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Abstract. The ultimate goal of video prediction is not to predict pixel-
perfect future images. Instead, it is desired to extract a valuable internal
representation to solve downstream tasks. One of the essential down-
stream tasks is to understand the semantic composition of the scene
and later use it for decision making. For example, an observer robot can
anticipate human activities and collaborate in a shared workspace. How-
ever, one of the biggest challenges in human-robot collaboration remains
understanding human intentions and movements. This paper focuses on
predicting future frame pose activities given a pre-trained off-the-shelf
pose estimation model (i.e., shelf-supervised). We propose a lightweight
and interpretable model based on the Frequency Domain Transformer
Networks to solve semantic prediction, given that we have multiple plau-
sible futures. We show that the proposed model outperforms other well-
known video prediction models on the pose prediction task extracted
from the Human3.6M dataset and a synthetically created dataset with
multiple plausible futures.

1 Introduction

Video prediction is about predicting future unseen image sequences based on
some initial observed image sequence. A video prediction model that is useful in
real-world scenarios should not only take into account the dynamics and content
of the observed scene but also have a notion of multiple plausible futures to
account for the inherent uncertainty of the dynamics of the world. For example,
in human-robot collaboration scenarios, given some observed frames of a human
working in a shared human-robot workspace, the robot should not only have a
notion of what the most likely next movement of the human is but also what the
possible future movements and intentions are. Based on this notion of multiple
plausible futures, the robot can plan its following actions. Given a real-world
video sequence, a classical pixel-level prediction of the video leads to a blurry
prediction that represents the average of all possible futures. We argue that such
a representation is only valuable for deterministic or semi-deterministic situa-
tions where the past completely or mostly determines the future. For instance,
several possible futures exist when a person performs a movement in front of the
camera. Suppose the person is walking in the initially observed frames. They
may continue the walking sequence, decrease or increase walking speed, stop
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walking, start walking backward, and many other possibilities. It is not feasible
to formulate all these possible futures in advance. Instead, they must be derived
from the data, preferably in a self-supervised manner. It is also essential for the
future latent space to be interpretable and easy to sample from because this
directly impacts how well the robot can plan its future actions.

The task we are mainly concerned with in this paper is the prediction of
future semantic frames, which is a variant of video prediction. Here we are not
interested in predicting the signal level but in predicting future semantics based
on some observed semantics. In general, semantic prediction refers to predict-
ing the output of another network. Therefore, the prediction model must not
only learn to make predictions but also cope with imperfect seed input frames.
Semantic prediction is more valuable than video prediction at the signal level
because we predict the scene’s essence, not just some insignificant pixel-level
details. For example, in one of our experimented datasets, we predict the mo-
tion of a human subject and discard irrelevant information such as the person’s
hairstyle and color.

In our particular use case, the ultimate goal is to predict the human pose in a
shared human-robot workspace using multiple smart edge sensors with different
viewing angles. Later, we collect and fuse these short-term predictions for further
processing and decision making with a more computationally powerful central-
ized backend server. The backend will merge the short-term local predictions
into an allocentric semantic map. To enable short-term predictions, we train our
model with human poses from the Human3.6M dataset [1]. The human poses
were extracted using a pre-trained off-the-shelf state-of-the-art model developed
by Bultmann et al. [2]. Note that the short-term prediction has to be done in
real-time on the edge sensor, so models with a massive number of parameters
are not suitable for this task.

Most other human skeleton prediction works are unsuitable for the described
use case. Human skeleton prediction models are typically formulated as time
series of 3D points corresponding to human joint positions and developed with
the intention of predicting long sequences into the future [3]. Much of the recent
work on this topic uses a graph neural network approach [4, 5]. These models
usually cannot deal with occlusions, missing joints, and the ambiguity of human
joint positions. Furthermore, they assume a perfect skeleton extractor, which is
not realistic considering that the human joint extractor is also a deep learning
model that looks at natural images and does not have access to the ground truth.
Although such models can be used in our backend server, which has access to
a fused and near-perfect 3D skeleton, they are not suitable for short-term local
predictions in the sensor space, which is the purpose of this work.

