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Abstract. The perception of persons is an important capability of y&dabots
that work closely together with humans. An operator may f@egxample, ges-
tures to refer to an object in the environment. In order ta@ge such gestures,
the robot has to estimate the body pose of the operator.

We focus on the marker-less motion capture of a human body dgnsof an
Iterative Closest Point (ICP) algorithm for articulated structures. An articuthte
upper body model is aligned with the depth measurements BiGB-D camera.
Due to the variability of the human body, we propose an adeftody model
that is aligned within the sensor data and iteratively adplito the person’s body
dimensions. Additionally, we preserve consistency wipeet to self-collisions.
Besides that, we use an inverse data assignment, that isutentty utile for ar-
ticulated models.

Experiments with measurements of a Microsoft Kinect canseav the advan-
tage of the approach compared to the standard articulatealgdrithm in terms
of theroot mean squared (RMS) error and the number of iterations the algorithm
needs to converge. In addition, we show that our consistehegks enable to
recover from situations where the standard algorithm.fails

Keywords: Human-Robot Interaction, Marker-less motion capturejciitated
ICP

1 Introduction

Today’s robots need to operate in environments closelytb@geavith humans. For ex-
ample, in household environmentdamestic service robot has to interact with people,
navigate around them or deliver objects to a user. Intargetith a user hereby could
mean that the user refers to an object in the environment bitipg to it, rather than
verbally describing it [8]. Pointing to an object is a way @hemunication where hu-
mans use their whole body as a medium. Therefore, the rolsaiohgerceive the hu-
man’s body pose, i. e., the individual joint angles and tlealion and orientation of the
body parts, in order to detect a motion as a gesture, to deteitime pointing direction,
and map it to a target in the environment.

We focus on marker-less estimation of such body poses by snefaan Iterative
Closest Point (ICP) approach to fit a human body model in 3Dtpoeasurements from
a depth camera. Hence, a precise and complete model of a Hhdgris necessary.
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2 An Adaptive Body Model for Articulated ICP

The human body is an articulated object that is highly vdeiabits size and shape. It
consists of a skeleton with many degrees of freedom coveitedtissue and skin. In
addition, the human body is usually covered in clothes th&istate its shape. Due to
the variability in the human body shape, a static model iadliantageous. Hence, a
person-dependent model has to be adapted from a generid.mode

In contrast to previous work, our approach leverages tharsdge of an adaptive
body model that is aligned within the measured 3D points tewtively adjusted to
the person’s body dimensions. Besides that, we use an &dats assignment that is
particularly utile for articulated models. Our approaché@sed on depth images from a
RGB-D camera [16] that provides depth and color informagibhigh frame rates.

The remainder of this paper is organized as follows: Afteriefbeview of related
work, we describe the structure of the body model (Sectibhas well as the basic idea
of articulated ICP (Section 3.2). Section 4 describes oteresions to the articulated
ICP algorithm that enables an adaptive body model. Finatyevaluate our extensions
and compare the adaptive body model to the static body model.

2 Redated Work

Perceiving humans has been studied in many research aneasdscades. The vast
majority of this work employs information from one or mordaocameras to estimate
the human body pose as surveyed by Moeslund et al. [17]. Henveacently affordable
depth cameras became available, which fosters researcbptin-dased approaches to
human body pose estimation. Furthermore, these approdomezs suffer from varying
lighting conditions.

Ganapathi et al. [10] investigate marker-less human peskitrg from monocular
depth images. They combine an accurate generative modeawliscriminative model
that provides data-driven evidence about body part logatidhe generative model
applies a local model-based search that exploits the kitiertzain of a body model.
The discriminative model utilizes a set of trained patclssiéers to detect body parts
and is used for initialization and reinitialization if thedal search loses track of the
body, e. g., due to fast movements. The detection and lat&liz algorithm has been
published by Plagemann et al. [22]. They propose an int@@st detector based on
identifying geodesic extrema in point clusters that calecivith salient points of the
body.

