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ABSTRACT

Man-made objects such as mechanical construction parts can
typically be described as a composition of shape primitives
like cylinders, planes, cones and spheres. We propose a ro-
bust method for the detection and pose estimation of such ob-
jects in 3D point clouds. Our main contribution is to enhance
a probabilistic graph-matching approach that detects objects
using 3D shape primitives with distinct 2D primitives such as
circular contours. With this extension, our method copes with
difficult occlusion situations and can be applied for object ma-
nipulation in complex scenarios such as grasping from a pile
or bin-picking. We demonstrate the performance of our ap-
proach in a comparison with a state-of-the-art feature-based
method for objects of generic shape and a primitive-based ap-
proach using only 3D shapes and no contours.

Index Terms— shape primitives, contour primitives, ob-
ject detection, pose estimation

1. INTRODUCTION

While much research investigates the recognition of generic
and organic objects in intensity images and 3D point clouds,
such methods do not exploit properties of man-made objects
that are often encountered in industrial and service robotics
applications. Typically, man-made machine parts are com-
posed of shape primitives such as cylinders, spheres, cones,
and planes (see, for example, the objects in Fig. 1).

In this approach, we follow a popular line of work match-
ing graph models [1] for object recognition. Both the object
being searched for and the scanned scene are represented as
compositions of geometric primitives in graphs. Object hy-
potheses are generated by identifying parts of a search graph
in the graph of a captured scene. Using the established graph
correspondences, one is able to determine the pose of the ob-
ject in the scene. Finally, hypotheses are verified with the
original 3D model in the scene point cloud.

Since the detection of 3D shape primitives requires areal
measurements on the primitive’s surfaces, occlusions by other
objects and the object itself may hinder reliable detection.
Only detecting a part of the primitives forming an object can
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Fig. 1. Left: Robot grasping a found pipe object out of a
box. Right: we detect 2D contour and 3D shape primitives in
3D point clouds and perform graph-matching to detect objects
and to estimate their pose.

lead to ambiguities in the object’s pose or not detecting the
object at all. For many object types, however, contours at oc-
clusion boundaries and at sharp object edges are unique fea-
tures that remove ambiguities and support pose estimation. In
this paper, we propose to complement 3D shape primitives
with 2D contour primitives such as circles. The novel combi-
nation of 2D contour and 3D primitive features tremendously
improves detection rate in difficult occlusion settings.

The remainder of this paper is structured as follows: af-
ter a discussion of related work in section 2, we describe our
approach to detecting occlusion boundaries and contour prim-
itives as well as the extension of our graph based object de-
tection framework in section 3. In section 4 we present exper-
iments where we compare our approach to a state-of-the-art
object detection method [2] and our former approach only us-
ing shape primitives (as used in [3]).

2. RELATED WORK

A common approach for object detection and pose estimation
is to use intensity images and various invariant features to
find correpsondences between a query object and the scene.
Construction parts as used here are usually textureless making
visual features such as SIFT [4] and SURF [5] less suitable.
In 3D data, various invariant features have been proposed that
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catch the distribution and arrangement of points and local
surface normals to describe an object or a part of it. Promi-
nent examples are spherical harmonic invariants [6], spin
images [7], curvature maps [8], and—more recently—point
feature histograms (PFH) [9, 10], FPFH [11], VFH [12],
SHOT [13]. Point-pair feature (PPF) voting methods find lo-
cally consistent arrangements of surfel pairs between model
and scene through either Hough voting [14] or RANSAC [2].
However, these approaches are designed for organic shapes
that provide high variability in shape throughout the object.
Man-made objects often consist of few simple geometric
primitives, i. e., less unique local regions. Another line of
work finds compositions of edges in depth images [15]. These
approaches are particularly well suited for objects in piles,
but may require special sensing to reliably find edges [16].
In the presence of occlusions erroneous edge detections can
hinder reliable detection.