Our work is an extension of our lightweight and fully interpretable FDTN-
based models [6, 7] and follows our recent findings [8], which suggest that when
semantic prediction is the goal, first extracting semantics followed by video pre-
diction yields a better result compared to first performing video prediction fol-
lowed by semantic extraction. We address the multiple plausible futures prob-
lem by proposing a lightweight intention model to extract very low-dimensional
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stochastic latent variables, pass them to the FDTN-based prediction model, and
train them jointly in an end-to-end fashion. Note that the intention model pro-
posed in this paper is not limited to semantic predictions and can also be used for
video predictions. The code and dataset of this paper will be publicly available
on GitHub 1. The main contributions of this paper are as follows:

{ We extend the existing frequency-domain-based transformer models to ac-
count for multiple plausible future scenarios.

{ We propose a lightweight model to extract different variants of the predic-
tions in a very low-dimensional latent space.

{ We show that the output space of our intention model is interpretable and
meaningful while capturing a wide range of plausible predictions.

2 Related Work

While there are many different approaches to video prediction, the most effec-
tive ones use deep learning to create abstract representations of scene content
and observed transformations. A successful example is Video Ladder Network
(VLN) [9], an extension of Ladder Networks that uses a recurrent lateral link
at each level and models transformations at that level of abstraction, with the
lowest level representing video frames. Conversely, PredRNN++ [10] consists of
a stack of LSTM modules, with the output of each module fed into the subse-
quent module, forming a frame prediction at the top. PredNet [11], which aims
to improve neural plausibility, implements a hierarchical architecture that learns
a generative model of the input per layer. Only deviations from the expected
input are propagated upward, actualizing the concepts of predictive coding. In
an extension of this idea, HPNet [12] also resorts to associative coding and adds
a direct upstream of spatio-temporal feature encodings extracted by 3D convo-
lution. Here, the feedback path is routed to an LSTM at each level. In addition
to generating plausible future images, the above two ideas highlight the exciting
potential of video prediction tasks in studying models of cortical processing. In
contrast, other approaches mostly ignore image content and focus on the dy-
namics of the scene. For example, PGP [13, 14] integrates a gated autoencoder
and the transformation model of RAE [15] to learn encodings of global linear
image transformations between successive frames.

Most of the existing video prediction models are suitable for deterministic
datasets, do not fully capture the distribution of outcomes, and provide blurry
predictions in stochastic datasets. The blurry prediction is the result of not ex-
plicitly modeling multiple plausible futures, so the model is forced to produce the
aggregate of multiple predictions to reduce the loss. Recently, loss functions that
specify a distribution of the outcome have been explored. One such approach is
the adversarial loss [16]. Still, the difficulty of training, the overhead of using a
discriminator, and the mode collapse make GAN-based approaches not ideal for
real-time video prediction. Variational inference is another solution to the prob-
lem. While there are few previous works dealing with multiple plausible futures

1 https://github.com/AIS-Bonn/Intention-Aware-Video-Prediction
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in the form of variational inference frameworks [17,18], they are often difficult to
train and require a complex freezing and training scheme [18]. Moreover, these
models typically require a high-dimensional stochastic latent space, complicat-
ing their interpretation because it is impossible to gain insight by exploring the
fully formed latent space. Finally, these models often use hundreds of random
samples in hopes of finding the best matching future prediction when reporting
their test performance.

We argue that the desired model should use a very low-dimensional latent
space with a known range while generating a diverse future outcome. Further-
more, if the latent variables have low dimensionality with a known range, we
can iterate through the latent space and gain insight into the model’s predictive
ability. Finally, it is also desirable to group the latent variable across multiple
frames to force it to form a concept of the variability of the possible motions,
rather than encoding meaningless jitter-like variations on each prediction frame.
In the following sections, we propose our model that meets these criteria.

3 Models

In this section, we introduce the components used in our experiments.
Local Frequency Domain Transformer Networks (LFDTN): The core
functionality of Local Frequency Domain Transformer Networks is the ability to
describe changes in an observed image like signal as a collection of local linear
transformations, transport inferred shifts into the future, and consequently apply
them to make a prediction for the content of the next frame. The first part of
these three distinct tasks is performed by a process that can be described as Local
Fourier Transform (LFT), a Fourier-based transform similar to STFT for a 2D
signal. For a given image x t , overlapping tiles are extracted and windowed with
a function w to produce x t;u;v , a collection of tapering windows on x t around
the image coordinates f u; vg. For each, the FFT Xt;u;v is computed. For Xt � 1;u;v
and Xt;u;v (the LFTs of two consecutive images x t � 1 and x t ), the local phase
di�erence is then defined element-wise as:

PD t � 1;u;v :=
Xt;u;v Xt � 1;u;v

jX t;u;v Xt � 1;u;v j
: (1)

The local phase differences encode the image shift observed around f u; vg and
serve as a content-independent description of the local image transformation.
Since local adversities sometimes perturb the phase differences, in addition to
the fact that the shifts are generally not spatiotemporally constant, a lightweight
learnable convolutional network MM filters and transports them one time-step
ahead. We call this the “transform model” and apply it as:

dPD t;u;v = MM (PD t � 1;u;v ): (2)

It should be noted that MM was designed with an intentional bottleneck
that forces the representation of dPD t;u;v as a vector field in the output layer
that can be easily accessed and that can well explain the final prediction results.
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Next, a prediction of the local views on x t +1 is formed via the local phase
addition given by :

bXt +1 ;u;v = Xt;u;v � dPD t;u;v (3)

and subsequently to obtain their inverse Fourier transforms x̂ t +1 ;u;v . In ad-
dition, the effects of local displacements on the tapering windows are considered
by repeating this step for the Fourier transform of the window function W :

ŵt;u;v := iFFT(phase add(W ; dPD t;u;v )): (4)

Using both, the next video frame x t +1 is reconstructed by inverse local
Fourier Transform in the presence of shifted windows. The sequence of anal-
ysis, then transport and prediction, and finally synthesis described above can
also be applied on a channel-by-channel basis. This means that any spatial sig-
nal, e.g., a segmented video or human keypoints activity maps, is also a valid
input. For more details on LFDTN, we encourage the reader to read the original
LFDTN paper [6].
Global Frequency Domain Transformer Networks (GFDTN): Here we
present a special case of LFDTN, which for clarity, we call Global Frequency
Domain Transformer Networks (GFDTN). This model is similar to LFDTN and
analyzes the signal globally. We set the size of the analysis window to the full
input resolution and replace the window function with the identity. Because
the LFDTN uses positional encoding channels, it can infer the location of each
local transform and use it for prediction. Since in GFDTN, we only have a global
window, the location-dependent features are not needed. To compensate for this,
we replace the positional encodings with each input channel’s Center of Mass.

Evidently GFDTN is limited and can only model one global transformation
per specified channel. Consequently, although using GFDTN cannot make pre-
dictions at the signal level in natural videos, it can predict simple signals, such
as blob-like semantics separated in different channels, into the future. Further-
more, due to the rigid assumption of a single global motion, this model converges
faster than LFDTN. When the difference between LFDTN and GFDTN is not
the focus of discussion, we refer to both models as FDTN in this paper.
Intention Aware Network: The core idea behind this model is to encode
different variations in the dataset and produce a latent variable, which we call the
z vector. During training, this model has access to the future frames to extract
the essence of the future changes. We then feed the z vector into the FDTN
model by concatenating z as an additional channel to the “transform model”.
The z vector is a very low-dimensional representation of these future variations
that helps the prediction model decouple stochasticity from prediction. Unlike
the SVG-LP model [17], which computes the posterior distribution for each time
step, the z latent variable is time-invariant, i.e., it encodes the variations once
for all future frames. Note that during testing, instead of computing the z vector
using the intention model, we can iterate through different possible z values to
generate diverse prediction frames. The experiments section shows that we can
generate different plausible predictions by changing the z variable. The z latent
space can be continuous or discrete. The discrete version is motivated by the
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recent success of discrete generative models like video VQ-VAE [19]. Note that
one can utilize both discrete and continuous latent variables simultaneously.

The intention model is a copy of the “transform model” with some modi-
fications. Some functions, such as the extraction of local phase differences, are
computed once between each successive frame and then used in both the pre-
diction and intention models to avoid redundant computations. The last layer
is the difference between the “transform model” in FDTN and the intention
model. The intention model’s last layer is a fully-connected layer followed by
non-linearity that outputs z . In the continuous space, the nonlinearity is a tanh
activation, and in the discrete case, it is a softmax layer.

