our approach—
the linear transformations and the two-layer contractive encoding—in more detail.

3.1 Linear Transformations in Perceptrons

Let us focus on a single hidden layer within a possibly deep MLP network. The inputs
to this layer are denoted xt and its outputs are yt, where t is the sample index. We
allow short-cut connections that by-pass one or more hidden layers, i.e. the inputs may
be distributed over several previous layers of the network. The mapping from xt to yt
is modeled as

yt = Af (Bxt) +Cxt, (1)

where f is a nonlinearity (such as tanh) applied to each component of the argument
vector separately and A, B, and C are weight matrices. In order to avoid separate
bias vectors that complicate formulas, the input vectors xt are assumed to have been
supplemented with an additional component that is always one.

Let us supplement the tanh nonlinearity with auxiliary scalar variables αi and βi
for each nonlinearity fi. They are updated during training in order to help learning of
the other parameters A, B, and C. We define

fi(bixt) = tanh(bixt) + αibixt + βi, (2)

where bi is the ith row vector of matrix B. We will ensure that

0 =

T∑
t=1

fi(bixt), 0 =

T∑
t=1

f ′i(bixt) (3)
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by setting αi and βi to

αi = −
1

T

T∑
t=1

tanh′(bixt), βi = −
1

T

T∑
t=1

[tanh(bixt) + αibixt] .

These seemingly arbitrary update rules are motivated below.
The effect of changing the transformation parameters αi and βi are compensated

exactly by updating the shortcut mapping C by

Cnew = Cold −A(αnew −αold)B−A(βnew − βold) [0 0 . . . 1] , (4)

where α is a matrix with elements αi on the diagonal and one empty row below for the
bias term, and β is a column vector with components βi and one zero below for the bias
term. Thus, any change in αi and βi does not change the overall mapping from xt to yt
at all, but they do change the optimization problem instead.

One way to motivate the transformations in Equations (3), is to study the expected
output yt and its dependency on the input xt:

1

T

∑
t

yt = A

[
1

T

∑
t

f(Bxt)

]
+C

[
1

T

∑
t

xt

]
(5)

1

T

∑
t

∂yt
∂xt

= A

[
1

T

∑
t

f ′(Bxt)

]
BT + C (6)

We note that by making nonlinear activations f(·) zero mean in Eq. (3) (left), we disal-
low the nonlinear mapping Af (B·) to affect the expected output yt, that is, to compete
with the bias term. Similarly, by making the nonlinear activations f(·) zero slope in
Eq. (3) (right), we disallow the nonlinear mapping Af (B·) from affecting the expected
dependency on the input, that is, to compete with the linear short-cut mapping C. In tra-
ditional neural networks, the linear dependencies (expected ∂yt/∂xt) are modeled by
many competing paths from an input to an output (e.g. via each hidden unit), whereas
this architecture gathers the linear dependencies to be modeled only by C.

In [10] it was shown experimentally that less competition between parts of the
model will speed up learning. In [16], more careful connections to second-order op-
timization methods were drawn.

3.2 Two-Layer Contractive Encoding

A common regularizer for MLPs is the L2 penalty on the weight matrices. This regular-
izer is well-motivated for linear methods (e.g. ridge regression or logistic regression),
where it penalizes strong dependence of y on few variables in x, and thus ensures invari-
ance of y to small changes in x. For MLPs, which contain saturating non-linearities,
this desirable property can be achieved with strongly positive or negative weights as
well. Rifai et al. [14] show that the generalization of the L2-norm penalty to the case
where non-linearities are involved in the computation of y is a penalty on the Frobe-
nius norm of the Jacobian ‖Jy(x)‖F (“contractive” regularization). [14, 13] demon-
strate that pretraining simple auto-encoders with the contractive penalty produces fea-
tures which identify the data manifold and can aid finetuning. However, Schulz and
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Fig. 1: Schematic visualization of our encoder.
Features h of input x are determined both by
a one-layer encoder via C, and by a two-layer
encoder via B and A. Contractive regulariza-
tion [14] and two-layer contractive regularization
[15] are used to learn stable linear/non-linear rep-
resentations in h, respectively. Linear transfor-
mations in the two-layer part are moved to C us-
ing compensations [10] (not shown).

Behnke [15] demonstrate that auto-encoders with one hidden layer can fail to identify
stable features in the input when their variables in x are XOR-related. They generalize
the contractive regularizer to the two-layer case,

‖Jh(x)‖2F =

N∑
n

M∑
m

(
1− h2

n

)2( K∑
k

AnkBkm(1− h′
2
k)

)2

, (7)

where x ∈ RM , B ∈ RK×M , A ∈ RN×K , and h = tanh(A tanh(Bx)) = tanh(Ah′).
In this paper, we argue that while two-layer encodings are harder to learn, we can

combine their ability to detect highly non-linear features with the easy-to-learn one-
layer encodings by introducing shortcuts. Shortcut weights C from the input to the
second hidden layer can be regularized as in [14], while the two-layer encoder is reg-
ularized as in [15]. We employ linear transformations and compensations (Sec. 3.1) to
ensure that simple features continue to be learned by the shortcut weights, while the
two-layer part of the encoder can focus on the difficult features. For this purpose, we
extend the two-layer contractive regularizer to account for the linear transformations
in (1) and (2),

‖Jh(x)‖2F =
∑

(1− h2)2
T
(C+A(Bα +B′))

2
, (8)

where Bα
km = αkBkm, B′km = Bkm(1−tanh2(Bk·x)). Fig. 1 illustrates the proposed

encoder structure.