We address the problem of object detection based on de-
tecting geometric shape and contour primitives. A widely
used and adopted method for detecting basic shapes in unor-
ganized point clouds is by Schnabel et al. [17] (section 3.1).
It decomposes the point cloud into inherent shapes such as
planes, spheres, cylinders, cones, and tori. In [18] the work is
extended by modeling compositions of primitives in a graph
and finding certain arrangements in building models. Previ-
ous work [3] built on top of this approach to detect objects
using graphs of connected primitives. In this paper we eval-
uate this method on various real world scans and show how
results can be drastically improved by our combination with
2D contour primitives.

Related to this approach is the work of Li et al. [19] who
build a similar graph and use it to iteratively refine orienta-
tions and positions of detected shapes. Also related is fitting
superquadrics to represent individual parts of objects [20].
Superquadrics generalize better on object parts that cannot be
described by a single simple shape primitive and can adopt
to a larger class of shapes. The technical construction parts
we’re aiming to detect reliably are, however, composed of
simple shapes only. Hence, restricting the representations of
parts in the object part graphs to simple shape primitives not
only suits perfectly the class of objects of interest, but also
drastically limits the dimensionality of the parameter space.
Detecting individual parts is thus more stable and reliable.

3. APPROACH

In our approach, objects are represented by compositions of
2D contour and 3D shape primitives. We model such com-
positions by a graph of spatial relations between primitives.
Detected primitives, and the model parameters describing
them, form the vertices of the graph. Spatial relations be-
tween (neighboring) primitives are encoded in the edges.

Given the graph of a query object, we convert an input
point cloud into a graph modeling the captured scene and find

prim.−−−→ graph−−−→

prim.−−−→ graph−−−→ match−−−−→ verify−−−−→

Fig. 2. Object learning (top) and detection (bottom): In
CAD models or 3D point clouds, we detect contour and shape
primitives and construct a graph encoding their composition.
Object hypotheses are obtained from constrained sub-graph
matching and verified by checking the overlap between the
transformed model and the points in the original point cloud.

sub-graphs that match with the graph of the query object (see
Fig. 2).

3.1. Shape primitive detection and graph construction

We assume man-made objects that are composed of simple
geometric shape primitives such as planes, cylinders, spheres,
cones and tori. In order to detect such primitives we employ
the algorithm by Schnabel et al. [17] based on random sam-
pling. It decomposes a point cloud P = p1, . . . , pN into a set
of inherent geometric shape primitives φi with support points
Sφi and a set of remaining points R:

P = Sφ1 ∪·· ·∪SφA ∪R. (1)

Each support set Sφi is a connected component of points that
are 1) close to the primitive (distance < ε) and 2) compati-
ble w.r.t. the angle (angle < α) between surface normals at
the point ns and on the primitive at the closest point on the
primitive n(φi,s):

s ∈ Sφi ⇒‖s,φi‖< ε ∧ 6 (ns,n(φi,s))< α. (2)

As an important extension to [17], we distinguish two differ-
ent phases of detecting (shape) primitives: off-line learning of
new objects where we aim at finding an optimal decomposi-
tion into arbitrary shape primitives (open model parameters)
and on-line detection of known objects (see Fig. 2). We save
computations in the on-line phase by constraining the prim-
itive detection to only find primitives existing in the query
object (fixed model parameters). In case of (off-line) learning
of new objects given CAD models, we first sample the model
uniformly to obtain a 3D point cloud.

For each detected primitive φi a vertex is added to the
topology graph G(Φ,E), i. e., Φ = φ1, . . .φa. An edge e =
(φi,φ j) is added if the support sets of the primitives φi and
φ j are neighboring (as opposed to the distance between the
actual primitives having indefinite extent, i.e.:

∃p ∈ Sφi ,q ∈ Sφ j : ‖p−q‖< t (3)



Three types of constraints are encoded in the graph: node
constraints for the similarity of primitives (model parameters
such as type and size), edge constraints for the similarity of
spatial relations between incident primitives (e. g., the angle
between two planes), and graph constraints given only im-
plicitly by the topology in the graph (e. g., parallelism of dis-
connected planes).

