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Abstract. The perception of persons is an important capability of today’s robots
that work closely together with humans. An operator may use,for example, ges-
tures to refer to an object in the environment. In order to perceive such gestures,
the robot has to estimate the body pose of the operator.
We focus on the marker-less motion capture of a human body by means of an
Iterative Closest Point (ICP) algorithm for articulated structures. An articulated
upper body model is aligned with the depth measurements of anRGB-D camera.
Due to the variability of the human body, we propose an adaptive body model
that is aligned within the sensor data and iteratively adjusted to the person’s body
dimensions. Additionally, we preserve consistency with respect to self-collisions.
Besides that, we use an inverse data assignment, that is particularly utile for ar-
ticulated models.
Experiments with measurements of a Microsoft Kinect camerashow the advan-
tage of the approach compared to the standard articulated ICP algorithm in terms
of theroot mean squared (RMS) error and the number of iterations the algorithm
needs to converge. In addition, we show that our consistencychecks enable to
recover from situations where the standard algorithm fails.

Keywords: Human-Robot Interaction, Marker-less motion capture, Articulated
ICP

1 Introduction

Today’s robots need to operate in environments closely together with humans. For ex-
ample, in household environments adomestic service robot has to interact with people,
navigate around them or deliver objects to a user. Interacting with a user hereby could
mean that the user refers to an object in the environment by pointing to it, rather than
verbally describing it [8]. Pointing to an object is a way of communication where hu-
mans use their whole body as a medium. Therefore, the robot has to perceive the hu-
man’s body pose , i. e., the individual joint angles and the location and orientation of the
body parts, in order to detect a motion as a gesture, to determine the pointing direction,
and map it to a target in the environment.

We focus on marker-less estimation of such body poses by means of an Iterative
Closest Point (ICP) approach to fit a human body model in 3D point measurements from
a depth camera. Hence, a precise and complete model of a humanbody is necessary.
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2 An Adaptive Body Model for Articulated ICP

The human body is an articulated object that is highly variable in its size and shape. It
consists of a skeleton with many degrees of freedom covered with tissue and skin. In
addition, the human body is usually covered in clothes that obfuscate its shape. Due to
the variability in the human body shape, a static model is disadvantageous. Hence, a
person-dependent model has to be adapted from a generic model.

In contrast to previous work, our approach leverages the advantage of an adaptive
body model that is aligned within the measured 3D points and iteratively adjusted to
the person’s body dimensions. Besides that, we use an inverse data assignment that is
particularly utile for articulated models. Our approach isbased on depth images from a
RGB-D camera [16] that provides depth and color informationat high frame rates.

The remainder of this paper is organized as follows: After a brief review of related
work, we describe the structure of the body model (Section 3.1) as well as the basic idea
of articulated ICP (Section 3.2). Section 4 describes our extensions to the articulated
ICP algorithm that enables an adaptive body model. Finally,we evaluate our extensions
and compare the adaptive body model to the static body model.

2 Related Work

Perceiving humans has been studied in many research areas since decades. The vast
majority of this work employs information from one or more color cameras to estimate
the human body pose as surveyed by Moeslund et al. [17]. However, recently affordable
depth cameras became available, which fosters research on depth-based approaches to
human body pose estimation. Furthermore, these approachesdo not suffer from varying
lighting conditions.

Ganapathi et al. [10] investigate marker-less human pose tracking from monocular
depth images. They combine an accurate generative model with a discriminative model
that provides data-driven evidence about body part locations. The generative model
applies a local model-based search that exploits the kinematic chain of a body model.
The discriminative model utilizes a set of trained patch classifiers to detect body parts
and is used for initialization and reinitialization if the local search loses track of the
body, e. g., due to fast movements. The detection and localization algorithm has been
published by Plagemann et al. [22]. They propose an interestpoint detector based on
identifying geodesic extrema in point clusters that coincide with salient points of the
body.

Several recent approaches focus on the extension of a well-established 3D regis-
tration method, theIterative Closest Point (ICP) algorithm [4], to articulated models
by fitting a static (non-adaptive) cylindrical human body model into 3D measurements.
Demirdjian et al. [6], for example, estimate the pose of individual body parts using
the ICP algorithm in 3D point clouds generated by dense stereo. Thereby, the poses
for individual body parts are estimated independently and kinematic constraints are
enforced after registration. These constraints are implemented by a support vector ma-
chine (SVM) classifier that is trained on data from a motion capture system.