4 Experiments

We evaluate the proposed approach in a semi-supervised setting using a handwritten
digit dataset (MNIST, [9]). We assume that only 1200 training samples have their labels
available, while all the other training samples are unlabeled. The task is to use an MLP
trained on the training samples to classify 10,000 test samples.

4.1 Model and Learning

Our base model is a multi-layer perceptron (MLP) with two hidden layers having tanh
hidden neurons. The output of the MLP is

y = W (tanh (A tanh (Bx))) , (9)
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Table 1: Classification accuracies
depending on training strategy on
MNIST using 1200 labeled exam-
ples, and the size of the second hid-
den layer fixed to 100. Standard de-
viations are over 10 trials with dif-
ferent draws of the training set.

Strategy Test Error Std. Dev.

S 13.27 1.47
U+S 8.835 0.33

C+U+S 8.989 0.25
T+U+S 9.132 0.19

2C 8.77 0.43
C+T+U+S 8.695 0.41

where W, A and B are weight matrices. We have omitted biases for simplicity of
notation. As baseline we trained this MLP both with and without pretraining. For the
pretrained MLP we consider the bottom two layers as an autoencoder with two hidden
layers and trained them using both labeled and unlabeled samples.

When the hidden neurons, or perceptrons, in the MLP were linearly transformed,
we added shortcut connections from the input to the second hidden layer to maintain
the equivalence after the transformation. In that case, the output of the MLP is

y = Wh = W tanh(Ah′ +Cx), (10)

where h′ = tanh(Bx) +Bαx+ β, and C is the weight matrix of the shortcuts.3.
As a comparison, we tried both using either one of the two-layer contractive encod-

ing and the linear transformation and using both of them together. In this way, we can
easily see the effectiveness of the proposed way of using both approaches together.

Specifically, we used six different training strategies:

1. S: MLP trained with labeled samples only
2. U+S: MLP pretrained with unlabeled samples and finetuned
3. 2C: MLP pretrained with stacked contractive auto-encoders
4. C+U+S: MLP pretrained and finetuned with two-layer contractive encoding
5. T+U+S: MLP with shortcuts pretrained and finetuned with linear transformation
6. C+T+U+S: MLP with shortcuts pretrained and finetuned using both the two-layer

contractive encoding and linear transformation

We estimated hyperparameters such as learning rates, weight decay constant, regu-
larization strength and the size of the first hidden layer using hyperopt [4]. The number
of training epochs is determined with early stopping. For pre-training, we minimized
reconstruction error on a 10 000 sample validation set for every training strategy. We
then determined 1200 labeled training samples randomly and employed five-fold cross
validation and hyperopt to determine learning rates for finetuning on the cross-entropy
loss function. To reduce overfitting induced by the small size of labeled samples, we
fixed the number of hidden neurons in the second hidden layer to 100 (see, e.g., [3]).
The weight matrices A and B were initialized randomly according to the normalized
scale [6], while C was initialized with zeroes.

3 When we pretrained the MLP as a two-layer contractive encoding, we tied the weights A and
B between the encoder and decoder. However, we did not share C, αl’s and βl’s.
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Once the hyperparameters were found, we evaluated each strategy by training 10
MLPs with different sets of randomly sampled 1200 labeled training samples and clas-
sifying the held-out test samples.

4.2 Result and Analysis

In Table 1, the resulting classification accuracies for all six strategies are presented. As
expected, any approach with pretraining significantly outperforms the case where only
labeled samples were used for supervised training (S). The best performing strategy
was the one which pretrained the MLP as the two-layer contractive encoding using the
linear transformation (C+T+U+S). This strategy was able to outperform the strategies
U+S, C+U+S as well as T+U+S. Our proposed method also has a slight advantage over
the stacked contractive auto-encoder (2C).

Interestingly, using either the two-layer contractive encoding or the linear transfor-
mation only turned out to be just as good as the naı̈ve pretraining strategy (U+S). This
suggests that it is not easy to train the two-layer contractive encoding well without a
good training algorithm. Only when training became easier by linearly transforming
perceptrons to have zero-mean and zero-slope on average, we were able to see the im-
provement (C+T+U+S), which confirms our claim.

5 Conclusions

In this paper, we claimed that pretraining a multi-layer perceptron (MLP) with two-layer
local models can be improved by having both good regularization based on minimizing
the Jacobian of hidden activations with respect to the input [15, 14] and powerful learn-
ing algorithm based on linearly transforming hidden neurons [10, 16]. We focused on
validating this claim in a semi-supervised setting where only few labeled samples and
vast amount of unlabeled samples are available.

We empirically demonstrated the validity of our claim by considering a task of clas-
sifying handwritten digits using an MLP when only 1200 training samples out of 60,000
were assumed to have annotated labels. It was clear from the experiment that pretraining
indeed helps significantly when there are only few labeled training examples. Further-
more, we were able to see that generalization performance could be improved by pre-
training an MLP with a two-layer contractive encoding using the linear transformation,
confirming the validity of our claim.

The experiments reported in the paper are, however, limited in two dimensions.
Firstly, the structure of the MLP was limited to have only two hidden layers, and a small
fixed-size second hidden layer, which makes it important for future research to evaluate
the proposed method with larger and deeper models. Secondly, it will be desirable to
evaluate the proposed method with other datasets.
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