Several recent approaches focus on the extension of a stalteshed 3D regis-
tration method, théterative Closest Point (ICP) algorithm [4], to articulated models
by fitting a static (non-adaptive) cylindrical human bodydabinto 3D measurements.
Demirdjian et al. [6], for example, estimate the pose ofvidlial body parts using
the ICP algorithm in 3D point clouds generated by dense stérbereby, the poses
for individual body parts are estimated independently aim@érkatic constraints are
enforced after registration. These constraints are impieed by a support vector ma-
chine (SVM) classifier that is trained on data from a motioptaee system.

Ogawara et al. [19] estimate the human body pose from an @xtuplume from
multiple video streams. They use a deformable skin moddl it structure consist-
ing of Bézier surfaces, as proposed in [15]. The idea isiiady Kehl et al. [11] who
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use an extension of the ICP formulation to deformable objfi] and an M-estimator,
a generalized form of the least squares method, to minihizé&aP error function [23].
In contrast, Ziegler et al. [24] formulate the problem oftkimg a body pose as state
estimation problem, modeling the joint angles as a statvétan unscented Kalman
filter (UKF). Their approach is related to the ICP algorithince they determine point
correspondences by spatial neighborhood and iteratiediye their estimation of the
joint angles.

The work by Mindermann et al. [18] and their more recent waikgeneralize
the ICP algorithm to articulated models by jointly mininmigi the distance from the
registered data points to the model surface using a Levgrdarquardt minimization
scheme. To overcome the variations in the human body, thegoge to match a person
against a database of articulated models [1]. A specificiddiion model is chosen
from the database that correlates in height and volume. &iecidy model consists of
a set of triangle meshes.

Pellegrini et al. [21] propose to divide the articulated paato parts that can be
aligned rigidly using a closed-form solution. Therefoles articulation structure is split
into two branches and a single joint angle is adapted. Knoah §14] also apply the
ICP to each body part individually.

Azad et al. [3] use a particle filter to estimate the pose offseupody model from a
stereo camera. Their body model consists of fixed-sizedsomnected by ball (shoul-
der) or hinge (elbow) joints. The head is directly connedtethe abdomen, omitting
a neck. By means of image-based cues, like edges or colougiagte the particle set.
In [2], the authors extend their work by a 3D hand/head tragkis a separate cue for
the particle filter. Kim et al. [12] combine the ICP algorithwith a particle filter. The
human body is modeled by a set of cylinders and a sphere féretagé. Each body part
consists of a set of 3D points that model the surface of it.18],[the same authors
propose heuristics to speed up the assignment of correspoesl.

All of the mentioned approaches employ a person model treatg during align-
ment. In contrast, we adapt a generic person model to a pepsmrific body model to
account for the variability in the person’s dimensions.

3 Basic Algorithm

3.1 Human Body Model

We model the human body as an directed acyclic graph. Thiebidy part$, bs, ...bp

are the vertices of the graph. Starting from the pelvis, Whgcthe root node of the
graph, body parts are connected to other body parts by gdgesresenting the joints.
Each body parb; is modeled by a cylinder with parametéyglength) and-; (radius)
and a transformatiof’; that defines the orientation and translation to its parertake

of the root nodé,., T, describes the transformation of the complete body model to
the coordinate system origin. In addition, every part hastao$ pomtSm1 - ,m%
assigned to it that model the cylindrical surface, baset andr;.
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3.2 Articulated Iterative Closest Point Algorithm

The general formulation of the ICP algorithm [4] aims at fimgla rigid transformation
between a model point séff and a scene point sé). For a set ofN corresponding
point pairs a transformatiofi that minimizes

N
E(T) =) |jm; — Td;||*, (1)
=1

is determined by performing an iterative least squaresmiidtion scheme. The
solution can be determined by several closed-form algmsthn the articulated case,
Equation 1 is extended to

B
E(T1..Tp) =Y Hijfj —d

j=11i=1

2

(@)

Similar to [21], we split the complete body chain in two suiss# joint;j, and align
them with a rigid transformation with respecttowhich can be solved in closed-form.
The splitting jointj, is chosen successively and varied in every iteration. le cég,
being the joint assigned to the root node, the entire modeigaed in the data.