Ogawara et al. [19] estimate the human body pose from an occupied volume from
multiple video streams. They use a deformable skin model with joint structure consist-
ing of Bézier surfaces, as proposed in [15]. The idea is inspired by Kehl et al. [11] who
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use an extension of the ICP formulation to deformable objects [20] and an M-estimator,
a generalized form of the least squares method, to minimize the ICP error function [23].
In contrast, Ziegler et al. [24] formulate the problem of tracking a body pose as state
estimation problem, modeling the joint angles as a state vector in an unscented Kalman
filter (UKF). Their approach is related to the ICP algorithm since they determine point
correspondences by spatial neighborhood and iteratively refine their estimation of the
joint angles.

The work by Mündermann et al. [18] and their more recent work[5] generalize
the ICP algorithm to articulated models by jointly minimizing the distance from the
registered data points to the model surface using a Levenberg-Marquardt minimization
scheme. To overcome the variations in the human body, they propose to match a person
against a database of articulated models [1]. A specific articulation model is chosen
from the database that correlates in height and volume. Sucha body model consists of
a set of triangle meshes.

Pellegrini et al. [21] propose to divide the articulated body into parts that can be
aligned rigidly using a closed-form solution. Therefore, the articulation structure is split
into two branches and a single joint angle is adapted. Knoop et al. [14] also apply the
ICP to each body part individually.

Azad et al. [3] use a particle filter to estimate the pose of a upper body model from a
stereo camera. Their body model consists of fixed-sized cones connected by ball (shoul-
der) or hinge (elbow) joints. The head is directly connectedto the abdomen, omitting
a neck. By means of image-based cues, like edges or color theyupdate the particle set.
In [2], the authors extend their work by a 3D hand/head tracking as a separate cue for
the particle filter. Kim et al. [12] combine the ICP algorithmwith a particle filter. The
human body is modeled by a set of cylinders and a sphere for thehead. Each body part
consists of a set of 3D points that model the surface of it. In [13], the same authors
propose heuristics to speed up the assignment of correspondences.

All of the mentioned approaches employ a person model that isstatic during align-
ment. In contrast, we adapt a generic person model to a person-specific body model to
account for the variability in the person’s dimensions.

3 Basic Algorithm

3.1 Human Body Model

We model the human body as an directed acyclic graph. The rigid body partsb1, b2, ...bB
are the vertices of the graph. Starting from the pelvis, which is the root node of the
graph, body parts are connected to other body parts by edgesji representing the joints.
Each body partbi is modeled by a cylinder with parametersli (length) andri (radius)
and a transformationTi that defines the orientation and translation to its parent. In case
of the root nodebr, Tr describes the transformation of the complete body model to
the coordinate system origin. In addition, every part has a set of pointsmbi

1
, ..,mbi

L

assigned to it that model the cylindrical surface, based onli andri.
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3.2 Articulated Iterative Closest Point Algorithm

The general formulation of the ICP algorithm [4] aims at finding a rigid transformation
between a model point setM and a scene point setD. For a set ofN corresponding
point pairs a transformationT that minimizes

E(T) =

N
∑

i=1

||mi −Tdi||
2
, (1)

is determined by performing an iterative least squares minimization scheme. The
solution can be determined by several closed-form algorithms. In the articulated case,
Equation 1 is extended to
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Similar to [21], we split the complete body chain in two subsets at jointjs and align
them with a rigid transformation with respect tojs which can be solved in closed-form.
The splitting jointjs is chosen successively and varied in every iteration. In case of js
being the joint assigned to the root node, the entire model isaligned in the data.