3.2. Boundary estimation and contour detection

For being able to detect contour primitives we first extract all
points in an input point cloud belonging to sharp edges and
occlusion boundaries. We employ the algorithm by Bendels
et al. [21] that computes, for every point, a contour probability
using a local k-neighborhood around the query point and var-
ious criteria combined in weighted sum: 1) the angle between
the query point’s normal and the normals of the neighbors,
2) the relative positions of the neighbors to the query points
and 3) the shape of the underlying surface at the query point
(encoded in the Eigenvalues of the covariance matrix).

Given the set of points lying on sharp edges and occlusion
boundaries in a point cloud, we aim at finding contour prim-
itives that help in detecting objects and resolving ambigui-
ties. To this end, we only consider circular contours since our
objects of interest either contain cylinders or drill holes that
result in circular contours. Moreover, circles have only one
shape parameter, besides the position and orientation, for the
radius. Therefore, we are able to detect them very robustly in
noisy and occluded data. As for the shape primitive detection,
we use a RANSAC-based approach and distinguish between
on-line and off-line phase. In the off-line phase, we fit circle
hypotheses by sampling three points, estimating the common
plane, and determining the center of the circle through the
points. In the on-line phase, the points are chosen according
to the searched radii computed of the queried object and ef-
ficiently tested using a fast octree implementation that is also
used in the shape primitive detection. We only accept hy-
potheses with a sufficient number of supporting inliers.

Detected contour primitives are added to the graph
G(Φ,E) already containing detected shape primitives. False
positives in the contour detection arising in the on-line phase
will be pruned in our graph-matching approach, since their
relative pose is inconsistent with the object model graph.

3.3. Graph matching and pose estimation

Since we cannot expect to always find the full query graph
of the searched object, we are looking for a maximal par-
tial match. The matching procedure takes advantage of the
annotations at the nodes and edges given by translation- and
rotation-invariant shape properties like radii or relative poses.
We employ the recursive constrained sub-graph matching al-
gorithm by Schnabel et al. [18].

Graph matching: Input to our method is the graph of
2D/3D primitives of a query object to be searched for in the

Fig. 3. Objects, features and primitives. Left to right: wood,
cross clamping piece, and pipe. Top to bottom: typical point
pair features (PPF), contour primitives, and shape primitives.

scene. We start with a random edge in the query graph and
find similar edges in the scene graph. We compare edges by
their relative pose and nodes by their shape properties, and
compute a score for each match. This score is zero if the types
of primitives do not match and increases with the similarity in
relative pose and shape parameters. For each matching edge,
we expand the match to adjacent edges (and nodes) in query
and scene graph, if they also match in relative pose and shape
properties. The search is not exhaustive since expansion is
stopped if either the whole query graph matches or no further
corresponding edges can be found in the scene graph. We
take into account deviations in the object parts by allowing
tolerances specified by hand. The process is repeated in order
to find multiple objects in the scene.

Pose estimation: We determine object poses from par-
tial matches between model and scene graph. Depending on
the type of shape primitive, each correspondence determines
some of the six degrees of freedom of the pose. A circle-to-
circle correspondence, for example, completely determines
the translation between the circle centers and two rotational
degrees of freedom by the alignment of the circle planes. It
does not, however, determine the rotation around the axis per-
pendicular to the circle plane through its center. Hence, we re-
quire several correspondences between shapes until the pose
of the object is fully retrieved. Computed object poses are re-
fined by registration using the ICP variant of Mitra et al. [22].

Hypotheses verification: Since the previous steps only
consider the matching between shapes but not their consis-
tency with the overall scan false-positives may be generated.
In a verification step, we check the overlap of object hypothe-
ses with the actual point cloud and sort out those with insuffi-
cient overlap (15% in our experiments). If several hypotheses
overlap with the same scan points, we remove the hypotheses
with lower overlap and only keep the best.