4 Proposed Extensions

4.1 Data Segmentation

We apply Euclidean clustering in the 3D point cloud to segiba input data and
reduce the number of possible correspondences. Neighygooints are assigned to the
same point cluster if the Euclidean distance between thesa dot exceed a threshold
74. The distance threshold needs to be chosen appropriatakgithe sensor’s accuracy
in distance measurements into account. For our setup we tsesholdr; = 5 cm.
We exclude clusters with less than = 500 points from further processing. The person
model is aligned to each remaining cluster with a standaRIn@, i. e.,j; = j,., with

jr- being the root joint. After convergence the point clusteattminimizes Eq. 2 is
assumed to be the point cluster that corresponds to therpargbremaining clusters
are removed from the point cloud.

4.2 DataAssignment

An important step in the ICP algorithm is the data assignmdrgre point correspon-
dences between the model point set and the scene point ssttabdished. A common
way is to determine the nearest neightipfor every model pointn; in the scene point
set. This can also be conveyed to articulated structures@medspondences are deter-
mined for every body part individually. However, this assigent is disadvantageous
for scene points that are close to more than one body patt,oigts close to a joint.
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(a) (b)

Fig. 1. (a) Exemplary scene with aligned body model. (b) Resultoene points after segmenta-
tion with color coded assignment to body parts. Points thatregjected due to distance ratio or
absolute distance from any body part are colored white.

In contrast, we use an inverse data assignment where eveng point is assigned
to its closest body part. We reject ambiguous corresporegetiat cannot be clearly
assigned to one body part using the distance ratio betwexsestl and the second-
closest body part. For our setup, we reject all assignmentghich the distance ratio
exceedd$).8. Moreover, we reject points that are too far away from anyoalt. Fig.

1 shows the resulting assignment for an exemplary scene.

4.3 Model Adaption

After assigning correspondences and before estimatingptheangle, we adapt the
model for each body part based on the surface of the assigret$ pAssigned points
hereby means the correspondences from the previous stear3b the splitting joint
js» we choose the body part that is adapted successively and uaevery iteration.

By means of a RANSAC [9] estimator, a cylindrical model isefittinto the data
points corresponding to a body part. Randomly, data poigselected and the best
cylindrical model in terms of the overall number of inliessdalculated, where inliers
are points that are closer tharcm to the cylinder model. Since the quality of the fitted
cylindrical model increases with the number of inliers, admloestimation with less
than 100 inliers is neglected. Fig. 2 shows the calculatiéeréfor an exemplary scene
and body part (upper arm). The resulting cylinder is desctitly vectorl and radiug’,
whered corresponds to the direction of the cylinder in the coor@iraigin. In order
to get the lengthi of a cylinder, the inliers are transformed by the inverse td align
with the x-axis.

Since the measurements are subject to noise and the assigoidata points can
be inaccurate, especially in the first iterations, the mpdeametersp (i.e., radius- and
lengthl) are filtered over time. Parametegy at time stepk is calculated by
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@) (b) (©) (d)

Fig. 2. (a+c) Data assignment for the upper arm (violet) and forggatiow) from two different
perspectives. (b+d) The resulting inliers (red) for a théested cylindrical upper arm model.

Pk = cpr + (¢ — 1)pr—1. (3

We trust a new estimation of the model parameieat time stepk with ¢ = 0.1.
From the resulting model parameters a new set of model pnﬂﬁts..,m%‘ for the
body parth; is generated that replaces the previous model points.

In case of a wrong assignment or an insufficient cylindridahdi well as for ini-
tialization, we use a prior for the radius and length of eumgly part. It prevents from
growing or shrinking to abnormal dimensions. For instarieeur system a forearm
has a minimum radius of 5 cm and a maximum radius of 15 cm.

4.4 Sdf-Collision Checking

After each ICP iteration, the current state of the model eckld for consistency with
respect to self-collisions. A self-collision of a body pardetected by calculating the
distance to every body part in the articulation chain exi@sptirect parent and children
(i. e. neighboring nodes in the graph). Thus, we allow neigimg body parts to collide

with each other, e. g., the forearm can collide with the ugper but not with the ab-

domen. In case of a self-collision, the transformation ef¢hrrent iteration is inverted
and applied to the selected joift

45 Modd Initialization

For a good alignment of the model in the first data frames agqroptialization of

the articulation structure is necessary. In order to do dmdy segmentation step as
proposed in [7] can be used. In this approach, body featwas as shoulder, elbow
and hand are extracted from a point cluster, based on geadiskinces and geometric
priors. The resulting body features can be used to inigalie joint states of the model.
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Fig. 3. Each column shows one frame from the test data set. The fisssliows the raw sensor
measurements. The second row shows the adapted body medielfnts).