4 Proposed Extensions

4.1 Data Segmentation

We apply Euclidean clustering in the 3D point cloud to segment the input data and
reduce the number of possible correspondences. Neighboring points are assigned to the
same point cluster if the Euclidean distance between them does not exceed a threshold
τd. The distance threshold needs to be chosen appropriately totake the sensor’s accuracy
in distance measurements into account. For our setup we use athresholdτd = 5 cm.
We exclude clusters with less thanτn = 500 points from further processing. The person
model is aligned to each remaining cluster with a standard ICP run, i. e.,js = jr, with
jr being the root joint. After convergence the point cluster that minimizes Eq. 2 is
assumed to be the point cluster that corresponds to the person and remaining clusters
are removed from the point cloud.

4.2 Data Assignment

An important step in the ICP algorithm is the data assignmentwhere point correspon-
dences between the model point set and the scene point set areestablished. A common
way is to determine the nearest neighbordk for every model pointmi in the scene point
set. This can also be conveyed to articulated structures andcorrespondences are deter-
mined for every body part individually. However, this assignment is disadvantageous
for scene points that are close to more than one body part, e. g., points close to a joint.
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(a) (b)

Fig. 1. (a) Exemplary scene with aligned body model. (b) Resulting scene points after segmenta-
tion with color coded assignment to body parts. Points that are rejected due to distance ratio or
absolute distance from any body part are colored white.

In contrast, we use an inverse data assignment where every scene point is assigned
to its closest body part. We reject ambiguous correspondences that cannot be clearly
assigned to one body part using the distance ratio between closest and the second-
closest body part. For our setup, we reject all assignments in which the distance ratio
exceeds0.8. Moreover, we reject points that are too far away from any body part. Fig.
1 shows the resulting assignment for an exemplary scene.

4.3 Model Adaption

After assigning correspondences and before estimating thejoint angle, we adapt the
model for each body part based on the surface of the assigned points. Assigned points
hereby means the correspondences from the previous step. Similar to the splitting joint
js, we choose the body part that is adapted successively and vary it in every iteration.

By means of a RANSAC [9] estimator, a cylindrical model is fitted into the data
points corresponding to a body part. Randomly, data points are selected and the best
cylindrical model in terms of the overall number of inliers is calculated, where inliers
are points that are closer than5 cm to the cylinder model. Since the quality of the fitted
cylindrical model increases with the number of inliers, a model estimation with less
than 100 inliers is neglected. Fig. 2 shows the calculated inliers for an exemplary scene
and body part (upper arm). The resulting cylinder is described by vectord̂ and radiuŝr,
whered̂ corresponds to the direction of the cylinder in the coordinate origin. In order
to get the lengthl of a cylinder, the inliers are transformed by the inverse ofd̂ to align
with the x-axis.

Since the measurements are subject to noise and the assignment of data points can
be inaccurate, especially in the first iterations, the modelparametersp (i.e., radiusr and
lengthl) are filtered over time. Parameterpk at time stepk is calculated by
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(a) (b) (c) (d)

Fig. 2. (a+c) Data assignment for the upper arm (violet) and forearm(yellow) from two different
perspectives. (b+d) The resulting inliers (red) for a the estimated cylindrical upper arm model.

pk = cp̂k + (c− 1)pk−1. (3)

We trust a new estimation of the model parameterp̂k at time stepk with c = 0.1.
From the resulting model parameters a new set of model pointsm

bi
1
, ..,mbi

L for the
body partbi is generated that replaces the previous model points.

In case of a wrong assignment or an insufficient cylindrical fit as well as for ini-
tialization, we use a prior for the radius and length of everybody part. It prevents from
growing or shrinking to abnormal dimensions. For instance,in our system a forearm
has a minimum radius of 5 cm and a maximum radius of 15 cm.

4.4 Self-Collision Checking

After each ICP iteration, the current state of the model is checked for consistency with
respect to self-collisions. A self-collision of a body partis detected by calculating the
distance to every body part in the articulation chain exceptits direct parent and children
(i. e. neighboring nodes in the graph). Thus, we allow neighboring body parts to collide
with each other, e. g., the forearm can collide with the upperarm but not with the ab-
domen. In case of a self-collision, the transformation of the current iteration is inverted
and applied to the selected jointjs.