4. EXPERIMENTS

The scenario for our tests is a construction task, where a mo-
bile robot picks prefabricated parts out of bins (see Figure 1).
Each bin contains an unorganized pile of objects of the same
type. We have chosen three types of objects for our expri-



(a) without contours 2/0 (b) PPF 2/3 (c) with contours 9/0

(d) without contours 6/0 (e) PPF 3/2 (f) with contours 9/0

(g) without contours 0/0 (h) PPF 1/4 (i) with contours 9/0

Fig. 4. Example detections (true positives / false positives)
for cross clamping pieces (10 visible, 9 pose estimable), pipe
objects (10 visible, 9 pose estimable), and wood objects (9
visible, 9 pose estimable).

ments (see Figure 3) that are similar to parts found in real-
world construction applications—a rectangular wooden plate
containing two drilled holes (manually created CAD model),
a cross clamping piece (CCP), a typical construction part to
connect poles (CAD models are freely available), and a drain
pipe connector (scanned from different perspectives and reg-
istered to obtain a 3D model). For every object we have first
computed a query graph using the off-line variant of our ap-
proach and then detected objects in, respectively, scans and
scene graphs in five differently piled heaps of objects.

We compare the proposed approach combining contour
and shape primitives with our previous approach using shape
primitives only [3], and an implementation of the state-of-
the-art approach by Papazov and Burschka [2] based on point
pair features (PPF) with parameters as recommended by the
authors. In Fig. 4 we show one scan per object with the detec-
tion results of the evaluated approaches for qualitative analy-
sis and visual inspection. Quantitative results are summarized
in Table 1. Since the PPF-based approach is randomized, it is
run for ten times on every input scan to determine the average
detection rate. For the class of objects in our problem setting
our method clearly outperforms the other two methods.

Compared to the shape-only approach (as in used [3]),
adding contour primitives improves detection results by re-
solving object pose ambiguities. In case of the CCP, we often
find only a single cylinder that does not suffice for determin-
ing the object pose as it leaves two degrees of freedom un-
determined. Adding circular contour primitives yields unique
pose estimate and successful detections. The worst case for
the shape-only approach is shown in Fig. 4, where the plates
are lying nearly flat on the table. The objects cannot be de-

Table 1. Average accuracy of the detection
Average accuracy Ours Without 2D PPF
CCP 0.81 0.23 0.29
Pipe 0.89 0.47 0.27
Wood 0.82 0.21 0.08
Overall average 0.84 0.30 0.22
true positives / (true positives + false negatives + false postives)

tected as the only found primitives are (indefintely extending)
planes (with three open degrees of freedom). By combining
the planes with the contour primitives, all objects with es-
timable pose can be detected.

Compared to the PPF-based approach (showing outstand-
ing performance for objects of generic shape) we also achieve
better detection rates. Man-made objects as addressed in our
work are usually formed by compositions of few simple geo-
metric primitives. These are easy to detect for our approach
but also have the property of less varying normals which is
disadvantageous for approaches based on geometric features.
PPFs computed in these areas do not provide unique trans-
formations and can cause false positives. Our primitive-based
approach does not generate hypotheses in these areas, because
it requires only a minimal number of shape matches. Hence,
it does not produce any false positives in our experiments. A
restriction of our solution is that it is only suitable for objects
that can be described by a composition of shape primitives. It
cannot be applied to arbitrary organic objects.

5. CONCLUSIONS

In this paper, we introduced the combination of 2D contour
primitives and 3D shape primitives for detecting objects in
point clouds through shape-graph matching. We provide
qualitative and quantitative experiments on the object types
we focused on and compare the results to a state of the art
method of point pair feature matching. Our combination of
primitive types tremendously improves the robustness of the
simple shape primitive object detection approach, compared
to using 3D shape primitives alone. Our method is ideally
suited for man-made construction objects that can be de-
scribed by compositions of shape primitives. In experiments,
our method shows very good detection results and clearly out-
performs the former method and a recent general approach to
object detection based on point pair features when evaluated
on mechanical construction parts.

In future work, we will incorporate further 3D surface and
2D contour primitives such as spline-based contour descrip-
tions into our method. In order to further improve run-time we
will consider parallel implementation on GPUs. In the current
implementation, model tolerances are specified beforehand. It
is a matter of future work to learn these automatically together
with the object model.
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