In contrast, in the FDTN, the last layer is a convolutional layer that generates
two-dimensional vectors that are then used in the phase addition process. Due
to the similarity between the “transform model” in FDTN and the intention
model, and to save learnable parameters and speed up the training process,
the FDTN model shares weights with the intention model in the human joint
prediction experiments. We also experimented with replacing the affine layer in
the intention model with a global average pooling layer, and the results were
slightly worse, so we decided to use the affine layer.

As it can be seen in the Fig. 1, without this model, the FDTN model, when
faced with a stochastic dataset, will produce a blurry outcome which is a super-
position of all different variations. Finally, note that the idea of an intention-
aware network is not limited to FDTN based models and can also be applied to
other deterministic video prediction models to enable them to model multiple
plausible futures.

Fig. 1: An overview of the difference between the original FDTN model and the
proposed intention-aware FDTN. a) The FDTN model is generating sharp future
frames when trained on the deterministic “Moving MNIST” dataset. b) The
FDTN model is producing a blurry result on the stochastic version of “Moving
MNIST” dataset. c) The proposed intention-aware model during training. d)
The proposed model while testing. Note that we can generate multiple plausible
futures by sampling multiple times from the z vector in test time.

4 Experimental Results

Datasets and Training: We use a variant of the synthetic Moving MNIST
dataset to evaluate our proposed architecture and show the effect of stochastic-
ity in video prediction. We call it “Stochastic Moving MNIST”. It contains six
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frames with one MNIST image moving within a 64 � 64 frame. After three seed
frames, the digit can maintain the initial velocity direction or reverse the veloc-
ity in X and/or Y directions. The choice between these four discrete random
variants is made uniformly. This dataset is ideal for studying multiple plausible
future scenarios with finite options.

We also created another dataset for the 2D human pose prediction task. We
extracted this dataset from the Human3.6M dataset [1] using an off-the-shelf pre-
trained model by Bultmann et al. [2]. The “Human3.6M Joints” dataset contains
a sequence of ten frames with the shape 64 � 64. Each frame has 14 channels
representing different human joints. The time difference between each frame is
about 100ms, and we predict the last five frames given the first five seed frames.
This dataset has a very diverse range of actions captured from many different
human subjects with multiple camera viewing angles.

Our models were trained end-to-end using backpropagation through time.
In addition, we used AdamW optimizer and MSE prediction loss. For training
the discrete intention model, we scheduled the softmax temperature by starting
with a high temperature and gradually decreasing it to a very low temperature
simulating one-hot-encoded argmax.

Table 1: Results for “Stochastic Moving MNIST” and “Human3.6M Joints” datasets.
“Stochastic Moving MNIST” “Human3.6M Joints”

Model L1 MSE DSSIM Params L1 MSE DSSIM Params

Conv-PGP [14] 0.01318 0.00507 0.06239 313K 0.00074 0.00015 0.00380 640K
HPNET [12] 0.01330 0.00489 0.06140 1.5M 0.00093 0.00020 0.00585 12.3M
SVG-LP-1D-Best100 s [17] 0.00390 0.00102 0.01016 12.6M 0.00105 0.00023 0.00531 12.6M
SVG-LP-10D-Best100 s [17] 0.00451 0.00136 0.01233 12.6M 0.00148 0.00037 0.00903 12.6M
SVG-LP-10D-Best1000 s [17] 0.00321 0.00062 0.00717 12.6M 0.00144 0.00035 0.00881 12.6M
Our-GFDTN-Det 0.01347 0.00503 0.06497 45K 0.00064 0.00012 0.00296 390K
Our-LFDTN-Det - - - - 0.00071 0.00015 0.00344 390K
Our-GFDTN-C1D-Best11s 0.00339 0.00133 0.00695 78K 0.00057 0.00011 0.00249 390K
Our-GFDTN-C1D-Best21s 0.00175 0.00038 0.00239 78K 0.00055 0.00010 0.00241 390K
Our-LFDTN-C1D-Best11s - - - - 0.00058 0.00012 0.00258 390K
Our-LFDTN-C1D-Best21s - - - - 0.00057 0.00011 0.00251 390K
Our-GFDTN-D4 0.00067 0.00004 0.00033 82K - - - -
Our-GFDTN-D6 0.00059 0.00003 0.00025 85K 0.00061 0.00012 0.00278 390K
VLN-ResNet [20] 0.01220 0.00467 0.05536 1.3M 0.00078 0.00014 0.00368 1.3M
VLN-LDC [21] 0.01241 0.00470 0.05565 1.3M 0.00078 0.00014 0.00366 1.3M
PredRNN [22] 0.01142 0.00434 0.05173 1.8M 0.00070 0.00015 0.00345 3M
PredRNN++ [10] 0.01167 0.00431 0.05222 2.8M 0.00070 0.00014 0.00344 4M
Copy last frame 0.01440 0.01000 0.04105 - 0.00085 0.00028 0.00441 -

