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Abstract. Deep convolutional neural networks are used to address many
computer vision problems, including video prediction. The task of video
prediction requires analyzing the video frames, temporally and spatially,
and constructing a model of how the environment evolves. Convolutional
neural networks are spatially invariant, though, which prevents them
from modeling location-dependent patterns. In this work, the authors
propose location-biased convolutional layers to overcome this limitation.
The effectiveness of location bias is evaluated on two architectures: Video
Ladder Network (VLN) and Convolutional Predictive Gating Pyramid
(Conv-PGP). The results indicate that encoding location-dependent fea-
tures is crucial for the task of video prediction. Our proposed methods
significantly outperform spatially invariant models.
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1 Introduction
The task of video prediction consists of predicting a set of successor frames,
given a sequence of video frames. It is challenging, because the predictor needs
to understand both contents and motion of the scene in order to make good
predictions. In recent years, deep learning approaches became popular for video
prediction. They analyze the video both spatially and temporally and learn
hierarchical representations, which model the image evolution in terms of its
content and dynamics ([1], [2]). The learned representations can be used for
a variety of applications, including action recognition and anticipating future
actions, which can be utilized for instance in human-robot interaction scenarios.

Convolutional deep learning architectures cannot recognize location-dependent
features, however, due to the location-invariant nature of convolutions. In the
task of the video prediction, for instance, learning the location of static obstacles
in the environment leads to better frame forecasting. In this work, the authors
propose three different methods to overcome this limitation:

a) encoding location features in separate channels of the input,
b) convolutional layers with learnable location-dependent biases, and
c) convolutional layers with learnable location-dependent biases and predefined

location encodings.
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Fig. 1 Proposed methods for location-dependency. Top row 2D and bottom row 1D.
a) three additional input channels, two of which encode location by gradients in x
and y directions (LE); the third contains the occlusion pattern (OP). b) learnable
location-dependent biases (LB) are added to the output of convolutions. c) learnable
location-dependent biases and predefined location encodings use combined.

These methods are illustrated in Fig. 1 for 1D and two-dimensional convolu-
tions.

We demonstrate the utility of our approach using two datasets that con-
tain location dependencies. The code and datasets of this paper are publicly
available.1

2 Related Work

Convolutional deep learning architectures are spatially invariant, which leads to
the constraint of not being able to model location-dependent patterns.

To address this issue in various computer vision tasks, different approaches
have been explored. Utilizing fully connected layers leads to learning location-
dependent features, but this has the drawbacks of many parameters and no
spatial weight sharing. In the PixelCNN architecture for conditional image gen-
eration, Oord et al. [3] applied 1×1 convolutions to map a hidden representation
into a spatial representation. The disadvantage of this approach is that to extract
the spatial features, a very large number of parameters is needed. In saliency
prediction, Kruthiventi et al. [4] proposed adding another set of convolutional

1 https://github.com/AIS-Bonn/LocDepVideoPrediction
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weights with the same size of the original filters. They convolved these addi-
tional weights with predefined fixed channels that encode the image center using
Gaussian blobs with different horizontal and vertical extent. Ghafoorian et al. [5]
applied specific location features to train the model and utilized location depen-
dency for the task of brain MRI image segmentation. They showed that the
results improve in comparison to CNNs that do not use location information.
The above approaches depend all on predefined location feature structures.

For the task of video prediction, different approaches have been explored.
The most successful ones utilize deep learning methods. Cricri et al. [6] proposed
Video Ladder Networks (VLN) by adding recurrent connections to the ladder
network [7]. Similar to ladder networks, VLN employs shortcut connections from
the encoder to the respective decoder part, whereby it relieves the deeper layers
from modeling details. The VLN architecture achieves a result competitive to
VPN [8] which is the state-of-the-art on the synthetic dataset of Moving MNIST.
However, the VLN architecture due to its convolutional layers, cannot deal with
location-dependent features. Another recurrent network for the task of video
prediction was proposed by Michalski et al. [9]. Their PGP network is based on a
gated autoencoder and a bilinear transformation model, to learn transformations
between pairs of consecutive images ([10], [11]). PGP is fully connected, which
results in a large number of parameters. Its convolutional variant Conv-PGP
reduces the number of parameters significantly [12], but looses the ability to
learn location-dependent features. For the evaluation of Conv-PGP, the authors
augmented one-pixel padding to the input to learn a bouncing ball motion in
their synthetic dataset.

While VLN and Conv-PGP have shown impressive performance in the task of
video prediction, the above analysis shows that the effect of location-dependent
features on these two architectures requires further investigation.