4.5 Model Initialization

For a good alignment of the model in the first data frames a proper initialization of
the articulation structure is necessary. In order to do so, abody segmentation step as
proposed in [7] can be used. In this approach, body features such as shoulder, elbow
and hand are extracted from a point cluster, based on geodesic distances and geometric
priors. The resulting body features can be used to initialize the joint states of the model.
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Fig. 3. Each column shows one frame from the test data set. The first row shows the raw sensor
measurements. The second row shows the adapted body model (red points).

5 Experiments

We evaluate our approach with measurements of a Microsoft Kinect camera [16]. For
the following experiments, we use a down-sampled depth image with QQVGA reso-
lution (160× 120). The average runtime of our current implementation on the down-
sampled depth image is 112 ms on a 2.4 GHz single core of a Core2Duo laptop com-
puter. The runtime depends on the number of iterations that are necessary to converge.
In general, the number of iterations decreases after an initial model alignment and a
frame rate of 8 Hz can be achieved. We focus on an upper body model, since the camera
has a field-of-view of58◦ × 45◦. An adult person with typical European body propor-
tions stands in front of the camera in two meter distance.
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Fig. 4. RMS error for each data frame after convergence. The adaptive model (green dashed) is
compared to the static model (red).

In a first experiment, we compare theroot mean squared (RMS) error of the aligned
body model with and without model adaption. The data set consists of 500 data frames
of a person performing four different body poses. Fig. 3 shows the four body poses
with the adapted body model. After convergence of the ICP algorithm, the RMS error
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of a model configuration is calculated by Equation 2 for everydata frame. Fig. 4 shows
the RMS error of the entire data set for the adaptive and the fixed body model. It can
be observed that the adaptive model is better aligned with the data. Besides that, using
an adaptive model reduces the necessary number of iterations to converge, as shown in
Fig. 5.
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Fig. 5. Number of iterations that are necessary to converge, cumulated up to every frame, for the
test data set.

In a second experiment, we demonstrate the effect of self-collision prevention. Here,
the test person relaxes his arms and keeps them close to his body. Without self-collision
checking, body parts of the articulated model may collide with each other, e. g., the
forearm with the abdomen. This could result in wrong correspondences, e. g., points
from the abdomen could be assigned as correspondences for the forearm. With self-
collision checks, a minimal distance between body parts is maintained that prevents
from these wrong assignments. Fig. 6 shows frames from the dataset with and without
self-collision checks.

The third experiment, shown in Fig. 7, demonstrates how the algorithm aligns the
body model when using an incorrect initialization. Here, the angle of the shoulder
joint differs between test person and body model and the cylinder dimensions of the
body parts are initialized too large (Fig. 7, top left). After 72 iterations (Fig. 7, bottom
right), the body model is correctly aligned and the parameters of the model are properly
adapted.

6 Conclusions

We propose an extension to the ICP algorithm for articulatedmodels. Due to the vari-
ability in the human body shape, we use an adaptive body modelthat is aligned to
3D point measurements and iteratively adjusted to the person’s body dimensions, in
contrast to previous approaches, that rely on the correctness of a static model. Besides
that, we use an inverse data assignment, that is particularly utile for articulated models.
Our approach is based on depth measurements of a RGB-D camera. In experiments,
we compare our approach to the standard articulated ICP algorithm with a static body
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Fig. 6. Self-collision prevention. Without self-collision prevention (top row) false correspon-
dences are assigned which results in a wrong alignment of theforearm. With enabled self-
collision prevention (bottom row) the model can be aligned correctly.

model. The evaluation shows that an adaptive model aligns better with the data in terms
of the RMS error.

We also implement a self-collision check and demonstrate its utility in an exper-
iment. Furthermore, we show how an incorrect model initialization still results in a
correct aligned body model.

Up to now, our system only relies on the depth measurements ofthe camera. How-
ever, in some situations, the color images might be beneficial. It is a matter of future
work to integrate color information into the algorithm. Besides that, the extracted body
pose can be used to interpret, e.g., pointing gestures and anintended pointing target. To
do so, the system described in [7] will be adapted to the described body pose estimation.
Another possibility for future work is a GPU-based implementation to benefit from the
full resolution of the camera and achieve real-time performance.
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Fig. 7. The alignment of the model at different iterations for the same data frame. Even with an
incorrect initialized model, the algorithm converges after 72 iterations.
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