SVG-LP-1D-Approx [17] 0.00289 0.00043 0.00628 12.6M 0.00099 0.00021 0.00464 12.6M
SVG-LP-10D-Approx [17] 0.00275 0.00038 0.00594 12.6M 0.00080 0.00011 0.00303 12.6M
Our-GFDTN-C1D-Approx 0.00090 0.00008 0.00055 78K 0.00055 0.00010 0.00238 390K
Our-LFDTN-C1D-Approx - - - - 0.00056 0.00011 0.00249 390K

Evaluation: We compared our model against many well-known models, includ-
ing Conv-PGP [14], VLN-ResNet [20] VLN-LDC [21], HPNet [12], PredRNN [22],
PredRNN++ [10], and SVG-LP [17]. We also showed the result if we simply copy
the last seed frame. Table 1 reports the outcomes on the “Stochastic Moving
MNIST” and on the “Human3.6M Joints” datasets. Fig. 2 and Fig. 4 depict two
sample results on each dataset for each tested baseline.
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Fig. 2: Two sample results on the “Stochastic Moving MNIST” dataset were
tested on different baselines. On the right, multiple plausible future predictions
are generated by using different discrete choices of z on the Our-GFDTN-D4
model. The variations are plausible and reflect the stochasticity of the dataset.

In these tables for SVG-LP [17] model, 1D and 10D indicate the dimensional-
ity of the used latent space. At the same time, Approx means that the posterior
is computed by accessing future frames, and Best 100s ,Best 1000s means that we
draw random samples from the latent space 100 and 1000 times, respectively,
and report the best loss. For our models, C1D means that the z vector has di-
mensionality one and is continuous, while D6 and D4 means that the z vector is
discrete with 6 and 4 discrete choices, respectively. The word Det represents the
deterministic version of the FDTN models without using the intention model.
In our models, Best 11s and Best 21s mean that we can obtain these results by
iterating through the z vector with the range [-1,1] with a fixed interval of 0:2
and 0:1 respectively and report the best test loss. Note that all results with the
word Approx require access to the future test images and are therefore not
realistic. We reported them here to compare the results among themselves but
not with other baselines and also to show the best possible results when the
sample size approaches infinity. Unlike the SVG-LP model, we can easily show
the different choices for the z vector by iterating through discrete choices or by
choosing a fixed interval. Two example results for different z choices are shown
in Fig. 2 for the synthetic dataset, which indicates that the model successfully
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captures all four possible plausible futures. Furthermore, Fig. 4 depicts differ-
ent z values which exhibit that the model has arranged the latent variable z in
a highly interpretable and organized manner, which is a direct consequence of
using a bounded low-dimensional latent variable.

(a) Our-GFDTN-C1D-Approx (b) Our-GFDTN-D6

Fig. 3: The histogram of the learned z vector during training. a) Is the result
of the continuous z vector in the Our-GFDTN-C1D-Approx model, trained on
“Human3.6M Joints”. b) Is the result of discrete z for the Our-GFDTN-D6
model trained on “Stochastic Moving MNIST”. Note that the discrete index of
zero and four is not utilized by the model.

We can constrain our choices during inference time by examining the gathered
histogram of the z vector during training. Two example histograms are shown
in Fig. 3. It is to be observed that, in Fig. 3:b, the model with six discrete options
only utilized four of the available options. This is due to a small L2 regularization
used during training to encourage fewer choices. Since it is not always possible
to determine the exact dimensions of the discrete variables in advance, we can
choose a large enough dimension and force the model to select a minimal number
of choices by increasing the regularization term.