3 Location Dependency in VLN Model

The VLN model [6] is a neural network architecture that predicts future frames
by encoding the temporal and spatial features of a video. Although it achieves
a competitive result in comparison to the state-of-the-art on Moving MNIST,
due to the location invariant property of convolution operation, it cannot learn
location-dependent features present in the dataset. The network would become
unreasonably huge if we wanted to utilize a fully connected layer to allow for
learning location-dependent features. Using a fully connected layer would also
violate the assumption of weight sharing in the VLN architecture. The same-
padding property around the border, which is not analyzed in the original paper,
is the reason which allows the network to learn where to mirror digit velocity de-
spite using only convolutional operations. Such a behavior is accidental, though,
and should not be treated as a feature.

To demonstrate this limitation of the VLN architecture, we modified the
Moving MNIST dataset to Occluded Moving MNIST, similar to what is used
by Prémont-Schwarz et al. [13]. As demonstrated in the experiment section, we
tested the original one-layer VLN with this dataset and it did not achieve an
acceptable result.
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To solve this issue, we propose three methods for providing location infor-
mation to the network. In the first method illustrated in Fig. 1(a), we provide
three additional input channels to the network: two gradient channels in x and
y direction, starting from 0 and ending with 1, as well as one channel contain-
ing the occlusion grid pattern. The occlusion channel is 1 in the occlusion areas
and 0 elsewhere. These additional input channels allow the network to infer the
location-dependent feature of the border and to utilize the occlusion pattern.
In contrast to encoding location features in the original input channel, having
additional channels does not alter the original input. Encooding occlusions in a
separate channel can be useful, for example, when they are inferred from modal-
ities other than a camera, like a laser scanner.

In the second method (Fig. 1(b) and Fig. 2), we replace the first convolutional
layer in the encoder block with a location-dependent convolutional layer:

LC(x, y) = A

(∑
i,j

(
I(x + i, y + j) ∗W (i, j) + b

)
+ W

′

1(x, y) + W
′

2(x, y)

)
(1)

where A is the activation function. W and b are the weight and bias of
the specified layer, respectively. Note that b can be omitted, but we kept it to
make the proposed layer easy to implement on top of an existing convolution
layer. I(x, y) is the input vector at the Cartesian position (x, y) and ∗ represents
the convolution operator. Note that W

′

1 and W
′

2 are location-dependent weights
that are learned through the training procedure. W

′

1 and W
′

2 are shared for all
convolutional filters, which is done by broadcasting over channel dimension.

In the third method, illustrated in Fig. 1(c), we added location-dependent
gradients to the W

′

1 and W
′

2:

LC(x,y)=A

(∑
i,j

(
I(x+i,y+j)∗W (i,j)+b

)
+
(
Lx(x,y)+W

′
1(x,y)

)
+
(
Ly(x,y)+W

′
2(x,y)

))
(2)

where similar to additional input channels, Lx(x, y) and Ly(x, y) encode lo-
cation by gradients in x and y directions, respectively. Providing these facilitates
the learning of more complex location-dependent biases.

4 Location Dependency in Conv-PGP Model

PGP [9] is designed based on the assumption that two temporally consecutive
frames can be described as a linear transformation of each other. In the PGP ar-
chitecture, by using a Gated AutoEncoder (GAE) as bi-linear model, the hidden
layer of mapping units m encodes the transformation.

The fully connected PGP architecture contains a significant number of pa-
rameters. To deal with this issue, we utilized its convolutional variant (Conv-
PGP), similar to [12], where fully connected layers are replaced by convolutions.

While Conv-PGP reduces the number of parameters significantly, it cannot
learn location-dependent features such as the image border anymore. Using valid
convolutions prevents, e.g., learning the mirroring motion in the Bouncing Ball
dataset. As shown in the experiment section, in the Conv-PGP model, the balls
disappear instead of being reflected at the border which indicates that the model
is incapable of predicting location-dependent motions.
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Fig. 2 One-layer location-
dependent VLN architecture
consisting of two convolution
layers in the encoder block, a
Conv-LSTM block, and one
deconvolution followed by a
convolution layer in the decoder
part. The trainable location-
dependent bias (LB) is applied
after the first convolution layer.

To demonstrate this limitation more clearly, we modified the Bouncing Ball
dataset. In the Occluded Bouncing Ball dataset, we augmented fixed strides
of three pixels to occlude the moving balls as well as invisible lines to mirror
the velocity. As shown in the following section, we trained the Conv-PGP with
this dataset, and it did not achieve a satisfactory result. To resolve this issue,
we applied the three proposed methods for modeling location dependency to
Conv-PGP.