5 Experiments

We evaluate our approach with measurements of a Microsoidficamera [16]. For
the following experiments, we use a down-sampled depth éwaith QQVGA reso-
lution (160 x 120). The average runtime of our current implementationhendown-
sampled depth image is 112 ms on a 2.4 GHz single core of a Dareptop com-
puter. The runtime depends on the number of iterations tleat@cessary to converge.
In general, the number of iterations decreases after aliniiodel alignment and a
frame rate of 8 Hz can be achieved. We focus on an upper bodglyreicce the camera
has a field-of-view 0f8° x 45°. An adult person with typical European body propor-
tions stands in front of the camera in two meter distance.
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Fig. 4. RMS error for each data frame after convergence. The adaptodel (green dashed) is
compared to the static model (red).

In a first experiment, we compare traot mean squared (RMS) error of the aligned
body model with and without model adaption. The data setistssf 500 data frames
of a person performing four different body poses. Fig. 3 shtre four body poses
with the adapted body model. After convergence of the ICBrétym, the RMS error
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of a model configuration is calculated by Equation 2 for exdata frame. Fig. 4 shows
the RMS error of the entire data set for the adaptive and tleel fibody model. It can
be observed that the adaptive model is better aligned withiéta. Besides that, using
an adaptive model reduces the necessary number of itesati@onverge, as shown in
Fig. 5.
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Fig. 5. Number of iterations that are necessary to converge, cuetligp to every frame, for the
test data set.

In a second experiment, we demonstrate the effect of séifiom prevention. Here,
the test person relaxes his arms and keeps them close todyisWithout self-collision
checking, body parts of the articulated model may collidéhvaiach other, e. g., the
forearm with the abdomen. This could result in wrong coroesfences, e. g., points
from the abdomen could be assigned as correspondencesftortbarm. With self-
collision checks, a minimal distance between body partsamtained that prevents
from these wrong assignments. Fig. 6 shows frames from ttaselawith and without
self-collision checks.

The third experiment, shown in Fig. 7, demonstrates how kiparithm aligns the
body model when using an incorrect initialization. Hereg #ingle of the shoulder
joint differs between test person and body model and thexdgli dimensions of the
body parts are initialized too large (Fig. 7, top left). Afi iterations (Fig. 7, bottom
right), the body model is correctly aligned and the paransaitthe model are properly
adapted.

6 Conclusions

We propose an extension to the ICP algorithm for articulatedels. Due to the vari-
ability in the human body shape, we use an adaptive body ntbdelis aligned to
3D point measurements and iteratively adjusted to the p&rdmdy dimensions, in
contrast to previous approaches, that rely on the corrsstolea static model. Besides
that, we use an inverse data assignment, that is partiguitle for articulated models.
Our approach is based on depth measurements of a RGB-D camepgeriments,
we compare our approach to the standard articulated ICRilgowith a static body
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Fig. 6. Self-collision prevention. Without self-collision prevon (top row) false correspon-
dences are assigned which results in a wrong alignment ofatiearm. With enabled self-
collision prevention (bottom row) the model can be alignedectly.

model. The evaluation shows that an adaptive model aligtterbeith the data in terms
of the RMS error.

We also implement a self-collision check and demonstratetitity in an exper-
iment. Furthermore, we show how an incorrect model init&ion still results in a
correct aligned body model.

Up to now, our system only relies on the depth measuremerteafamera. How-
ever, in some situations, the color images might be benkfitia a matter of future
work to integrate color information into the algorithm. Bess that, the extracted body
pose can be used to interpret, e.g., pointing gestures aintkesnaled pointing target. To
do so, the system described in [7] will be adapted to the destbody pose estimation.
Another possibility for future work is a GPU-based implenzgion to benefit from the
full resolution of the camera and achieve real-time perforoe.
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Fig. 7. The alignment of the model at different iterations for theneadata frame. Even with an
incorrect initialized model, the algorithm converges aft2 iterations.
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