We specified four metrics, including L1, MSE, and DSSIM, to compare our
model against other baselines. Overall, experimental results indicate that our
models perform well compared to other deterministic and stochastic models. We
require much fewer sample iterations than SVG-LP while obtaining better re-
sults. Moreover, we need very few learnable parameters because we share the
weights between the intention model and FDTN and also use lightweight FDTN
models. Although we experimented with both the discrete and continuous ver-
sions of our intention model on both datasets, it is evident from the results that
the discrete model works best in the synthetic dataset, which has clear and dis-
tinct plausible futures. On the other hand, the continuous model works best in
the “Human3.6M Joints” dataset, where stochasticity is inherently continuous.
Note that continuous variable models are easier to train compared to discrete
latent variables, mainly because the gradient flows much better in the continu-
ous version. Also, temperature scheduling is a critical part of training, and the
range of the parameter and the decay rate is not a trivial hyper-parameter to
tune.

SVG-LP is a model developed to address multiple plausible futures using
a variational inference framework that requires a prior distribution. However,
the Gaussian prior in SVG-LP, which is enforced by an additional KLD loss,
is a strong assumption and leads to inferior results when the stochasticity in
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Fig. 4: Two sample results on the “Human3.6M Joints” dataset which were tested
on different baselines. Right two columns show multiple plausible future predic-
tions, given different values of z on the Our-GFDTN-C1D model. Note that all
predictions are plausible, and the z dimension is organized in an interpretable
manner. For example, changing the z vector can produce different walking di-
rections in the left sample and change the amount of bending in the right.

the dataset has a different distribution. For instance, the uniformly distributed
stochasticity in our synthetic dataset makes Gaussian prior a problem for the
SVG-LP model. To remedy this, we utilized a lower � hyperparameter than the
value originally proposed in the paper. In addition, time-variant stochasticity
makes it unrealistic to iterate all possible plausible futures in SVG-LP. The re-
quired large dimensions of the latent variable combined with the time-variant
stochasticity enable the SVG-LP model to essentially memorize the predictions
and leak the future frames into the latent vector, leading to good training loss
but inferior test performance. Although SVG-LP produces multiple plausible fu-
tures and generally outperforms most basic deterministic models after sampling
multiple times and reporting the best result, the number of samples required
is very high due to two main reasons. One reason is that the range of latent
variables is not strictly bounded and is merely enforced with KLD loss. The
second reason is that latent variables are generated per sample, which exponen-
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tially increases the number of samples required. Our proposed model does not
have these problems. Therefore, we can achieve a diverse and plausible predic-
tion with very few samples. Another problem with the SVG-LP model is that
many aspects of the prediction, including the motion and content, are entangled
in multiple LSTM layers. Hence the latent variable that is supposed to capture
the stochasticity of the motions may also encode some variations of the content
shapes (see Fig. 2 for an example of this problem). On the other hand, in our
FDTN models, motion and content are clearly separated, so shape variations do
not contaminate the motion stochasticity.

A fixed iteration interval works very well in our experimented datasets. Nev-
ertheless, one can use k-means clustering in training time to find K clusters
and iterate over the midpoints of the clusters at inference time. Although more
sophisticated sampling methods such as beam search or top-k sampling can be
used depending on the computational budget, the maximum gain would not ex-
ceed Approx methods that have access to the approximated latent variables
given the future frames. Note that if a bell curve-like shape is required in the z
variables, we can add an explicit regularization loss computed on the batch of
z . On the other hand, if uniform distribution is desired, it can be enforced by a
suitable additional loss term such as the label smoothing loss.

Our GFDTN model was successfully deployed to the Nvidia Jetson Xavier
NX board, and we ran it in parallel with the human keypoint extraction model
on the same board. We achieved about 8 � 10Hz for single-person semantic
prediction on this computationally limited GPU.

5 Conclusion and Future Work

We proposed Intention-aware Frequency Domain Transformer Networks (IFDTN),
a fully interpretable and lightweight differentiable model for the video and se-
mantic prediction tasks. The intention network encodes the stochasticity of the
dataset in a vector with very low dimensionality. By multiple sampling of the
latent space, we can generate a diverse set of plausible predictions. The latent
representation formed is highly organized and interpretable. Furthermore, our
models require very few learnable parameters, making them highly generalizable
to unforeseen data. Experiments with synthetic data and human joints extracted
from real data indicate that our models can outperform other baselines with far
fewer parameters. In the future, we would like to fuse our short-term predic-
tions with the semantic extraction model to improve the overall performance of
semantic extraction.
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