5 Experiment

We tested our modified VLN architectures on the Occluded Moving MNIST
dataset. Each video in the Occluded Moving MNIST dataset contains 10 frames,
with one MNIST digit moving inside a 64×64 patch. Digits are chosen randomly
from the training set and placed initially at random locations inside the patch
with a random velocity. The frames are filled with occluding vertical and hori-
zontal bars; the distance between them is eight pixels. In addition to that, we
added invisible lines to mirror the velocity at a distance of ten pixels from the
border.

In our first experiment, we compare the one-layer original VLN architecture
on Occluded Moving MNIST with our three proposed solutions:

– VLN-AI: Two location gradient channels and one occlusion channel as ad-
ditional location encoding inputs (Fig. 1(a)),

– VLN-LDC: Location-dependent bias in the encoder block (Fig. 1(b)), and
– VLN-LDCAI: Location-dependent bias in the encoder block and location

gradient channels (Fig. 1(c)).

In our experiment, the first eight frames are predicted using the given frame
from the dataset. The last two frames are predicted using the previous network
output. Sample results of one-layer original VLN and VLN-LDCAI are depicted
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Fig. 3 Occluded Moving
MNIST. a) Input frames
with visualized occlusion. b)
Frames given to the network.
c) Predicted frames with the
one-layer original VLN. d)
Predicted frames with VLN-
LDCAI. e) Expected ground
truth frames.

in Fig. 3. Sample activations of the Conv-LSTM and the encoder block for both
the original VLN and the VLN-LDCAI are shown in Fig. 4. These activations
demonstrate that the original VLN cannot infer the location-dependent features
while the VLN-LDCAI can learn location-dependent features including the bor-
der and the occlusion grid.

Table 1 reports the prediction loss and the number of parameters for the
evaluated model variant. It can be observed that all methods to model location
dependencies improve performance.

a)

b)

c)

d)

e)

f)

Fig. 4 Occluded Moving MNIST
activities. a) Activation layers
of Conv-LSTM block in original
VLN. b) Activation layers of the
encoder block in original VLN.
Note that none of the channels can
detect the location-dependent fea-
tures. c) Activation layers of Conv-
LSTM block in VLN-LDCAI. d)
Activation layers of the encoder
block in VLN-LDCAI. e) Learned
location-bias channels in VLN-
LDCAI. f) Input frame. Note that
the VLN-LDCAI automatically in-
ferred location-dependent features.
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Table 1 Results of VLN models on Occluded Moving MNIST test dataset.

Model Prediction test loss (BCE) Number of parameters

VLN 165.9 90K

VLN-AI 150.7 91K

VLN-LDC 154.7 103K

VLN-LDCAI 153.2 103K

In a second experiment, we compared a one-layer Conv-PGP network with
and without the border on the Occluded Bouncing Ball dataset, which is con-
structed similar to Occluded Moving MNIST. In our experiment, the first three
frames are predicted using the given frame from the dataset. The last seven
frames are predicted using the previous network output. As illustrated in Fig-
ure 5, learning the location-dependent features is crucial for the prediction task.
The prediction losses reported in Table 2 show that our proposed one-layer
location-dependent Conv-PGP can solve the Occluded Bouncing Ball dataset
and yields a much better result than one-layer Conv-PGP.

Fig. 5 Bouncing Ball results. a) Conv-PGP. b) Conv-PGP-AI. c) Conv-PGP-LDC and
Conv-PGP on Occluded Bouncing Ball dataset.

Table 2 Results of Conv-PGP models on Occluded Bouncing Ball test dataset.

Model Prediction test loss (BCE) Number of parameters

Conv-PGP 266.9 39k

Conv-PGP-AI 148.7 40k

Conv-PGP-LDC 139.4 56k

Conv-PGP-LDCAI 143.3 56k

6 Conclusion

Our experiments indicate that location information is a necessity in convolutional
architectures for video prediction tasks as, for example, dealing with occlusions
in the environment is challenging. To test three proposed variants of learning
location-dependent features, we utilized the Occluded Moving MNIST and Oc-
cluded Bouncing Ball datasets which mimic occlusions in the real world. The
proposed location-dependent inputs and biases allow the VLN and Conv-PGP
models to learn more complex location-dependent features than just mirror-
ing velocity at the borders. In contrast to previous approaches, our proposed
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learnable location-dependent biases do not assume any predefined underlying
feature structure. Our proposed location-dependent convolution layers signifi-
cantly improve on the results of both one-layer VLN and one-layer Conv-PGP
architectures.

In future work, we will explore the proposed methods for general deep con-
volutional neural network architectures, and test the performance on real-world
datasets.
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